Skip to main content
Log in

Mitochondrial metabolic adaptation in right ventricular hypertrophy and failure

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Right ventricular failure (RVF) is the leading cause of death in pulmonary arterial hypertension (PAH). Some patients with pulmonary hypertension are adaptive remodelers and develop RV hypertrophy (RVH) but retain RV function; others are maladaptive remodelers and rapidly develop RVF. The cause of RVF is unclear and understudied and most PAH therapies focus on regressing pulmonary vascular disease. Studies in animal models and human RVH suggest that there is reduced glucose oxidation and increased glycolysis in both adaptive and maladaptive RVH. The metabolic shift from oxidative mitochondrial metabolism to the less energy efficient glycolytic metabolism may reflect myocardial ischemia. We hypothesize that in maladaptive RVH a vicious cycle of RV ischemia and transcription factor activation causes a shift from oxidative to glycolytic metabolism thereby ultimately promoting RVF. Interrupting this cycle, by reducing ischemia or enhancing glucose oxidation, might be therapeutic. Dichloroacetate, a pyruvate dehydrogenase kinase inhibitor, has beneficial effects on RV function and metabolism in experimental RVH, notably improving glucose oxidation and enhancing RV function. This suggests the mitochondrial dysfunction in RVH may be amenable to therapy. In this mini review, we describe the role of impaired mitochondrial metabolism in RVH, using rats with adaptive (pulmonary artery banding) or maladaptive (monocrotaline-induced pulmonary hypertension) RVH as models of human disease. We will discuss the possible mechanisms, relevant transcriptional factors, and the potential of mitochondrial metabolic therapeutics in RVH and RVF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sztrymf B, Souza R, Bertoletti L, Jais X, Sitbon O, Price LC, Simonneau G, Humbert M (2010) Prognostic factors of acute heart failure in patients with pulmonary arterial hypertension. Eur Respir J 35:1286–1293

    Article  CAS  PubMed  Google Scholar 

  2. Gavazzi A, Berzuini C, Campana C, Inserra C, Ponzetta M, Sebastiani R, Ghio S, Recusani F (1997) Value of right ventricular ejection fraction in predicting short-term prognosis of patients with severe chronic heart failure. J Heart Lung Transplant 16:774–785

    CAS  PubMed  Google Scholar 

  3. van Wolferen SA, Marcus JT, Boonstra A, Marques KM, Bronzwaer JG, Spreeuwenberg MD, Postmus PE, Vonk-Noordegraaf A (2007) Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J 28:1250–1257

    Article  PubMed  Google Scholar 

  4. Gomez A, Bialostozky D, Zajarias A, Santos E, Palomar A, Martinez ML, Sandoval J (2001) Right ventricular ischemia in patients with primary pulmonary hypertension. J Am Coll Cardiol 38:1137–1142

    Article  CAS  PubMed  Google Scholar 

  5. van Wolferen SA, Marcus JT, Westerhof N, Spreeuwenberg MD, Marques KM, Bronzwaer JG, Henkens IR, Gan CT, Boonstra A, Postmus PE, Vonk-Noordegraaf A (2008) Right coronary artery flow impairment in patients with pulmonary hypertension. Eur Heart J 29:120–127

    Article  PubMed  Google Scholar 

  6. Bian X, Williams AG Jr, Gwirtz PA, Downey HF (1998) Right coronary autoregulation in conscious, chronically instrumented dogs. Am J Physiol 275:H169–H175

    CAS  PubMed  Google Scholar 

  7. Bogaard HJ, Natarajan R, Henderson SC, Long CS, Kraskauskas D, Smithson L, Ockaili R, McCord JM, Voelkel NF (2009) Chronic pulmonary artery pressure elevation is insufficient to explain right heart failure. Circulation 120:1951–1960

    Article  PubMed  Google Scholar 

  8. Oikawa M, Kagaya Y, Otani H, Sakuma M, Demachi J, Suzuki J, Takahashi T, Nawata J, Ido T, Watanabe J, Shirato K (2005) Increased [18F]fluorodeoxyglucose accumulation in right ventricular free wall in patients with pulmonary hypertension and the effect of epoprostenol. J Am Coll Cardiol 45:1849–1855

    Article  CAS  PubMed  Google Scholar 

  9. Piao L, Fang YH, Cadete VJ, Wietholt C, Urboniene D, Toth PT, Marsboom G, Zhang HJ, Haber I, Rehman J, Lopaschuk GD, Archer SL (2010) The inhibition of pyruvate dehydrogenase kinase improves impaired cardiac function and electrical remodeling in two models of right ventricular hypertrophy: resuscitating the hibernating right ventricle. J Mol Med 88:47–60

    Article  CAS  PubMed  Google Scholar 

  10. Handa N, Magata Y, Mukai T, Nishina T, Konishi J, Komeda M (2007) Quantitative FDG-uptake by positron emission tomography in progressive hypertrophy of rat hearts in vivo. Ann Nucl Med 21:569–576

    Article  PubMed  Google Scholar 

  11. Rajabi M, Kassiotis C, Razeghi P, Taegtmeyer H (2007) Return to the fetal gene program protects the stressed heart: a strong hypothesis. Heart Fail Rev 12:331–343

    Article  CAS  PubMed  Google Scholar 

  12. Neely JR, Morgan HE (1974) Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu Rev Physiol 36:413–459

    Article  CAS  PubMed  Google Scholar 

  13. Stanley WC, Lopaschuk GD, Hall JL, McCormack JG (1997) Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions. Potential for pharmacological interventions. Cardiovasc Res 33:243–257

    Article  CAS  PubMed  Google Scholar 

  14. Chandler MP, Chavez PN, McElfresh TA, Huang H, Harmon CS, Stanley WC (2003) Partial inhibition of fatty acid oxidation increases regional contractile power and efficiency during demand-induced ischemia. Cardiovasc Res 59:143–151

    Article  CAS  PubMed  Google Scholar 

  15. Abozguia K, Clarke K, Lee L, Frenneaux M (2006) Modification of myocardial substrate use as a therapy for heart failure. Nat Clin Pract Cardiovasc Med 3:490–498

    Article  CAS  PubMed  Google Scholar 

  16. Saito D, Tani H, Kusachi S, Uchida S, Ohbayashi N, Marutani M, Maekawa K, Tsuji T, Haraoka S (1991) Oxygen metabolism of the hypertrophic right ventricle in open chest dogs. Cardiovasc Res 25:731–739

    Article  CAS  PubMed  Google Scholar 

  17. Bishop SP, Altschuld RA (1970) Increased glycolytic metabolism in cardiac hypertrophy and congestive failure. Am J Physiol 218:153–159

    CAS  PubMed  Google Scholar 

  18. Nagendran J, Gurtu V, Fu DZ, Dyck JR, Haromy A, Ross DB, Rebeyka IM, Michelakis ED (2008) A dynamic and chamber-specific mitochondrial remodeling in right ventricular hypertrophy can be therapeutically targeted. J Thorac Cardiovasc Surg 136:168–178, 178 e161-163

    Article  PubMed  Google Scholar 

  19. Sharma S, Taegtmeyer H, Adrogue J, Razeghi P, Sen S, Ngumbela K, Essop MF (2004) Dynamic changes of gene expression in hypoxia-induced right ventricular hypertrophy. Am J Physiol Heart Circ Physiol 286:H1185–H1192

    Article  CAS  PubMed  Google Scholar 

  20. Kim Y, Goto H, Kobayashi K, Sawada Y, Miyake Y, Fujiwara G, Chiba H, Okada T, Nishimura T (1997) Detection of impaired fatty acid metabolism in right ventricular hypertrophy: assessment by I-123 beta-methyl iodophenyl pentadecanoic acid (BMIPP) myocardial single-photon emission computed tomography. Ann Nucl Med 11:207–212

    Article  CAS  PubMed  Google Scholar 

  21. Buermans HP, Redout EM, Schiel AE, Musters RJ, Zuidwijk M, Eijk PP, van Hardeveld C, Kasanmoentalib S, Visser FC, Ylstra B, Simonides WS (2005) Microarray analysis reveals pivotal divergent mRNA expression profiles early in the development of either compensated ventricular hypertrophy or heart failure. Physiol Genomics 21:314–323

    Article  CAS  PubMed  Google Scholar 

  22. Do E, Baudet S, Verdys M, Touzeau C, Bailly F, Lucas-Heron B, Sagniez M, Rossi A, Noireaud J (1997) Energy metabolism in normal and hypertrophied right ventricle of the ferret heart. J Mol Cell Cardiol 29:1903–1913

    Article  CAS  PubMed  Google Scholar 

  23. Daicho T, Yagi T, Abe Y, Ohara M, Marunouchi T, Takeo S, Tanonaka K (2009) Possible involvement of mitochondrial energy-producing ability in the development of right ventricular failure in monocrotaline-induced pulmonary hypertensive rats. J Pharmacol Sci 111:33–43

    Article  CAS  PubMed  Google Scholar 

  24. Antzelevitch C (2007) Ionic, molecular, and cellular bases of QT-interval prolongation and torsade de pointes. Europace 9(Suppl 4):iv4–iv15

    Article  PubMed  Google Scholar 

  25. Lee JK, Kodama I, Honjo H, Anno T, Kamiya K, Toyama J (1997) Stage-dependent changes in membrane currents in rats with monocrotaline-induced right ventricular hypertrophy. Am J Physiol 272:H2833–H2842

    CAS  PubMed  Google Scholar 

  26. Hlaing T, Guo D, Zhao X, DiMino T, Greenspon L, Kowey PR, Yan GX (2005) The QT and Tp-e intervals in left and right chest leads: comparison between patients with systemic and pulmonary hypertension. J Electrocardiol 38:154–158

    Article  PubMed  Google Scholar 

  27. Lee JK, Nishiyama A, Kambe F, Seo H, Takeuchi S, Kamiya K, Kodama I, Toyama J (1999) Downregulation of voltage-gated K(+) channels in rat heart with right ventricular hypertrophy. Am J Physiol 277:H1725–H1731

    CAS  PubMed  Google Scholar 

  28. Zhang TT, Cui B, Dai DZ (2004) Downregulation of Kv4.2 and Kv4.3 channel gene expression in right ventricular hypertrophy induced by monocrotaline in rat. Acta Pharmacol Sin 25:226–230

    CAS  PubMed  Google Scholar 

  29. Vlahakes GJ, Turley K, Hoffman JI (1981) The pathophysiology of failure in acute right ventricular hypertension: hemodynamic and biochemical correlations. Circulation 63:87–95

    CAS  PubMed  Google Scholar 

  30. Kurzyna M, Zylkowska J, Fijalkowska A, Florczyk M, Wieteska M, Kacprzak A, Burakowski J, Szturmowicz M, Wawrzynska L, Torbicki A (2008) Characteristics and prognosis of patients with decompensated right ventricular failure during the course of pulmonary hypertension. Kardiol Pol 66:1033–1039, discussion 1040–1031

    PubMed  Google Scholar 

  31. Partovian C, Adnot S, Eddahibi S, Teiger E, Levame M, Dreyfus P, Raffestin B, Frelin C (1998) Heart and lung VEGF mRNA expression in rats with monocrotaline- or hypoxia-induced pulmonary hypertension. Am J Physiol 275:H1948–H1956

    CAS  PubMed  Google Scholar 

  32. Graham RM, Frazier DP, Thompson JW, Haliko S, Li H, Wasserlauf BJ, Spiga MG, Bishopric NH, Webster KA (2004) A unique pathway of cardiac myocyte death caused by hypoxia-acidosis. J Exp Biol 207:3189–3200

    Article  CAS  PubMed  Google Scholar 

  33. Dang CV, Kim JW, Gao P, Yustein J (2008) The interplay between MYC and HIF in cancer. Nat Rev Cancer 8:51–56

    Article  CAS  PubMed  Google Scholar 

  34. Redout EM, Wagner MJ, Zuidwijk MJ, Boer C, Musters RJ, van Hardeveld C, Paulus WJ, Simonides WS (2007) Right-ventricular failure is associated with increased mitochondrial complex II activity and production of reactive oxygen species. Cardiovasc Res 75:770–781

    Article  CAS  PubMed  Google Scholar 

  35. Pollack PS, Houser SR, Budjak R, Goldman B (1994) c-myc gene expression is localized to the myocyte following hemodynamic overload in vivo. J Cell Biochem 54:78–84. doi:10.1002/jcb.240540109

    Article  CAS  PubMed  Google Scholar 

  36. Zhong W, Mao S, Tobis S, Angelis E, Jordan MC, Roos KP, Fishbein MC, de Alboran IM, MacLellan WR (2006) Hypertrophic growth in cardiac myocytes is mediated by Myc through a cyclin D2-dependent pathway. EMBO J 25:3869–3879

    Article  CAS  PubMed  Google Scholar 

  37. Jaswal JS, Gandhi M, Finegan BA, Dyck JR, Clanachan AS (2007) Inhibition of p38 MAPK and AMPK restores adenosine-induced cardioprotection in hearts stressed by antecedent ischemia by altering glucose utilization. Am J Physiol Heart Circ Physiol 293:H1107–H1114

    Article  CAS  PubMed  Google Scholar 

  38. Sugden MC, Langdown ML, Harris RA, Holness MJ (2000) Expression and regulation of pyruvate dehydrogenase kinase isoforms in the developing rat heart and in adulthood: role of thyroid hormone status and lipid supply. Biochem J 352(Pt 3):731–738

    Article  CAS  PubMed  Google Scholar 

  39. Michelakis ED, McMurtry MS, Wu XC, Dyck JR, Moudgil R, Hopkins TA, Lopaschuk GD, Puttagunta L, Waite R, Archer SL (2002) Dichloroacetate, a metabolic modulator, prevents and reverses chronic hypoxic pulmonary hypertension in rats: role of increased expression and activity of voltage-gated potassium channels. Circulation 105:244–250

    Article  CAS  PubMed  Google Scholar 

  40. Grabczewska Z, Bialoszynski T, Szymanski P, Sukiennik A, Swiatkiewicz I, Kozinski M, Kochman W, Grzesk G, Kubica J (2008) The effect of trimetazidine added to maximal anti-ischemic therapy in patients with advanced coronary artery disease. Cardiol J 15:344–350

    PubMed  Google Scholar 

  41. Gunes Y, Guntekin U, Tuncer M, Sahin M (2009) Improved left and right ventricular functions with trimetazidine in patients with heart failure: a tissue Doppler study. Heart Vessels 24:277–282

    Article  PubMed  Google Scholar 

  42. Kantor PF, Lucien A, Kozak R, Lopaschuk GD (2000) The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res 86:580–588

    CAS  PubMed  Google Scholar 

  43. Rosano GM, Vitale C, Sposato B, Mercuro G, Fini M (2003) Trimetazidine improves left ventricular function in diabetic patients with coronary artery disease: a double-blind placebo-controlled study. Cardiovasc Diabetol 2:16

    Article  PubMed  Google Scholar 

  44. Tuunanen H, Engblom E, Naum A, Nagren K, Scheinin M, Hesse B, Juhani Airaksinen KE, Nuutila P, Iozzo P, Ukkonen H, Opie LH, Knuuti J (2008) Trimetazidine, a metabolic modulator, has cardiac and extracardiac benefits in idiopathic dilated cardiomyopathy. Circulation 118:1250–1258

    Article  CAS  PubMed  Google Scholar 

  45. Fragasso G, Spoladore R, Cuko A, Palloshi A (2007) Modulation of fatty acids oxidation in heart failure by selective pharmacological inhibition of 3-ketoacyl coenzyme-A thiolase. Curr Clin Pharmacol 2:190–196

    Article  CAS  PubMed  Google Scholar 

  46. Stanley WC (2002) Partial fatty acid oxidation inhibitors for stable angina. Expert Opin Investig Drugs 11:615–629

    Article  CAS  PubMed  Google Scholar 

  47. Wang P, Fraser H, Lloyd SG, McVeigh JJ, Belardinelli L, Chatham JC (2007) A comparison between ranolazine and CVT-4325, a novel inhibitor of fatty acid oxidation, on cardiac metabolism and left ventricular function in rat isolated perfused heart during ischemia and reperfusion. J Pharmacol Exp Ther 321:213–220

    Article  CAS  PubMed  Google Scholar 

  48. Clarke B, Wyatt KM, McCormack JG (1996) Ranolazine increases active pyruvate dehydrogenase in perfused normoxic rat hearts: evidence for an indirect mechanism. J Mol Cell Cardiol 28:341–350

    Article  CAS  PubMed  Google Scholar 

  49. McCormack JG, Barr RL, Wolff AA, Lopaschuk GD (1996) Ranolazine stimulates glucose oxidation in normoxic, ischemic, and reperfused ischemic rat hearts. Circulation 93:135–142

    CAS  PubMed  Google Scholar 

  50. Samudio I, Harmancey R, Fiegl M, Kantarjian H, Konopleva M, Korchin B, Kaluarachchi K, Bornmann W, Duvvuri S, Taegtmeyer H, Andreeff M (2010) Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction. J Clin Invest 120:142–156

    Article  CAS  PubMed  Google Scholar 

  51. Undrovinas AI, Belardinelli L, Undrovinas NA, Sabbah HN (2006) Ranolazine improves abnormal repolarization and contraction in left ventricular myocytes of dogs with heart failure by inhibiting late sodium current. J Cardiovasc Electrophysiol 17(Suppl 1):S169–S177

    Article  PubMed  Google Scholar 

  52. Aaker A, McCormack JG, Hirai T, Musch TI (1996) Effects of ranolazine on the exercise capacity of rats with chronic heart failure induced by myocardial infarction. J Cardiovasc Pharmacol 28:353–362

    Article  CAS  PubMed  Google Scholar 

  53. Redout EM, van der Toorn A, Zuidwijk MJ, van de Kolk CW, van Echteld CJ, Musters RJ, van Hardeveld C, Paulus WJ, Simonides WS (2010) Antioxidant treatment attenuates pulmonary arterial hypertension-induced heart failure. Am J Physiol Heart Circ Physiol 298:H1038–H1047

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work is supported by NIH-RO1-HL071115 and 1RC1HL099462-01, the American Heart Association (AHA), and the Roche Foundation for Anemia Research.

Disclosure of potential conflict of interests

The authors declare no conflict of interests related to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen L. Archer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piao, L., Marsboom, G. & Archer, S.L. Mitochondrial metabolic adaptation in right ventricular hypertrophy and failure. J Mol Med 88, 1011–1020 (2010). https://doi.org/10.1007/s00109-010-0679-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-010-0679-1

Keywords

Navigation