Skip to main content

Introduction, Background and Definitions

  • Chapter
  • First Online:
Ecological Physiology of Daily Torpor and Hibernation

Part of the book series: Fascinating Life Sciences ((FLS))

  • 917 Accesses

Abstract

The diversity of living organisms is vast. New species are still being discovered and the taxonomic relationships of organisms are highly complex. From a functional, thermo-energetic point of view, however, organisms are more easily categorised and understood because there are only two general groups. Living organisms are either are ectothermic (body heat is absorbed from outside) or endothermic (body heat is generated inside).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DH:

Daily heterotherm

HIB:

Hibernator

IBE :

Inter bout euthermia

TBD :

Torpor bout duration

MR :

Metabolic rate

BMR:

Basal metabolic rate

RMR :

Resting metabolic rate

TMR :

Torpor metabolic rate

TNZ :

Thermo-neutral zone

Ta:

Ambient temperature

Tb:

Body temperature

Tlc:

Lower critical temperature

Ts:

Surface temperature

Tskin:

Skin temperature

Tuc:

Upper critical temperature

References

  • Angilletta MJ (2009) Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, Oxford

    Book  Google Scholar 

  • Barclay RMR, Lausen CL, Hollis L (2001) What’s hot and what’s not: defining torpor in free-ranging birds and mammals. Can J Zool 79:1885–1890

    Article  Google Scholar 

  • Bartholomew GA (1982) Energy metabolism. In: Gordon MS (ed) Animal physiology. Macmillan, New York, pp 46–93

    Google Scholar 

  • Bennett AF, Dawson WR (1976) Metabolism. In: Gans C, Dawson WR (eds) Biology of the Reptilia. Vol. 5 physiology. Academic, New York

    Google Scholar 

  • Bennett AF, Ruben JA (1979) Endothermy and activity in vertebrates. Science 206:649–654

    Article  CAS  PubMed  Google Scholar 

  • Bicego KC, Barros RCH, Branco LGS (2007) Physiology of temperature regulation: comparative aspects. Comp Biochem Physiol A 147:616–639

    Article  CAS  Google Scholar 

  • Bondarenco A, Körtner G, Geiser F (2014) Hot bats: extreme thermal tolerance in a desert heat wave. Naturwissenschaften 101:679–685

    Article  CAS  PubMed  Google Scholar 

  • Boyer BB, Barnes BM (1999) Molecular and metabolic aspects of mammalian hibernation. Bioscience 49:713–724

    Article  Google Scholar 

  • Boyles JG, Smit B, McKechnie AE (2011) A new comparative metric for estimating heterothermy in endotherms. Physiol Biochem Zool 84:115–123

    Article  PubMed  Google Scholar 

  • Bradley SR, Deavers DR (1980) A re-examination of the relationship between thermal conductance and body weight in mammals. Comp Biochem Physiol 65A:465–476

    Article  Google Scholar 

  • Brigham RM, Willis CKR, Geiser F, Mzilikazi N (2011) Baby in the bathwater: should we abandon the use of body temperature thresholds to quantify expression of torpor? J Therm Biol 36:376–379

    Article  Google Scholar 

  • Calder WA (1996) Size, function and life history. Dover Publications, New York

    Google Scholar 

  • Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359

    Article  CAS  PubMed  Google Scholar 

  • Carey HV, Andrews MT, Martin SL (2003) Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 83:1153–1181

    Article  CAS  PubMed  Google Scholar 

  • Cliffe RN, Scantlebury DM, Kennedy SJ, Avey-Arroyo J, Mindich D, Wilson RP (2018) The metabolic response of the Bradypus sloth to temperature. Peer J 6:e5600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cooper CE, Withers PC (2009) Effects of measurement duration on the determination of basal metabolic rate and evaporative water loss of small marsupials: how long is long enough? Physiol Biochem Zool 82:438–446

    Article  CAS  PubMed  Google Scholar 

  • Cossins AR, Bowler K (1987) Temperature biology of animals. Chapman and Hall, London

    Book  Google Scholar 

  • Dausmann KH, Glos J, Ganzhorn JU, Heldmaier G (2004) Hibernation in a tropical primate. Nature 429:825–826

    Article  CAS  PubMed  Google Scholar 

  • Degen AA, Kam M (1995) Scaling of field metabolic rate to basal metabolic rate in homeotherms. Ecoscience 2:48–54

    Article  Google Scholar 

  • Drew KL, Buck CL, Barnes BM, Christian SL, Rasley BT, Harris MB (2007) Central nervous system regulation of mammalian hibernation: implications for metabolic suppression and ischemia tolerance. J Neurochem 102:1713–1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farmer CG (2003) Reproduction: the adaptive significance of endothermy. Am Nat 162:826–840

    Article  CAS  PubMed  Google Scholar 

  • Fleming MR (1980) Thermoregulation and torpor in the sugar glider, Petaurus breviceps (Marsupialia: Petauridae). Aust J Zool 28:521–534

    Article  Google Scholar 

  • Freeman MT, Czenze ZJ, Schoeman K, McKechnie AE (2020) Extreme hyperthermia tolerance in the world’s most abundant wild bird. Sci Rep 10:13098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaertner RA, Hart JS, Roy OZ (1973) Seasonal spontaneous torpor in the white-footed mouse Peromyscus leucopus. Comp Biochem Physiol A 45:169–181

    Article  CAS  PubMed  Google Scholar 

  • Garland T, Geiser F, Baudinette RV (1988) Comparative locomotor performance of marsupial and placental mammals. J Zool 215:505–522

    Article  Google Scholar 

  • Geiser F, Baudinette RV (1987) Seasonality of torpor and thermoregulation in three dasyurid marsupials. J Comp Physiol B 157:335–344

    Article  Google Scholar 

  • Geiser F, Coburn DK (1999) Field metabolic rates and water uptake in the blossom-bat Syconycteris australis (Megachiroptera). J Comp Physiol B 169:133–138

    Article  CAS  PubMed  Google Scholar 

  • Geiser F, Turbill C (2009) Hibernation and daily torpor minimize mammalian extinctions. Naturwissenschaften 96:1235–1240

    Article  CAS  PubMed  Google Scholar 

  • Geiser F, Drury RL, McAllan BM, Wang D-H (2003) Effects of temperature acclimation on maximum heat production, thermal tolerance, and torpor in a marsupial. J Comp Physiol B 173:437–442

    Article  CAS  PubMed  Google Scholar 

  • Geiser F, Wen J, Sukhchuluun G, Chi QS, Wang DH (2019) Precocious torpor in an altricial mammal and the functional implications of heterothermy during development. Front Physiol 10:469

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilbert C, McCafferty D, LeMaho Y, Martrette JM, Giroud S, Blanc S, Ancel A (2010) One for all and all for one: the energetics benefits of huddling in endotherms. Biol Rev 85:545–569

    PubMed  Google Scholar 

  • Glazier DS (2005) Beyond the ‘3/4-power law’: variation in the intra-and interspecific scaling of metabolic rate in animals. Biol Rev 80:611–662

    Article  PubMed  Google Scholar 

  • Grimpo K, Legler K, Heldmaier G, Exner C (2013) That’s hot: golden spiny mice display torpor even at high ambient temperatures. J Comp Physiol B 183:567–581

    Article  CAS  PubMed  Google Scholar 

  • Hanna E, Cardillo M (2014) Clarifying the relationship between torpor and anthropogenic extinction risk in mammals. J Zool 293:211–217. https://doi.org/10.1111/jzo.12136

    Article  Google Scholar 

  • Heldmaier G, Steinlechner S (1981a) Seasonal control of energy requirements for thermoregulation in the Djungarian hamster (Phodopus sungorus) living in natural photoperiod. J Comp Physiol B 142:429–437

    Article  Google Scholar 

  • Heldmaier G, Böckler H, Buchberger A, Lynch GR, Puchalski W, Steinlechner S, Wiesinger H (1985) Seasonal acclimation and thermogenesis. In: Gilles R (ed) Circulation, respiration, and metabolism. Springer, Berlin, pp 490–501

    Chapter  Google Scholar 

  • Hetem RS, Maloney SK, Fuller A, Mitchell D (2016) Heterothermy in large mammals: inevitable or implemented? Biol Rev 91:187–205

    Article  PubMed  Google Scholar 

  • Hill RW (1975) Daily torpor in Peromyscus leucopus on an adequate diet. Comp Biochem Physiol A 51:413–423

    Article  CAS  PubMed  Google Scholar 

  • Hill RW, Wyse GA, Anderson M (2016) Animal physiology. Sinauer Associates, Massachusetts

    Google Scholar 

  • Hinds DS, Baudinette RV, MacMillen RE, Halpern EA (1993) Maximum metabolism and the aerobic factorial scope of endotherms. J Exp Biol 182:41–56

    Article  CAS  PubMed  Google Scholar 

  • Hohtola E (2004) Shivering thermogenesis in birds and mammals. In: Barnes BM, Carey HV (eds) Life in the cold: evolution, mechanisms, adaptation, and application. Twelfth international hibernation symposium. Biological papers of the University of Alaska #27. Institute of Arctic Biology, University of Alaska, Fairbanks, pp 241–252

    Google Scholar 

  • Hudson JW, Scott IM (1979) Daily torpor in the laboratory mouse Mus musculus var albino. Physiol Zool 52:205–218

    Article  Google Scholar 

  • Hulbert AJ (2014) A sceptics view: “Kleiber’s Law” or the “3/4 rule” is neither a law nor a rule but rather an empirical approximation. Systems 2014(2):186–202

    Article  Google Scholar 

  • Kayser C (1961) The physiology of natural hibernation. Pergamon, Oxford

    Google Scholar 

  • Kelt DA, Van Vuren DH (2001) The ecology and macroecology of mammalian home range area. Am Nat 157:637–645

    Article  CAS  PubMed  Google Scholar 

  • Kleiber M (1961) The fire of life. Wiley, New York

    Google Scholar 

  • Körtner G, Geiser F (1998) Ecology of natural hibernation in the marsupial mountain pygmy-possum (Burramys parvus). Oecologia 113:170–178

    Article  PubMed  Google Scholar 

  • Körtner G, Geiser F (2009) The key to winter survival: daily torpor in a small arid zone marsupial. Naturwissenschaften 96:525–530

    Article  PubMed  CAS  Google Scholar 

  • Körtner G, Brigham RM, Geiser F (2000) Winter torpor in a large bird. Nature 407:318

    Article  PubMed  Google Scholar 

  • Körtner G, Trachtenberg A, Geiser F (2019) Does aridity affect spatial ecology? Scaling of home range size in small carnivorous marsupials. Sci Nat 106:42

    Article  CAS  Google Scholar 

  • Koteja P (2000) Energy assimilation, parental care and the evolution of endothermy. Proc R Soc B 267:479–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kronfeld-Schor N, Dayan T (2013) Thermal ecology, environments, communities, and global change: energy intake and expenditure in endotherms. Annu Rev Ecol Evol Syst 44:461–480

    Article  Google Scholar 

  • Levesque DL, Nowack J, Stawski C (2016) Modelling mammalian energetics: the heterothermy problem. Climate Change Resp 3:7

    Article  Google Scholar 

  • Lyman CP, Willis JS, Malan A, Wang LCH (1982) Hibernation and torpor in mammals and birds. Academic, New York

    Google Scholar 

  • Lynch GR, White SE, Grundel R, Berger MS (1978) Effects of photoperiod, melatonin administration and thyroid block on spontaneous daily torpor and temperature regulation in the white-footed mouse, Peromyscus leucopus. J Comp Physiol B 125:157–163

    Article  CAS  Google Scholar 

  • MacMillen RE (1965) Aestivation in the cactus mouse Peromyscus eremicus. Comp Biochem Physiol 16:227–247

    Article  CAS  PubMed  Google Scholar 

  • McKechnie AE, Lovegrove BG (2002) Avian facultative hypothermic responses: a review. Condor 104:705–724

    Article  Google Scholar 

  • McKechnie AE, Gerson AR, McWorther TJ, Krabbe Smith E, Talbot WA, Wolf BO (2017) Avian thermoregulation in the heat: evaporative cooling in five Australian passerines reveals within-order biogeographic variation. J Exp Biol 220:2436–2444

    PubMed  Google Scholar 

  • McNab BK (2002) The physiological ecology of vertebrates. Comstock. Cornell University Press, Ithaca

    Google Scholar 

  • Mrosovsky N (1971) Hibernation and the hypothalamus. Appleton Century Crofts, New York

    Book  Google Scholar 

  • Nagy KA, Girard IA, Brown TK (1999) Energetics of free-ranging mammals, reptiles and birds. Annu Rev Nutr 19:247–277

    Article  CAS  PubMed  Google Scholar 

  • Namekata S, Geiser F (2009) Effects of nest use, huddling, and torpor on thermal energetics of eastern pygmy-possums. Aust Mammal 31:31–34

    Article  Google Scholar 

  • Nespolo RF, Solano-Iguaran JJ, Bozinovic F (2017) Phylogenetic analysis supports the aerobic-capacity model for the evolution of endothermy. Am Nat 189:13–27

    Article  PubMed  Google Scholar 

  • Nowack J, Dausmann KH (2015) Can heterothermy facilitate the colonization of new habitats? Mammal Rev 45:117–127

    Article  Google Scholar 

  • Nowack J, Geiser F (2016) Friends with benefits: the role of huddling in mixed groups of torpid and normothermic animals. J Exp Biol 219:590–596

    PubMed  Google Scholar 

  • Nowack J, Rojas AD, Körtner G, Geiser F (2015) Snoozing through the storm: torpor use during a natural disaster. Sci Rep 5:11243. https://doi.org/10.1038/srep11243

    Article  PubMed  PubMed Central  Google Scholar 

  • Nowack J, Cooper CE, Geiser F (2016a) Cool echidnas survive the fire. Proc R Soc B 283:20160382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nowack J, Delesalle M, Stawski C, Geiser F (2016b) Can hibernators sense and evade fires? Olfactory acuity and locomotor performance during deep torpor. Sci Nat 103:73

    Article  CAS  Google Scholar 

  • Nowack J, Stawski C, Geiser F (2017a) More functions of torpor and their roles in a changing world. J Comp Physiol B 187:889–897

    Article  PubMed  PubMed Central  Google Scholar 

  • Nowack J, Giroud S, Arnold W, Ruf T (2017b) Muscle non-shivering thermogenesis and its role in the evolution of endothermy. Front Physiol 8:889

    Article  PubMed  PubMed Central  Google Scholar 

  • Nowack J, Levesque DL, Reher S, Dausmann KH (2020) Variable climates lead to varying phenotypes: “weird” mammalian torpor and lessons from lower latitudes. Front Ecol Evol. https://doi.org/10.3389/fevo.2020.00060

  • Oelkrug R, Polymeropoulos ET, Jastroch M (2015) Brown adipose tissue: physiological function and evolutionary significance. J Comp Physiol B 185:587–606

    Article  CAS  PubMed  Google Scholar 

  • Pessato A, McKechnie AE, Buchanan KL, Mariette MM (2020) Vocal panting: a novel thermoregulatory mechanism for enhancing heat tolerance in a desert-adapted bird. Sci Rep 10:18914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reher S, Dausmann KH (2021) Tropical bats counter heat by combining torpor with adaptive hyperthermia. Proc R Soc B 288:20202059. https://doi.org/10.1098/rspb.2020.2059

    Article  PubMed  PubMed Central  Google Scholar 

  • Riek A, Geiser F (2013) Allometry of thermal variables in mammals: consequences of body size and phylogeny. Biol Rev 88:564–572

    Article  PubMed  Google Scholar 

  • Ruf T, Geiser F (2015) Daily torpor and hibernation in birds and mammals. Biol Rev 90:891–926

    Article  PubMed  Google Scholar 

  • Ruf T, Stieglitz A, Steinlechner S, Blank JL, Heldmaier G (1993) Cold exposure and food restriction facilitate physiological responses to short photoperiod in Djungarian hamsters (Phodopus sungorus). J Exp Zool 267:104–112

    Article  CAS  PubMed  Google Scholar 

  • Schleucher E (2004) Torpor in birds: taxonomy, energetics, and ecology. Physiol Biochem Zool 77:942–949

    Article  PubMed  Google Scholar 

  • Schmidt-Nielsen K (1997) Animal physiology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Scholander PF, Hock RJ, Walters V, Johnson F, Irving L (1950) Heat regulation in some arctic and tropical mammals and birds. Biol Bull 99:237–258

    Article  CAS  PubMed  Google Scholar 

  • Seebacher F, Franklin CE (2005) Physiological mechanisms of thermoregulation in reptiles: a review. J Comp Physiol B 175:533–541

    Article  PubMed  Google Scholar 

  • Seymour RS, White CR, Gibernau M (2003) Heat reward for insect pollinators. Nature 426:243–344

    Article  CAS  PubMed  Google Scholar 

  • Smith FA, Lyons SK, Ernest SKM, Jones KE, Kaufman DM, Dayan T, Marquet PA, Brown JH, Haskell JP (2003) Body mass of quaternary mammals. Ecology 84:3403

    Article  Google Scholar 

  • Song X, Körtner G, Geiser F (1997) Thermal relations of metabolic rate reduction in a hibernating marsupial. Am J Phys 273:R2097–R2104

    CAS  Google Scholar 

  • Stawski C, Geiser F (2020) Growing up in a changing climate: how temperature affects the development of morphological, behavioural and physiological traits of a marsupials mammal. Front Physiol 11:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Stawski C, Körtner G, Nowack J, Geiser F (2015a) The importance of mammalian torpor for survival in a post-fire landscape. Biol Lett 11:20150134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stawski C, Matthews JK, Körtner G, Geiser F (2015b) Physiological and behavioural responses of a small heterothermic mammal to fire stimuli. Physiol Behav 151:617–622

    Article  CAS  PubMed  Google Scholar 

  • Tannenbaum MG, Pivorun EB (1988) Seasonal study of daily torpor in southeastern Peromyscus maniculatus and Peromyscus leucopus from mountains and foothills. Physiol Zool 61:10–16

    Article  Google Scholar 

  • Tattersall GJ, Sinclair BJ, Withers PC, Field PA, Seebacher F, Cooper CE, Maloney SK (2012) Coping with thermal challenges: physiological adaptations to environmental temperature. Compr Physiol 2:2151–2202

    Article  PubMed  Google Scholar 

  • Tucker VA (1975) The energetic costs of moving about. Am Sci 63:413–419

    CAS  PubMed  Google Scholar 

  • Turbill C, Bieber C, Ruf T (2011a) Hibernation is associated with increased survival and the evolution of slow life histories among mammals. Proc R Soc B 278:3355–3363

    Article  PubMed  PubMed Central  Google Scholar 

  • Turbill C, Ruf T, Mang T, Arnold W (2011b) Regulation of heart rate and rumen temperature in red deer: effect of season and food intake. J Exp Biol 214:963–970

    Article  PubMed  Google Scholar 

  • White CR, Seymour RS (2005) Allometric scaling of mammalian metabolism. J Exp Biol 208:1611–1619

    Article  CAS  PubMed  Google Scholar 

  • Willis CKR (2007) An energy-based body temperature threshold between torpor and normothermia for small mammals. Physiol Biochem Zool 80:643–651

    Article  PubMed  Google Scholar 

  • Withers PC, Cooper CE, Maloney SK, Bozinovic F, Cruz-Neto AP (2016) Ecological and environmental physiology of mammals. Oxford University Press, Oxford

    Book  Google Scholar 

  • Blackburn TM, Gaston KJ (1994) The distribution of body sizes of the world’s bird species. Oikos 70:127–130

    Article  Google Scholar 

  • Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322:690–692

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Geiser, F. (2021). Introduction, Background and Definitions. In: Ecological Physiology of Daily Torpor and Hibernation. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-75525-6_1

Download citation

Publish with us

Policies and ethics