Skip to main content

Post-transplant Medication Challenges

  • Chapter
  • First Online:
Challenges in Pediatric Kidney Transplantation
  • 431 Accesses

Abstract

Advancements in the development of potent immunosuppression have paved the way for prolonging allograft survival and improving patient outcomes in pediatric kidney transplantation. As significant improvements have been established in short-term survival over the last few decades, particularly with the introduction of calcineurin inhibitors, the focus remains on the ideal immunosuppressive regimen needed to optimize long-term allograft survival. Avoidance of long-term adverse effects on growth, development, cardiovascular health, along with efforts to minimize risk of infection and malignancy are all driving forces toward adaptation of newer immunosuppression strategies. When compared to adults, children and adolescents are also more susceptible to the unique challenges of medication adherence, polypharmacy, and pharmacokinetic variability. A multidisciplinary approach focused on personalized medicine driven by patient-specific factors and well-designed clinical trials to assess long-term patient and allograft outcomes are needed to guide immunosuppression management in pediatric kidney transplant recipients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Halloran PF. Immunosuppressive drugs for kidney transplantation. N Engl J Med. 2004;351(26):2715–29.

    Article  CAS  PubMed  Google Scholar 

  2. Allison AC. Immunosuppressive drugs: the first 50 years and a glance forward. Immunopharmacology. 2000;47(2–3):63–83.

    Article  CAS  PubMed  Google Scholar 

  3. Klintmalm GB, Kaplan B, Kirk AD. FDA jeopardizes the lives of lung transplant recipients and in the process severely increases the cost to develop new immunosuppression. Am J Transplant. 2019;19(4):971–2.

    Article  PubMed  Google Scholar 

  4. Anstey A, Lear JT. Azathioprine: clinical pharmacology and current indications in autoimmune disorders. BioDrugs. 1998;9(1):33–47.

    Article  CAS  PubMed  Google Scholar 

  5. Allen LV, Erickson MA. Stability of acetazolamide, allopurinol, azathioprine, clonazepam, and flucytosine in extemporaneously compounded oral liquids. Am J Health Syst Pharm. 1996;53(16):1944–9.

    Article  CAS  PubMed  Google Scholar 

  6. Saeed B. Pediatric renal transplantation. Int J Organ Transplant Med. 2012;3(2):62–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Pape L. State-of-the-art immunosuppression protocols for pediatric renal transplant recipients. Pediatr Nephrol. 2019;34(2):187–94.

    Article  PubMed  Google Scholar 

  8. Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients. Clin Pharmacokinet. 2007;46(1):13–58.

    Article  CAS  PubMed  Google Scholar 

  9. Anaizi NH, Swenson CF, Dentinger PJ. Stability of mycophenolate mofetil in an extemporaneously compounded oral liquid. Am J Health Syst Pharm. 1998;55(9):926–9.

    Article  CAS  PubMed  Google Scholar 

  10. Fahimi F, Baniasadi S, Mortazavi SA, Dehghan H, Zarghi A. Physical and chemical stability of mycophenolate mofetil (MMF) suspension prepared at the hospital. Iran J Pharm Res. 2012;11(1):171–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Tönshoff B, David-Neto E, Ettenger R, Filler G, van Gelder T, Goebel J, et al. Pediatric aspects of therapeutic drug monitoring of mycophenolic acid in renal transplantation. Transplant Rev (Orlando). 2011;25(2):78–89.

    Article  Google Scholar 

  12. Kuypers DR, Le Meur Y, Cantarovich M, Tredger MJ, Tett SE, Cattaneo D, et al. Consensus report on therapeutic drug monitoring of mycophenolic acid in solid organ transplantation. Clin J Am Soc Nephrol. 2010;5(2):341–58.

    Article  CAS  PubMed  Google Scholar 

  13. Filler G, Alvarez-Elías AC, McIntyre C, Medeiros M. The compelling case for therapeutic drug monitoring of mycophenolate mofetil therapy. Pediatr Nephrol. 2017;32(1):21–9.

    Article  PubMed  Google Scholar 

  14. Filler G. Abbreviated mycophenolic acid AUC from C0, C1, C2, and C4 is preferable in children after renal transplantation on mycophenolate mofetil and tacrolimus therapy. Transpl Int. 2004;17(3):120–5.

    CAS  PubMed  Google Scholar 

  15. Yoo EC, Alvarez-Elías AC, Todorova EK, Filler G. Developmental changes of MPA exposure in children. Pediatr Nephrol. 2016;31(6):975–82.

    Article  PubMed  Google Scholar 

  16. Siddiqi N, Lamour JM, Hsu DT. The effect of MMF dose and trough levels on adverse effects in pediatric heart transplant recipients. Pediatr Transplant. 2015;19(6):618–22.

    Article  CAS  PubMed  Google Scholar 

  17. Tett SE, Saint-Marcoux F, Staatz CE, Brunet M, Vinks AA, Miura M, et al. Mycophenolate, clinical pharmacokinetics, formulations, and methods for assessing drug exposure. Transplant Rev (Orlando). 2011;25(2):47–57.

    Article  Google Scholar 

  18. Halloran P, Mathew T, Tomlanovich S, Groth C, Hooftman L, Barker C. Mycophenolate mofetil in renal allograft recipients: a pooled efficacy analysis of three randomized, double-blind, clinical studies in prevention of rejection. The International Mycophenolate Mofetil Renal Transplant Study Groups. Transplantation. 1997;63(1):39–47.

    Article  CAS  PubMed  Google Scholar 

  19. Jungraithmayr T, Staskewitz A, Kirste G, Böswald M, Bulla M, Burghard R, et al. Pediatric renal transplantation with mycophenolate mofetil-based immunosuppression without induction: results after three years. Transplantation. 2003;75(4):454–61.

    Article  CAS  PubMed  Google Scholar 

  20. Jungraithmayr TC, Wiesmayr S, Staskewitz A, Kirste G, Bulla M, Fehrenbach H, et al. Five-year outcome in pediatric patients with mycophenolate mofetil-based renal transplantation. Transplantation. 2007;83(7):900–5.

    Article  CAS  PubMed  Google Scholar 

  21. van Gelder T, Hesselink DA. Mycophenolate revisited. Transpl Int. 2015;28(5):508–15.

    Article  PubMed  CAS  Google Scholar 

  22. Merville P, Bergé F, Deminière C, Morel D, Chong G, Durand D, et al. Lower incidence of chronic allograft nephropathy at 1 year post-transplantation in patients treated with mycophenolate mofetil. Am J Transplant. 2004;4(11):1769–75.

    Article  CAS  PubMed  Google Scholar 

  23. Ferraris JR, Tambutti ML, Redal MA, Bustos D, Ramirez JA, Prigoshin N. Conversion from azathioprine [correction of azathioprina] to mycophenolate mofetil in pediatric renal transplant recipients with chronic rejection. Transplantation. 2000;70(2):297–301.

    Article  CAS  PubMed  Google Scholar 

  24. NAPRT, Studies C. North American Pediatric Renal Trials and Collaborative Studies (NAPRTCS) 2014 annual transplant report; 2014.

    Google Scholar 

  25. Zimmerhackl LB, Wiesmayr S, Kirste G, Jungraithmayr T. Mycophenolate mofetil (Cellcept) in pediatric renal transplantation. Transplant Proc. 2006;38(7):2038–40.

    Article  CAS  PubMed  Google Scholar 

  26. Remuzzi G, Lesti M, Gotti E, Ganeva M, Dimitrov BD, Ene-Iordache B, et al. Mycophenolate mofetil versus azathioprine for prevention of acute rejection in renal transplantation (MYSS): a randomised trial. Lancet. 2004;364(9433):503–12.

    Article  CAS  PubMed  Google Scholar 

  27. Amano Y, Lee SW, Allison AC. Inhibition by glucocorticoids of the formation of interleukin-1 alpha, interleukin-1 beta, and interleukin-6: mediation by decreased mRNA stability. Mol Pharmacol. 1993;43(2):176–82.

    CAS  PubMed  Google Scholar 

  28. Northrop JP, Crabtree GR, Mattila PS. Negative regulation of interleukin 2 transcription by the glucocorticoid receptor. J Exp Med. 1992;175(5):1235–45.

    Article  CAS  PubMed  Google Scholar 

  29. Fauci AS. Mechanisms of the immunosuppressive and anti-inflammatory effects of glucocorticosteroids. J Immunopharmacol. 1978;1(1):1–25.

    Article  PubMed  Google Scholar 

  30. Bergmann TK, Barraclough KA, Lee KJ, Staatz CE. Clinical pharmacokinetics and pharmacodynamics of prednisolone and prednisone in solid organ transplantation. Clin Pharmacokinet. 2012;51(11):711–41.

    Article  CAS  PubMed  Google Scholar 

  31. Pickup ME. Clinical pharmacokinetics of prednisone and prednisolone. Clin Pharmacokinet. 1979;4(2):111–28.

    Article  CAS  PubMed  Google Scholar 

  32. Burleson RL, Marbarger PD, Jermanovich N, Brennan AM, Scruggs BF. A prospective study of methylprednisolone and prednisone as immunosuppressive agents in clinical renal transplantation. Transplant Proc. 1981;13(1 Pt 1):339–43.

    CAS  PubMed  Google Scholar 

  33. Gambertoglio JG, Frey FJ, Holford NH, Birnbaum JL, Lizak PS, Vincenti F, et al. Prednisone and prednisolone bioavailability in renal transplant patients. Kidney Int. 1982;21(4):621–6.

    Article  CAS  PubMed  Google Scholar 

  34. Mitchell JC, Counselman FL. A taste comparison of three different liquid steroid preparations: prednisone, prednisolone, and dexamethasone. Acad Emerg Med. 2003;10(4):400–3.

    Article  PubMed  Google Scholar 

  35. Czock D, Keller F, Rasche FM, Häussler U. Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin Pharmacokinet. 2005;44(1):61–98.

    Article  CAS  PubMed  Google Scholar 

  36. Steiner RW, Awdishu L. Steroids in kidney transplant patients. Semin Immunopathol. 2011;33(2):157–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Broyer M, Guest G, Gagnadoux MF. Growth rate in children receiving alternate-day corticosteroid treatment after kidney transplantation. J Pediatr. 1992;120(5):721–5.

    Article  CAS  PubMed  Google Scholar 

  38. Jabs K, Sullivan EK, Avner ED, Harmon WE. Alternate-day steroid dosing improves growth without adversely affecting graft survival or long-term graft function. A report of the North American Pediatric Renal Transplant Cooperative Study. Transplantation. 1996;61(1):31–6.

    Article  CAS  PubMed  Google Scholar 

  39. Höcker B, Weber LT, Feneberg R, Drube J, John U, Fehrenbach H, et al. Prospective, randomized trial on late steroid withdrawal in pediatric renal transplant recipients under cyclosporine microemulsion and mycophenolate mofetil. Transplantation. 2009;87(6):934–41.

    Article  PubMed  CAS  Google Scholar 

  40. Benfield MR, Bartosh S, Ikle D, Warshaw B, Bridges N, Morrison Y, et al. A randomized double-blind, placebo controlled trial of steroid withdrawal after pediatric renal transplantation. Am J Transplant. 2010;10(1):81–8.

    Article  CAS  PubMed  Google Scholar 

  41. Birkeland SA, Larsen KE, Rohr N. Pediatric renal transplantation without steroids. Pediatr Nephrol. 1998;12(2):87–92.

    Article  CAS  PubMed  Google Scholar 

  42. Sarwal MM, Vidhun JR, Alexander SR, Satterwhite T, Millan M, Salvatierra O. Continued superior outcomes with modification and lengthened follow-up of a steroid-avoidance pilot with extended daclizumab induction in pediatric renal transplantation. Transplantation. 2003;76(9):1331–9.

    Article  CAS  PubMed  Google Scholar 

  43. Silverstein DM, Aviles DH, LeBlanc PM, Jung FF, Vehaskari VM. Results of one-year follow-up of steroid-free immunosuppression in pediatric renal transplant patients. Pediatr Transplant. 2005;9(5):589–97.

    Article  CAS  PubMed  Google Scholar 

  44. Delucchi A, Valenzuela M, Ferrario M, Lillo AM, Guerrero JL, Rodriguez E, et al. Early steroid withdrawal in pediatric renal transplant on newer immunosuppressive drugs. Pediatr Transplant. 2007;11(7):743–8.

    Article  CAS  PubMed  Google Scholar 

  45. Grenda R, Watson A, Trompeter R, Tönshoff B, Jaray J, Fitzpatrick M, et al. A randomized trial to assess the impact of early steroid withdrawal on growth in pediatric renal transplantation: the TWIST study. Am J Transplant. 2010;10(4):828–36.

    Article  CAS  PubMed  Google Scholar 

  46. Li L, Chang A, Naesens M, Kambham N, Waskerwitz J, Martin J, et al. Steroid-free immunosuppression since 1999: 129 pediatric renal transplants with sustained graft and patient benefits. Am J Transplant. 2009;9(6):1362–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chaudhuri A, Ozawa M, Everly MJ, Ettenger R, Dharnidharka V, Benfield M, et al. The clinical impact of humoral immunity in pediatric renal transplantation. J Am Soc Nephrol. 2013;24(4):655–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sarwal MM, Yorgin PD, Alexander S, Millan MT, Belson A, Belanger N, et al. Promising early outcomes with a novel, complete steroid avoidance immunosuppression protocol in pediatric renal transplantation. Transplantation. 2001;72(1):13–21.

    Article  CAS  PubMed  Google Scholar 

  49. Naesens M, Salvatierra O, Benfield M, Ettenger RB, Dharnidharka V, Harmon W, et al. Subclinical inflammation and chronic renal allograft injury in a randomized trial on steroid avoidance in pediatric kidney transplantation. Am J Transplant. 2012;12(10):2730–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mericq V, Salas P, Pinto V, Cano F, Reyes L, Brown K, et al. Steroid withdrawal in pediatric kidney transplant allows better growth, lipids and body composition: a randomized controlled trial. Horm Res Paediatr. 2013;79(2):88–96.

    Article  CAS  PubMed  Google Scholar 

  51. Barletta GM, Kirk E, Gardner JJ, Rodriguez JF, Bursach SM, Bunchman TE. Rapid discontinuation of corticosteroids in pediatric renal transplantation. Pediatr Transplant. 2009;13(5):571–8.

    Article  CAS  PubMed  Google Scholar 

  52. Maes BD, Vanrenterghem YF. Cyclosporine: advantages versus disadvantages vis-à-vis tacrolimus. Transplant Proc. 2004;36(2 Suppl):40S–9S.

    Article  CAS  PubMed  Google Scholar 

  53. Bram RJ, Hung DT, Martin PK, Schreiber SL, Crabtree GR. Identification of the immunophilins capable of mediating inhibition of signal transduction by cyclosporin A and FK506: roles of calcineurin binding and cellular location. Mol Cell Biol. 1993;13(8):4760–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Miroux C, Morales O, Ghazal K, Othman SB, de Launoit Y, Pancré V, et al. In vitro effects of cyclosporine A and tacrolimus on regulatory T-cell proliferation and function. Transplantation. 2012;94(2):123–31.

    Article  CAS  PubMed  Google Scholar 

  55. Salerno A, Bonanno CT, Caccamo N, Cigna D, Dominici R, Ferro C, et al. The effect of cyclosporin A, FK506 and rapamycin on the murine contact sensitivity reaction. Clin Exp Immunol. 1998;112(1):112–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Colombo D, Egan CG. Bioavailability of Sandimmun® versus Sandimmun Neoral®: a meta-analysis of published studies. Int J Immunopathol Pharmacol. 2010;23(4):1177–83.

    Article  CAS  PubMed  Google Scholar 

  57. Neu AM, Ho PL, Fine RN, Furth SL, Fivush BA. Tacrolimus vs. cyclosporine A as primary immunosuppression in pediatric renal transplantation: a NAPRTCS study. Pediatr Transplant. 2003;7(3):217–22.

    Article  CAS  PubMed  Google Scholar 

  58. Harmon WE, Sullivan EK. Cyclosporine dosing and its relationship to outcome in pediatric renal transplantation. Kidney Int Suppl. 1993;43:S50–5.

    CAS  PubMed  Google Scholar 

  59. Tejani A, Sullivan EK. Higher maintenance cyclosporine dose decreases the risk of graft failure in North American children: a report of the North American Pediatric Renal Transplant Cooperative Study. J Am Soc Nephrol. 1996;7(4):550–5.

    Article  CAS  PubMed  Google Scholar 

  60. Scott LJ, McKeage K, Keam SJ, Plosker GL. Tacrolimus: a further update of its use in the management of organ transplantation. Drugs. 2003;63(12):1247–97.

    Article  CAS  PubMed  Google Scholar 

  61. Venkataramanan R, Swaminathan A, Prasad T, Jain A, Zuckerman S, Warty V, et al. Clinical pharmacokinetics of tacrolimus. Clin Pharmacokinet. 1995;29(6):404–30.

    Article  CAS  PubMed  Google Scholar 

  62. Plosker GL, Foster RH. Tacrolimus: a further update of its pharmacology and therapeutic use in the management of organ transplantation. Drugs. 2000;59(2):323–89.

    Article  CAS  PubMed  Google Scholar 

  63. Prytuła A, van Gelder T. Clinical aspects of tacrolimus use in paediatric renal transplant recipients. Pediatr Nephrol. 2019;34(1):31–43.

    Article  PubMed  Google Scholar 

  64. Björkman S. Prediction of cytochrome p450-mediated hepatic drug clearance in neonates, infants and children: how accurate are available scaling methods? Clin Pharmacokinet. 2006;45(1):1–11.

    Article  PubMed  Google Scholar 

  65. Naesens M, Salvatierra O, Li L, Kambham N, Concepcion W, Sarwal M. Maturation of dose-corrected tacrolimus predose trough levels in pediatric kidney allograft recipients. Transplantation. 2008;85(8):1139–45.

    Article  CAS  PubMed  Google Scholar 

  66. Group KDIGOKTW. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant. 2009;9 Suppl 3:S1–155.

    Google Scholar 

  67. Alabdulkarim Z, Al-Jedai A, Alkortas D, Alhasan K, Devol E. Efficacy and safety of three times daily dosing of tacrolimus in pediatric kidney transplantation patients: a single-center comparative study. Pediatr Transplant. 2020;24(6):e13733.

    Article  CAS  PubMed  Google Scholar 

  68. Ichikawa Y, Hanafusa T, Kyo M, Fukunishi T, Nagano S. Three-times-daily monotherapy with tacrolimus (FK 506) in kidney transplantation. Int J Urol. 1996;3(3):180–3.

    Article  CAS  PubMed  Google Scholar 

  69. Khalaf H, Al-Asseri A, Bhuiyan J, Nafea O, Al-Sebayel M. Tacrolimus (FK 506) given three times daily after liver transplantation for minimizing nephrotoxicity and neurotoxicity. Transplant Proc. 2003;35(7):2787–8.

    Article  CAS  PubMed  Google Scholar 

  70. Spence MM, Nguyen LM, Hui RL, Chan J. Evaluation of clinical and safety outcomes associated with conversion from brand-name to generic tacrolimus in transplant recipients enrolled in an integrated health care system. Pharmacotherapy. 2012;32(11):981–7.

    Article  CAS  PubMed  Google Scholar 

  71. Abdulnour HA, Araya CE, Dharnidharka VR. Comparison of generic tacrolimus and Prograf drug levels in a pediatric kidney transplant program: brief communication. Pediatr Transplant. 2010;14(8):1007–11.

    Article  PubMed  Google Scholar 

  72. Naicker D, Reed PW, Ronaldson J, Kara T, Wong W, Prestidge C. Nationwide conversion to generic tacrolimus in pediatric kidney transplant recipients. Pediatr Nephrol. 2017;32(11):2125–31.

    Article  PubMed  Google Scholar 

  73. Pharmacists ASoHS. American Society of Health System Pharmacists (ASHP) compounded oral liquids 2017 [Version 1.01]. Available from: https://www.ashp.org/-/media/assets/pharmacy-practice/s4s/docs/s4s-ashp-oral-compound-liquids.ashx.

  74. Alloway R, Steinberg S, Khalil K, Gourishankar S, Miller J, Norman D, et al. Two years postconversion from a prograf-based regimen to a once-daily tacrolimus extended-release formulation in stable kidney transplant recipients. Transplantation. 2007;83(12):1648–51.

    Article  CAS  PubMed  Google Scholar 

  75. Crespo M, Mir M, Marin M, Hurtado S, Estadella C, Gurí X, et al. De novo kidney transplant recipients need higher doses of Advagraf compared with Prograf to get therapeutic levels. Transplant Proc. 2009;41(6):2115–7.

    Article  CAS  PubMed  Google Scholar 

  76. Tremblay S, Nigro V, Weinberg J, Woodle ES, Alloway RR. A steady-state head-to-head pharmacokinetic comparison of all FK-506 (Tacrolimus) formulations (ASTCOFF): an open-label, prospective, randomized, two-arm, three-period crossover study. Am J Transplant. 2017;17(2):432–42.

    Article  CAS  PubMed  Google Scholar 

  77. Langone A, Steinberg SM, Gedaly R, Chan LK, Shah T, Sethi KD, et al. Switching STudy of Kidney TRansplant PAtients with Tremor to LCP-TacrO (STRATO): an open-label, multicenter, prospective phase 3b study. Clin Transpl. 2015;29(9):796–805.

    Article  CAS  Google Scholar 

  78. Szempruch KR, Westreich KD, Toledo AH. Early use of tacrolimus extended-release in a pediatric kidney transplant recipient. Exp Clin Transplant. 2017. https://doi.org/10.6002/ect.2017.0195. Available at: http://ectrx.org/forms/ectrxcontentshow.php?doi_id=10.6002/ect.2017.0195.

  79. Filler G, Webb NJ, Milford DV, Watson AR, Gellermann J, Tyden G, et al. Four-year data after pediatric renal transplantation: a randomized trial of tacrolimus vs. cyclosporin microemulsion. Pediatr Transplant. 2005;9(4):498–503.

    Article  CAS  PubMed  Google Scholar 

  80. Trompeter R, Filler G, Webb NJ, Watson AR, Milford DV, Tyden G, et al. Randomized trial of tacrolimus versus cyclosporin microemulsion in renal transplantation. Pediatr Nephrol. 2002;17(3):141–9.

    Article  PubMed  Google Scholar 

  81. Gupta P, Kaufman S, Fishbein TM. Sirolimus for solid organ transplantation in children. Pediatr Transplant. 2005;9(3):269–76.

    Article  CAS  PubMed  Google Scholar 

  82. Augustine JJ, Bodziak KA, Hricik DE. Use of sirolimus in solid organ transplantation. Drugs. 2007;67(3):369–91.

    Article  CAS  PubMed  Google Scholar 

  83. Cao W, Mohacsi P, Shorthouse R, Pratt R, Morris RE. Effects of rapamycin on growth factor-stimulated vascular smooth muscle cell DNA synthesis. Inhibition of basic fibroblast growth factor and platelet-derived growth factor action and antagonism of rapamycin by FK506. Transplantation. 1995;59(3):390–5.

    Article  CAS  PubMed  Google Scholar 

  84. Marx SO, Jayaraman T, Go LO, Marks AR. Rapamycin-FKBP inhibits cell cycle regulators of proliferation in vascular smooth muscle cells. Circ Res. 1995;76(3):412–7.

    Article  CAS  PubMed  Google Scholar 

  85. Aagaard-Tillery KM, Jelinek DF. Inhibition of human B lymphocyte cell cycle progression and differentiation by rapamycin. Cell Immunol. 1994;156(2):493–507.

    Article  CAS  PubMed  Google Scholar 

  86. Ferrer IR, Araki K, Ford ML. Paradoxical aspects of rapamycin immunobiology in transplantation. Am J Transplant. 2011;11(4):654–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tejani A, Alexander S, Ettenger R, Lerner G, Zimmerman J, Kohaut E, et al. Safety and pharmacokinetics of ascending single doses of sirolimus (Rapamune, rapamycin) in pediatric patients with stable chronic renal failure undergoing dialysis. Pediatr Transplant. 2004;8(2):151–60.

    Article  CAS  PubMed  Google Scholar 

  88. Zimmerman JJ, Kahan BD. Pharmacokinetics of sirolimus in stable renal transplant patients after multiple oral dose administration. J Clin Pharmacol. 1997;37(5):405–15.

    Article  CAS  PubMed  Google Scholar 

  89. Schachter AD, Meyers KE, Spaneas LD, Palmer JA, Salmanullah M, Baluarte J, et al. Short sirolimus half-life in pediatric renal transplant recipients on a calcineurin inhibitor-free protocol. Pediatr Transplant. 2004;8(2):171–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Klawitter J, Nashan B, Christians U. Everolimus and sirolimus in transplantation-related but different. Expert Opin Drug Saf. 2015;14(7):1055–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hoyer PF, Ettenger R, Kovarik JM, Webb NJ, Lemire J, Mentser M, et al. Everolimus in pediatric de nova renal transplant patients. Transplantation. 2003;75(12):2082–5.

    Article  PubMed  Google Scholar 

  92. Tönshoff B, Tedesco-Silva H, Ettenger R, Christian M, Bjerre A, Dello Strologo L, et al. Three-year outcomes from the CRADLE study in de novo pediatric kidney transplant recipients receiving everolimus with reduced tacrolimus and early steroid withdrawal. Am J Transplant. 2021;21:123–37.

    Article  PubMed  CAS  Google Scholar 

  93. Pape L, Ahlenstiel T. mTOR inhibitors in pediatric kidney transplantation. Pediatr Nephrol. 2014;29(7):1119–29.

    Article  PubMed  Google Scholar 

  94. El-Sabrout R, Weiss R, Butt F, Delaney V, Qadir M, Hanson P, et al. Rejection-free protocol using sirolimus-tacrolimus combination for pediatric renal transplant recipients. Transplant Proc. 2002;34(5):1942–3.

    Article  CAS  PubMed  Google Scholar 

  95. Hymes LC, Warshaw BL. Sirolimus in pediatric patients: results in the first 6 months post-renal transplant. Pediatr Transplant. 2005;9(4):520–2.

    Article  CAS  PubMed  Google Scholar 

  96. McDonald RA, Smith JM, Ho M, Lindblad R, Ikle D, Grimm P, et al. Incidence of PTLD in pediatric renal transplant recipients receiving basiliximab, calcineurin inhibitor, sirolimus and steroids. Am J Transplant. 2008;8(5):984–9.

    Article  CAS  PubMed  Google Scholar 

  97. Ibáñez JP, Monteverde ML, Goldberg J, Diaz MA, Turconi A. Sirolimus in pediatric renal transplantation. Transplant Proc. 2005;37(2):682–4.

    Article  PubMed  CAS  Google Scholar 

  98. Ibáñez JP, Monteverde ML, Diaz MA, Goldberg J, Turconi AF. Sirolimus in chronic allograft nephropathy in pediatric recipients. Pediatr Transplant. 2007;11(7):777–80.

    Article  PubMed  CAS  Google Scholar 

  99. Höcker B, Tönshoff B. Treatment strategies to minimize or prevent chronic allograft dysfunction in pediatric renal transplant recipients: an overview. Paediatr Drugs. 2009;11(6):381–96.

    Article  PubMed  Google Scholar 

  100. Weintraub L, Li L, Kambham N, Alexander S, Concepcion W, Miller K, et al. Patient selection critical for calcineurin inhibitor withdrawal in pediatric kidney transplantation. Pediatr Transplant. 2008;12(5):541–9.

    Article  PubMed  Google Scholar 

  101. Ettenger R, Hoyer PF, Grimm P, Webb N, Loirat C, Mahan JD, et al. Multicenter trial of everolimus in pediatric renal transplant recipients: results at three year. Pediatr Transplant. 2008;12(4):456–63.

    Article  CAS  PubMed  Google Scholar 

  102. Pape L, Lehner F, Blume C, Ahlenstiel T. Pediatric kidney transplantation followed by de novo therapy with everolimus, low-dose cyclosporine A, and steroid elimination: 3-year data. Transplantation. 2011;92(6):658–62.

    Article  CAS  PubMed  Google Scholar 

  103. Grushkin C, Mahan JD, Mange KC, Hexham JM, Ettenger R. De novo therapy with everolimus and reduced-exposure cyclosporine following pediatric kidney transplantation: a prospective, multicenter, 12-month study. Pediatr Transplant. 2013;17(3):237–43.

    Article  CAS  PubMed  Google Scholar 

  104. Nguyen C, Shapiro R. New immunosuppressive agents in pediatric transplantation. Clinics (Sao Paulo). 2014;69 Suppl 1:8–16.

    Article  Google Scholar 

  105. Vincenti F, Larsen C, Durrbach A, Wekerle T, Nashan B, Blancho G, et al. Costimulation blockade with belatacept in renal transplantation. N Engl J Med. 2005;353(8):770–81.

    Article  CAS  PubMed  Google Scholar 

  106. Vincenti F, Charpentier B, Vanrenterghem Y, Rostaing L, Bresnahan B, Darji P, et al. A phase III study of belatacept-based immunosuppression regimens versus cyclosporine in renal transplant recipients (BENEFIT study). Am J Transplant. 2010;10(3):535–46.

    Article  CAS  PubMed  Google Scholar 

  107. Moudgil A, Dharnidharka VR, Feig DI, Warshaw BL, Perera V, Murthy B, et al. Phase I study of single-dose pharmacokinetics and pharmacodynamics of belatacept in adolescent kidney transplant recipients. Am J Transplant. 2019;19(4):1218–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Garro R, Winterberg P, Liverman R, Serluco A, Warshaw B, George R. Outcomes and experience with belatacept in pediatric kidney transplantation [abstract]. Am J Transplant. 2020;20(suppl 3). https://atcmeetingabstracts.com/abstract/outcomes-and-experience-with-belatacept-in-pediatrickidney-transplantation/. Accessed May 11, 2021.

  109. Lerch C, Kanzelmeyer NK, Ahlenstiel-Grunow T, Froede K, Kreuzer M, Drube J, et al. Belatacept after kidney transplantation in adolescents: a retrospective study. Transpl Int. 2017;30(5):494–501.

    Article  CAS  PubMed  Google Scholar 

  110. Fishman JA. Infection in organ transplantation. Am J Transplant. 2017;17(4):856–79.

    Article  CAS  PubMed  Google Scholar 

  111. Roberts MB, Fishman JA. Immunosuppressive agents and infectious risk in transplantation: managing the “Net State of Immunosuppression”. Clin Infect Dis. 2020. ciaa1189. https://doi.org/10.1093/cid/ciaa1189. Available at: https://watermark.silverchair.com/ciaa1189.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAsowggLGBgkqhkiG9w0BBwagggK3MIICswIBADCCAqwGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQM-T_6EKQcCCUV4cgkAgEQgIICfSI8yqzd-i05bEke6EuJA8idDf27h35BCFVqIgwR9fpaCZ4xYHsJADe4R9-ZxAiDTomq9Chwv0immOPRMN5FSXogF5qbD9REzTXDutS66zwTEyHFyvnuG_877xpGErssqoks62OCpQKajHSyMIgbZ3i2C19_7Rk3bzIUwXL3p9Hw1Yy-LxaZtjHbE4FgaOihZhfamyDZrCr6an2iy5akT6xsH7Hn0H4RSC8y8uskBlCYvV5BHxdEgEqCmcc6FBFM07Es0ng3GTFm-Wg362ZcOwyP7EjEfbGjQUZoEmZo5Vne8EqAWLqkOXsNp8rK9atyPwb6jRAikNG7r6DoLdb11CJbUnKCW4EsdNwOrFGkHKaPz2EWeYRZg7NwJ0UINUqQ1KDh0e-uJPca5DhFCZgj8-UXbG2558ONwvlUERzmwBCLYN6ppXYHiIeUv5u71DL4wSnQ2wJBGGSKqnxSMO6NYBfqPohr2XGam7I6tXt26TnQE_UkgfiIvzgEROWUiqx-JJjbkqocY5tlwOUfvUfSh8sun-9qgJWDelFrKX3mZaJTfJedkHKjZLR3HKlPvfPX3SuUIYnSTFwuQWnYqh9_fPt0P1bIyXwkUwrIqtvOzXatW_Ex7MRQITnrt_WcUwdJj10MS8vtsZ_ApsN_POGodY0ELlvAE098LyaNEHlii9fmiGhMrq_CJmfk7Gfvg97Vhu7z5hgVzK8G7uPSD6khyELtTcD12vRKU8Z79QZlh6A4-x5N_etA1XzVNy7o3fnf6nF5-ZYJkHpLG0WTULLzrBfq7rSKLpsWglBSjFccb-K7NqNo3U_LKfcm4vow3BJIEDSM8LqgvnaAdKIc.

  112. Mohammadi O, Kassim TA. Azathioprine. [Updated 2020 Feb 7]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020. Available at: https://www.ncbi.nlm.nih.gov/books/NBK542190/.

  113. Meggitt SJ, Anstey AV, Mohd Mustapa MF, Reynolds NJ, Wakelin S. British Association of Dermatologists’ guidelines for the safe and effective prescribing of azathioprine 2011. Br J Dermatol. 2011;165(4):711–34.

    Article  CAS  PubMed  Google Scholar 

  114. Downing HJ, Pirmohamed M, Beresford MW, Smyth RL. Paediatric use of mycophenolate mofetil. Br J Clin Pharmacol. 2013;75(1):45–59.

    Article  CAS  PubMed  Google Scholar 

  115. Höcker B, van Gelder T, Martin-Govantes J, Machado P, Tedesco H, Rubik J, et al. Comparison of MMF efficacy and safety in paediatric vs. adult renal transplantation: subgroup analysis of the randomised, multicentre FDCC trial. Nephrol Dial Transplant. 2011;26(3):1073–9.

    Article  PubMed  Google Scholar 

  116. TE Johnson J, Ettenger R. Increase incidence of acute cellular rejection in pediatric renal transplant patients receiving steroid free immune suppression [abstract]. Transplantation. 2008;86:626.

    Article  Google Scholar 

  117. Staatz CE, Tett SE. Pharmacology and toxicology of mycophenolate in organ transplant recipients: an update. Arch Toxicol. 2014;88(7):1351–89.

    Article  CAS  PubMed  Google Scholar 

  118. Vilalta Casas R, Vila López A, Nieto Rey JL, Lara Moctezuma LE, Madrid Aris A, Quintana Montero M, et al. Mycophenolic acid reaches therapeutic levels whereas mycophenolate mofetil does not. Transplant Proc. 2006;38(8):2400–1.

    Article  CAS  PubMed  Google Scholar 

  119. Pape L, Ahlenstiel T, Kreuzer M, Ehrich JH. Improved gastrointestinal symptom burden after conversion from mycophenolate mofetil to enteric-coated mycophenolate sodium in kidney transplanted children. Pediatr Transplant. 2008;12(6):640–2.

    Article  CAS  PubMed  Google Scholar 

  120. Granger DK, Group EBRTS, Group EBRTS. Enteric-coated mycophenolate sodium: results of two pivotal global multicenter trials. Transplant Proc. 2001;33(7–8):3241–4.

    Article  CAS  PubMed  Google Scholar 

  121. Salvadori M, Holzer H, de Mattos A, Sollinger H, Arns W, Oppenheimer F, et al. Enteric-coated mycophenolate sodium is therapeutically equivalent to mycophenolate mofetil in de novo renal transplant patients. Am J Transplant. 2004;4(2):231–6.

    Article  CAS  PubMed  Google Scholar 

  122. Budde K, Curtis J, Knoll G, Chan L, Neumayer HH, Seifu Y, et al. Enteric-coated mycophenolate sodium can be safely administered in maintenance renal transplant patients: results of a 1-year study. Am J Transplant. 2004;4(2):237–43.

    Article  CAS  PubMed  Google Scholar 

  123. Cooper M, Salvadori M, Budde K, Oppenheimer F, Sollinger H, Zeier M. Enteric-coated mycophenolate sodium immunosuppression in renal transplant patients: efficacy and dosing. Transplant Rev (Orlando). 2012;26(4):233–40.

    Article  Google Scholar 

  124. Gardiner KM, Tett SE, Staatz CE. Is conversion from mycophenolate mofetil to enteric-coated mycophenolate sodium justifiable for gastrointestinal quality of life? Drugs R D. 2018;18(4):271–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Fine RN, Martz K, Stablein D. What have 20 years of data from the North American Pediatric Renal Transplant Cooperative Study taught us about growth following renal transplantation in infants, children, and adolescents with end-stage renal disease? Pediatr Nephrol. 2010;25(4):739–46.

    Article  PubMed  Google Scholar 

  126. Fryer JP, Benedetti E, Gillingham K, Najarian JS, Matas AJ. Steroid-related complications in pediatric kidney transplant recipients in the cyclosporine era. Transplant Proc. 1994;26(1):91–2.

    CAS  PubMed  Google Scholar 

  127. Shoenfeld Y, Gurewich Y, Gallant LA, Pinkhas J. Prednisone-induced leukocytosis. Influence of dosage, method and duration of administration on the degree of leukocytosis. Am J Med. 1981;71(5):773–8.

    Article  CAS  PubMed  Google Scholar 

  128. Liles WC, Dale DC, Klebanoff SJ. Glucocorticoids inhibit apoptosis of human neutrophils. Blood. 1995;86(8):3181–8.

    Article  CAS  PubMed  Google Scholar 

  129. Nakagawa M, Terashima T, D’yachkova Y, Bondy GP, Hogg JC, van Eeden SF. Glucocorticoid-induced granulocytosis: contribution of marrow release and demargination of intravascular granulocytes. Circulation. 1998;98(21):2307–13.

    Article  CAS  PubMed  Google Scholar 

  130. Abramson N, Melton B. Leukocytosis: basics of clinical assessment. Am Fam Physician. 2000;62(9):2053–60.

    CAS  PubMed  Google Scholar 

  131. Laster ML, Fine RN. Growth following solid organ transplantation in childhood. Pediatr Transplant. 2014;18(2):134–41.

    Article  CAS  PubMed  Google Scholar 

  132. Sarwal MM, Ettenger RB, Dharnidharka V, Benfield M, Mathias R, Portale A, et al. Complete steroid avoidance is effective and safe in children with renal transplants: a multicenter randomized trial with three-year follow-up. Am J Transplant. 2012;12(10):2719–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Foster BJ, Martz K, Gowrishankar M, Stablein D, Al-Uzri A. Weight and height changes and factors associated with greater weight and height gains after pediatric renal transplantation: a NAPRTCS study. Transplantation. 2010;89(9):1103–12.

    Article  PubMed  Google Scholar 

  134. Smith JM, Martz K, Blydt-Hansen TD. Pediatric kidney transplant practice patterns and outcome benchmarks, 1987–2010: a report of the North American Pediatric Renal Trials and Collaborative Studies. Pediatr Transplant. 2013;17(2):149–57.

    Article  PubMed  Google Scholar 

  135. Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplantation. Clin Pharmacokinet. 2004;43(10):623–53.

    Article  CAS  PubMed  Google Scholar 

  136. Nam JH, Mun JI, Kim SI, Kang SW, Choi KH, Park K, et al. beta-Cell dysfunction rather than insulin resistance is the main contributing factor for the development of postrenal transplantation diabetes mellitus. Transplantation. 2001;71(10):1417–23.

    Article  CAS  PubMed  Google Scholar 

  137. Hagen M, Hjelmesaeth J, Jenssen T, Morkrid L, Hartmann A. A 6-year prospective study on new onset diabetes mellitus, insulin release and insulin sensitivity in renal transplant recipients. Nephrol Dial Transplant. 2003;18(10):2154–9.

    Article  CAS  PubMed  Google Scholar 

  138. Ligtenberg G, Hené RJ, Blankestijn PJ, Koomans HA. Cardiovascular risk factors in renal transplant patients: cyclosporin A versus tacrolimus. J Am Soc Nephrol. 2001;12(2):368–73.

    Article  CAS  PubMed  Google Scholar 

  139. Artz MA, Boots JM, Ligtenberg G, Roodnat JI, Christiaans MH, Vos PF, et al. Improved cardiovascular risk profile and renal function in renal transplant patients after randomized conversion from cyclosporine to tacrolimus. J Am Soc Nephrol. 2003;14(7):1880–8.

    Article  CAS  PubMed  Google Scholar 

  140. McDonald SP, Craig JC, Association AaNZPN. Long-term survival of children with end-stage renal disease. N Engl J Med. 2004;350(26):2654–62.

    Article  CAS  PubMed  Google Scholar 

  141. Serrano OK, Bangdiwala AS, Vock DM, Chinnakotla S, Dunn TB, Finger EB, et al. Incidence and magnitude of post-transplant cardiovascular disease after pediatric kidney transplantation: risk factor analysis of 1058 pediatric kidney transplants at the University of Minnesota. Pediatr Transplant. 2018;22(7):e13283.

    Article  PubMed  Google Scholar 

  142. Naesens M, Kuypers DR, Sarwal M. Calcineurin inhibitor nephrotoxicity. Clin J Am Soc Nephrol. 2009;4(2):481–508.

    Article  CAS  PubMed  Google Scholar 

  143. Franz M, Regele H, Schmaldienst S, Stummvoll HK, Hörl WH, Pohanka E. Posttransplant hemolytic uremic syndrome in adult retransplanted kidney graft recipients: advantage of FK506 therapy? Transplantation. 1998;66(9):1258–62.

    Article  CAS  PubMed  Google Scholar 

  144. Franco A, Hernandez D, Capdevilla L, Errasti P, Gonzalez M, Ruiz JC, et al. De novo hemolytic-uremic syndrome/thrombotic microangiopathy in renal transplant patients receiving calcineurin inhibitors: role of sirolimus. Transplant Proc. 2003;35(5):1764–6.

    Article  CAS  PubMed  Google Scholar 

  145. Ponticelli C. De novo thrombotic microangiopathy. An underrated complication of renal transplantation. Clin Nephrol. 2007;67(6):335–40.

    Article  CAS  PubMed  Google Scholar 

  146. Abbas F, El Kossi M, Kim JJ, Sharma A, Halawa A. Thrombotic microangiopathy after renal transplantation: current insights in de novo and recurrent disease. World J Transplant. 2018;8(5):122–41.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Ashman N, Chapagain A, Dobbie H, Raftery MJ, Sheaff MT, Yaqoob MM. Belatacept as maintenance immunosuppression for postrenal transplant de novo drug-induced thrombotic microangiopathy. Am J Transplant. 2009;9(2):424–7.

    Article  CAS  PubMed  Google Scholar 

  148. Koppula S, Yost SE, Sussman A, Bracamonte ER, Kaplan B. Successful conversion to belatacept after thrombotic microangiopathy in kidney transplant patients. Clin Transpl. 2013;27(4):591–7.

    Article  Google Scholar 

  149. Daly KP. Managing risk of surgical procedures in pediatric transplant recipients taking mTOR inhibitors: what is the optimal strategy? Pediatr Transplant. 2018;22(1):1–2.

    Google Scholar 

  150. Ganschow R, Pape L, Sturm E, Bauer J, Melter M, Gerner P, et al. Growing experience with mTOR inhibitors in pediatric solid organ transplantation. Pediatr Transplant. 2013;17(7):694–706.

    CAS  PubMed  Google Scholar 

  151. Sindhi R, Seward J, Mazariegos G, Soltys K, Seward L, Smith A, et al. Replacing calcineurin inhibitors with mTOR inhibitors in children. Pediatr Transplant. 2005;9(3):391–7.

    Article  CAS  PubMed  Google Scholar 

  152. Zaza G, Tomei P, Ria P, Granata S, Boschiero L, Lupo A. Systemic and nonrenal adverse effects occurring in renal transplant patients treated with mTOR inhibitors. Clin Dev Immunol. 2013;2013:403280.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Kranz B, Wingen AM, Vester U, König J, Hoyer PF. Long-term side effects of treatment with mTOR inhibitors in children after renal transplantation. Pediatr Nephrol. 2013;28(8):1293–8.

    Article  PubMed  Google Scholar 

  154. Campistol JM, Sacks SH. Mechanisms of nephrotoxicity. Transplantation. 2000;69(12 Suppl):SS5–10.

    CAS  PubMed  Google Scholar 

  155. Huyghe E, Zairi A, Nohra J, Kamar N, Plante P, Rostaing L. Gonadal impact of target of rapamycin inhibitors (sirolimus and everolimus) in male patients: an overview. Transpl Int. 2007;20(4):305–11.

    Article  CAS  PubMed  Google Scholar 

  156. González D, García CD, Azócar M, Waller S, Alonso A, Ariceta G, et al. Growth of kidney-transplanted pediatric patients treated with sirolimus. Pediatr Nephrol. 2011;26(6):961–6.

    Article  PubMed  Google Scholar 

  157. Pape L, Offner G, Kreuzer M, Froede K, Drube J, Kanzelmeyer N, et al. De novo therapy with everolimus, low-dose ciclosporine A, basiliximab and steroid elimination in pediatric kidney transplantation. Am J Transplant. 2010;10(10):2349–54.

    Article  CAS  PubMed  Google Scholar 

  158. Billing H, Burmeister G, Plotnicki L, Ahlenstiel T, Fichtner A, Sander A, et al. Longitudinal growth on an everolimus- versus an MMF-based steroid-free immunosuppressive regimen in paediatric renal transplant recipients. Transpl Int. 2013;26(9):903–9.

    Article  CAS  PubMed  Google Scholar 

  159. Cavanaugh TM, Schoenemen H, Goebel J. The impact of sirolimus on sex hormones in male adolescent kidney recipients. Pediatr Transplant. 2012;16(3):280–5.

    Article  CAS  PubMed  Google Scholar 

  160. Lee S, Coco M, Greenstein SM, Schechner RS, Tellis VA, Glicklich DG. The effect of sirolimus on sex hormone levels of male renal transplant recipients. Clin Transpl. 2005;19(2):162–7.

    Article  Google Scholar 

  161. Schroder PM, Fitch ZW, Schmitz R, Choi AY, Kwun J, Knechtle SJ. The past, present, and future of costimulation blockade in organ transplantation. Curr Opin Organ Transplant. 2019;24(4):391–401.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Perez CP, Patel N, Mardis CR, Meadows HB, Taber DJ, Pilch NA. Belatacept in solid organ transplant: review of current literature across transplant types. Transplantation. 2018;102(9):1440–52.

    Article  CAS  PubMed  Google Scholar 

  163. Nulojix® [package insert]. Princeton N, Company B-MS; 2014.

    Google Scholar 

  164. Buowari OY. Complications of venepuncture. Adv Biosci Biotechnol. 2013;4:126–8.

    Article  Google Scholar 

  165. Gearry RB, Day AS, Barclay ML, Leong RW, Sparrow MP. Azathioprine and allopurinol: a two-edged interaction. J Gastroenterol Hepatol. 2010;25(4):653–5.

    Article  CAS  PubMed  Google Scholar 

  166. Schaier M, Scholl C, Scharpf D, Hug F, Bönisch-Schmidt S, Dikow R, et al. Proton pump inhibitors interfere with the immunosuppressive potency of mycophenolate mofetil. Rheumatology (Oxford). 2010;49(11):2061–7.

    Article  CAS  Google Scholar 

  167. Kofler S, Deutsch MA, Bigdeli AK, Shvets N, Vogeser M, Mueller TH, et al. Proton pump inhibitor co-medication reduces mycophenolate acid drug exposure in heart transplant recipients. J Heart Lung Transplant. 2009;28(6):605–11.

    Article  PubMed  Google Scholar 

  168. Rupprecht K, Schmidt C, Raspé A, Schweda F, Shipkova M, Fischer W, et al. Bioavailability of mycophenolate mofetil and enteric-coated mycophenolate sodium is differentially affected by pantoprazole in healthy volunteers. J Clin Pharmacol. 2009;49(10):1196–201.

    Article  CAS  PubMed  Google Scholar 

  169. Kees MG, Steinke T, Moritz S, Rupprecht K, Paulus EM, Kees F, et al. Omeprazole impairs the absorption of mycophenolate mofetil but not of enteric-coated mycophenolate sodium in healthy volunteers. J Clin Pharmacol. 2012;52(8):1265–72.

    Article  CAS  PubMed  Google Scholar 

  170. Kiberd BA, Wrobel M, Dandavino R, Keown P, Gourishankar S. The role of proton pump inhibitors on early mycophenolic acid exposure in kidney transplantation: evidence from the CLEAR study. Ther Drug Monit. 2011;33(1):120–3.

    Article  CAS  PubMed  Google Scholar 

  171. Bullingham RE, Nicholls AJ, Kamm BR. Clinical pharmacokinetics of mycophenolate mofetil. Clin Pharmacokinet. 1998;34(6):429–55.

    Article  CAS  PubMed  Google Scholar 

  172. Morii M, Ueno K, Ogawa A, Kato R, Yoshimura H, Wada K, et al. Impairment of mycophenolate mofetil absorption by iron ion. Clin Pharmacol Ther. 2000;68(6):613–6.

    Article  CAS  PubMed  Google Scholar 

  173. Lidgate D, Brandl M, Holper M, Abubakari A, Wu X. Influence of ferrous sulfate on the solubility, partition coefficient, and stability of mycophenolic acid and the ester mycophenolate mofetil. Drug Dev Ind Pharm. 2002;28(10):1275–83.

    Article  CAS  PubMed  Google Scholar 

  174. Mudge DW, Atcheson B, Taylor PJ, Sturtevant JM, Hawley CM, Campbell SB, et al. The effect of oral iron administration on mycophenolate mofetil absorption in renal transplant recipients: a randomized, controlled trial. Transplantation. 2004;77(2):206–9.

    Article  CAS  PubMed  Google Scholar 

  175. Lorenz M, Wolzt M, Weigel G, Puttinger H, Hörl WH, Födinger M, et al. Ferrous sulfate does not affect mycophenolic acid pharmacokinetics in kidney transplant patients. Am J Kidney Dis. 2004;43(6):1098–103.

    Article  CAS  PubMed  Google Scholar 

  176. Siddiqi N, Marfo K. Clinically significant drug-drug interaction between tacrolimus and phenobarbital: the price we pay. J Pharm Pract. 2010;23(6):585–9.

    Article  PubMed  Google Scholar 

  177. Asconapé JJ. Pharmacokinetic considerations with the use of antiepileptic drugs in patients with HIV and organ transplants. Curr Neurol Neurosci Rep. 2018;18(12):89.

    Article  PubMed  Google Scholar 

  178. Wada K, Takada M, Sakai M, Ochi H, Kotake T, Okada H, et al. Drug interaction between tacrolimus and carbamazepine in a Japanese heart transplant recipient: a case report. J Heart Lung Transplant. 2009;28(4):409–11.

    Article  PubMed  Google Scholar 

  179. Marfo K, Greenstein S. Antiretroviral and immunosuppressive drug-drug interactions in human immunodeficiency virus-infected liver and kidney transplant recipients. Transplant Proc. 2009;41(9):3796–9.

    Article  CAS  PubMed  Google Scholar 

  180. Billaud EM, Antoine C, Berge M, Abboud I, Lefeuvre S, Benammar M, et al. Management of metabolic cytochrome P450 3A4 drug-drug interaction between everolimus and azole antifungals in a renal transplant patient. Clin Drug Investig. 2009;29(7):481–6.

    Article  CAS  PubMed  Google Scholar 

  181. Campana C, Regazzi MB, Buggia I, Molinaro M. Clinically significant drug interactions with cyclosporin. An update. Clin Pharmacokinet. 1996;30(2):141–79.

    Article  CAS  PubMed  Google Scholar 

  182. Vasquez E, Pollak R, Benedetti E. Clotrimazole increases tacrolimus blood levels: a drug interaction in kidney transplant patients. Clin Transpl. 2001;15(2):95–9.

    Article  CAS  Google Scholar 

  183. Choong CL, Wong HS, Lee FY, Lee CK, Kho JV, Lai YX, et al. Dose-response relationship between diltiazem and tacrolimus and its safety in renal transplant recipients. Transplant Proc. 2018;50(8):2515–20.

    Article  CAS  PubMed  Google Scholar 

  184. Tsapepas D, Saal S, Benkert S, Levine D, Delfin M, Cremers S, et al. Sublingual tacrolimus: a pharmacokinetic evaluation pilot study. Pharmacotherapy. 2013;33(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  185. Bax K, Tijssen J, Rieder MJ, Filler G. Rapid resolution of tacrolimus intoxication-induced AKI with a corticosteroid and phenytoin. Ann Pharmacother. 2014;48(11):1525–8.

    Article  PubMed  Google Scholar 

  186. Lange NW, Salerno DM, Berger K, Tsapepas DS. Using known drug interactions to manage supratherapeutic calcineurin inhibitor concentrations. Clin Transplant. 2017;31(11):1–6.

    Google Scholar 

  187. Asano T, Nishimoto K, Hayakawa M. Increased tacrolimus trough levels in association with severe diarrhea, a case report. Transplant Proc. 2004;36(7):2096–7.

    Article  CAS  PubMed  Google Scholar 

  188. Braun F, Schöcklmann H, Ziegler E, Kunzendorf U, Armstrong VW, Renders L. Increased mycophenolic acid exposure in stable kidney transplant recipients on tacrolimus as compared with those on sirolimus: implications for pharmacokinetics. Clin Pharmacol Ther. 2009;86(4):411–5.

    Article  CAS  PubMed  Google Scholar 

  189. Filler G, Zimmering M, Mai I. Pharmacokinetics of mycophenolate mofetil are influenced by concomitant immunosuppression. Pediatr Nephrol. 2000;14(2):100–4.

    Article  CAS  PubMed  Google Scholar 

  190. Prescribing Pt, information. Deerfield IAPU, Inc.; 2012.

    Google Scholar 

  191. Griffin PJ, Da Costa CA, Salaman JR. A controlled trial of steroids in cyclosporine-treated renal transplant recipients. Transplantation. 1987;43(4):505–8.

    Article  CAS  PubMed  Google Scholar 

  192. Hricik DE, Moritz C, Mayes JT, Schulak JA. Association of the absence of steroid therapy with increased cyclosporine blood levels in renal transplant recipients. Transplantation. 1990;49(1):221–3.

    Article  CAS  PubMed  Google Scholar 

  193. van Duijnhoven EM, Boots JM, Christiaans MH, Stolk LM, Undre NA, van Hooff JP. Increase in tacrolimus trough levels after steroid withdrawal. Transpl Int. 2003;16(10):721–5.

    Article  PubMed  Google Scholar 

  194. Kim JS, Aviles DH, Silverstein DM, Leblanc PL, Matti VV. Effect of age, ethnicity, and glucocorticoid use on tacrolimus pharmacokinetics in pediatric renal transplant patients. Pediatr Transplant. 2005;9(2):162–9.

    Article  CAS  PubMed  Google Scholar 

  195. Dagenais R, Leung M, Poinen K, Landsberg D. Common questions and misconceptions in the management of renal transplant patients: a guide for health care providers in the posttransplant setting. Ann Pharmacother. 2019;53(4):419–29.

    Article  PubMed  Google Scholar 

  196. Dai Y, Iwanaga K, Lin YS, Hebert MF, Davis CL, Huang W, et al. In vitro metabolism of cyclosporine A by human kidney CYP3A5. Biochem Pharmacol. 2004;68(9):1889–902.

    Article  CAS  PubMed  Google Scholar 

  197. Dai Y, Hebert MF, Isoherranen N, Davis CL, Marsh C, Shen DD, et al. Effect of CYP3A5 polymorphism on tacrolimus metabolic clearance in vitro. Drug Metab Dispos. 2006;34(5):836–47.

    Article  CAS  PubMed  Google Scholar 

  198. Hesselink DA, Bouamar R, Elens L, van Schaik RH, van Gelder T. The role of pharmacogenetics in the disposition of and response to tacrolimus in solid organ transplantation. Clin Pharmacokinet. 2014;53(2):123–39.

    Article  CAS  PubMed  Google Scholar 

  199. Birdwell KA, Grady B, Choi L, Xu H, Bian A, Denny JC, et al. The use of a DNA biobank linked to electronic medical records to characterize pharmacogenomic predictors of tacrolimus dose requirement in kidney transplant recipients. Pharmacogenet Genomics. 2012;22(1):32–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Allegri L, Baldan F, Vallone C, Tulissi P, Gropuzzo M, Canelles MF, et al. Tacrolimus therapeutic drug monitoring in stable kidney transplantation and individuation of CYP3A5 genotype. Transplant Proc. 2019;51(9):2917–20.

    Article  CAS  PubMed  Google Scholar 

  201. Glowacki F, Lionet A, Buob D, Labalette M, Allorge D, Provôt F, et al. CYP3A5 and ABCB1 polymorphisms in donor and recipient: impact on Tacrolimus dose requirements and clinical outcome after renal transplantation. Nephrol Dial Transplant. 2011;26(9):3046–50.

    Article  CAS  PubMed  Google Scholar 

  202. Ferraresso M, Tirelli A, Ghio L, Grillo P, Martina V, Torresani E, et al. Influence of the CYP3A5 genotype on tacrolimus pharmacokinetics and pharmacodynamics in young kidney transplant recipients. Pediatr Transplant. 2007;11(3):296–300.

    Article  CAS  PubMed  Google Scholar 

  203. Zhao W, Elie V, Roussey G, Brochard K, Niaudet P, Leroy V, et al. Population pharmacokinetics and pharmacogenetics of tacrolimus in de novo pediatric kidney transplant recipients. Clin Pharmacol Ther. 2009;86(6):609–18.

    Article  CAS  PubMed  Google Scholar 

  204. Oetting WS, Schladt DP, Guan W, Miller MB, Remmel RP, Dorr C, et al. Genomewide Association Study of tacrolimus concentrations in African American kidney transplant recipients identifies multiple CYP3A5 alleles. Am J Transplant. 2016;16(2):574–82.

    Article  CAS  PubMed  Google Scholar 

  205. Hustert E, Haberl M, Burk O, Wolbold R, He YQ, Klein K, et al. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics. 2001;11(9):773–9.

    Article  CAS  PubMed  Google Scholar 

  206. Thervet E, Loriot MA, Barbier S, Buchler M, Ficheux M, Choukroun G, et al. Optimization of initial tacrolimus dose using pharmacogenetic testing. Clin Pharmacol Ther. 2010;87(6):721–6.

    CAS  PubMed  Google Scholar 

  207. MacPhee IA, Fredericks S, Tai T, Syrris P, Carter ND, Johnston A, et al. The influence of pharmacogenetics on the time to achieve target tacrolimus concentrations after kidney transplantation. Am J Transplant. 2004;4(6):914–9.

    Article  CAS  PubMed  Google Scholar 

  208. van Gelder T, Hesselink DA. Dosing tacrolimus based on CYP3A5 genotype: will it improve clinical outcome? Clin Pharmacol Ther. 2010;87(6):640–1.

    Article  PubMed  CAS  Google Scholar 

  209. Christians U, Strom T, Zhang YL, Steudel W, Schmitz V, Trump S, et al. Active drug transport of immunosuppressants: new insights for pharmacokinetics and pharmacodynamics. Ther Drug Monit. 2006;28(1):39–44.

    Article  CAS  PubMed  Google Scholar 

  210. Fromm MF. Importance of P-glycoprotein for drug disposition in humans. Eur J Clin Investig. 2003;33 Suppl 2:6–9.

    Article  CAS  Google Scholar 

  211. Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM, Ambudkar SV, et al. A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science. 2007;315(5811):525–8.

    Article  CAS  PubMed  Google Scholar 

  212. Fredericks S, Moreton M, Reboux S, Carter ND, Goldberg L, Holt DW, et al. Multidrug resistance gene-1 (MDR-1) haplotypes have a minor influence on tacrolimus dose requirements. Transplantation. 2006;82(5):705–8.

    Article  CAS  PubMed  Google Scholar 

  213. Yamauchi A, Ieiri I, Kataoka Y, Tanabe M, Nishizaki T, Oishi R, et al. Neurotoxicity induced by tacrolimus after liver transplantation: relation to genetic polymorphisms of the ABCB1 (MDR1) gene. Transplantation. 2002;74(4):571–2.

    Article  CAS  PubMed  Google Scholar 

  214. Bochud M, Bovet P, Burnier M, Eap CB. CYP3A5 and ABCB1 genes and hypertension. Pharmacogenomics. 2009;10(3):477–87.

    Article  CAS  PubMed  Google Scholar 

  215. Rieder MJ, Carleton B. Pharmacogenomics and adverse drug reactions in children. Front Genet. 2014;5:78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Cooper SC, Ford LT, Berg JD, Lewis MJ. Ethnic variation of thiopurine S-methyltransferase activity: a large, prospective population study. Pharmacogenomics. 2008;9(3):303–9.

    Article  CAS  PubMed  Google Scholar 

  217. Moriyama T, Nishii R, Perez-Andreu V, Yang W, Klussmann FA, Zhao X, et al. NUDT15 polymorphisms alter thiopurine metabolism and hematopoietic toxicity. Nat Genet. 2016;48(4):367–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Fukuda T, Goebel J, Cox S, Maseck D, Zhang K, Sherbotie JR, et al. UGT1A9, UGT2B7, and MRP2 genotypes can predict mycophenolic acid pharmacokinetic variability in pediatric kidney transplant recipients. Ther Drug Monit. 2012;34(6):671–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Renoult E, Buteau C, Lamarre V, Turgeon N, Tapiero B. Infectious risk in pediatric organ transplant recipients: is it increased with the new immunosuppressive agents? Pediatr Transplant. 2005;9(4):470–9.

    Article  CAS  PubMed  Google Scholar 

  220. Dharnidharka VR, Stablein DM, Harmon WE. Post-transplant infections now exceed acute rejection as cause for hospitalization: a report of the NAPRTCS. Am J Transplant. 2004;4(3):384–9.

    Article  PubMed  Google Scholar 

  221. Knackstedt ED, Danziger-Isakov L. Infections in pediatric solid-organ transplant recipients. Semin Pediatr Surg. 2017;26(4):199–205.

    Article  PubMed  Google Scholar 

  222. Green M, Michaels MG. Infections in pediatric solid organ transplant recipients. J Pediatric Infect Dis Soc. 2012;1(2):144–51.

    Article  PubMed  Google Scholar 

  223. Humar A, Gillingham KJ, Payne WD, Dunn DL, Sutherland DE, Matas AJ. Association between cytomegalovirus disease and chronic rejection in kidney transplant recipients. Transplantation. 1999;68(12):1879–83.

    Article  CAS  PubMed  Google Scholar 

  224. Mynarek M, Hussein K, Kreipe HH, Maecker-Kolhoff B. Malignancies after pediatric kidney transplantation: more than PTLD? Pediatr Nephrol. 2014;29(9):1517–28.

    Article  PubMed  Google Scholar 

  225. Ziemann M, Thiele T. Transfusion-transmitted CMV infection - current knowledge and future perspectives. Transfus Med. 2017;27(4):238–48.

    Article  CAS  PubMed  Google Scholar 

  226. Schulman SL, Deforest A, Kaiser BA, Polinsky MS, Baluarte HJ. Response to measles-mumps-rubella vaccine in children on dialysis. Pediatr Nephrol. 1992;6(2):187–9.

    Article  CAS  PubMed  Google Scholar 

  227. Mathew R, Mason D, Kennedy JS. Vaccination issues in patients with chronic kidney disease. Expert Rev Vaccines. 2014;13(2):285–98.

    Article  CAS  PubMed  Google Scholar 

  228. Pittet LF, Verolet CM, McLin VA, Wildhaber BE, Rodriguez M, Cherpillod P, et al. Multimodal safety assessment of measles-mumps-rubella vaccination after pediatric liver transplantation. Am J Transplant. 2019;19(3):844–54.

    Article  CAS  PubMed  Google Scholar 

  229. Posfay-Barbe KM, Pittet LF, Sottas C, Grillet S, Wildhaber BE, Rodriguez M, et al. Varicella-zoster immunization in pediatric liver transplant recipients: safe and immunogenic. Am J Transplant. 2012;12(11):2974–85.

    Article  CAS  PubMed  Google Scholar 

  230. Danziger-Isakov L, Kumar D, Practice AICo. Vaccination of solid organ transplant candidates and recipients: guidelines from the American society of transplantation infectious diseases community of practice. Clin Transpl. 2019;33(9):e13563.

    Article  Google Scholar 

  231. Yanik EL, Smith JM, Shiels MS, Clarke CA, Lynch CF, Kahn AR, et al. Cancer risk after pediatric solid organ transplantation. Pediatrics. 2017;139(5):e20163893.

    Article  PubMed  PubMed Central  Google Scholar 

  232. Foster BJ, Dahhou M, Zhang X, Platt RW, Hanley JA. Change in mortality risk over time in young kidney transplant recipients. Am J Transplant. 2011;11(11):2432–42.

    Article  CAS  PubMed  Google Scholar 

  233. Absalon MJ, Khoury RA, Phillips CL. Post-transplant lymphoproliferative disorder after solid-organ transplant in children. Semin Pediatr Surg. 2017;26(4):257–66.

    Article  PubMed  Google Scholar 

  234. Cleper R, Ben Shalom E, Landau D, Weissman I, Krause I, Konen O, et al. Post-transplantation lymphoproliferative disorder in pediatric kidney-transplant recipients - a national study. Pediatr Transplant. 2012;16(6):619–26.

    Article  PubMed  Google Scholar 

  235. Cherikh WS, Kauffman HM, McBride MA, Maghirang J, Swinnen LJ, Hanto DW. Association of the type of induction immunosuppression with posttransplant lymphoproliferative disorder, graft survival, and patient survival after primary kidney transplantation. Transplantation. 2003;76(9):1289–93.

    Article  CAS  PubMed  Google Scholar 

  236. Caillard S, Dharnidharka V, Agodoa L, Bohen E, Abbott K. Posttransplant lymphoproliferative disorders after renal transplantation in the United States in era of modern immunosuppression. Transplantation. 2005;80(9):1233–43.

    Article  CAS  PubMed  Google Scholar 

  237. Dharnidharka VR, Stevens G. Risk for post-transplant lymphoproliferative disorder after polyclonal antibody induction in kidney transplantation. Pediatr Transplant. 2005;9(5):622–6.

    Article  PubMed  Google Scholar 

  238. Dharnidharka VR, Ho PL, Stablein DM, Harmon WE, Tejani AH. Mycophenolate, tacrolimus and post-transplant lymphoproliferative disorder: a report of the North American Pediatric Renal Transplant Cooperative Study. Pediatr Transplant. 2002;6(5):396–9.

    Article  CAS  PubMed  Google Scholar 

  239. Dharnidharka VR, Tejani AH, Ho PL, Harmon WE. Post-transplant lymphoproliferative disorder in the United States: young Caucasian males are at highest risk. Am J Transplant. 2002;2(10):993–8.

    Article  PubMed  Google Scholar 

  240. Martin ST, Tichy EM, Gabardi S. Belatacept: a novel biologic for maintenance immunosuppression after renal transplantation. Pharmacotherapy. 2011;31(4):394–407.

    Article  CAS  PubMed  Google Scholar 

  241. Gross TG, Orjuela MA, Perkins SL, Park JR, Lynch JC, Cairo MS, et al. Low-dose chemotherapy and rituximab for posttransplant lymphoproliferative disease (PTLD): a Children’s Oncology Group report. Am J Transplant. 2012;12(11):3069–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Maecker B, Jack T, Zimmermann M, Abdul-Khaliq H, Burdelski M, Fuchs A, et al. CNS or bone marrow involvement as risk factors for poor survival in post-transplantation lymphoproliferative disorders in children after solid organ transplantation. J Clin Oncol. 2007;25(31):4902–8.

    Article  PubMed  Google Scholar 

  243. Webber SA, Naftel DC, Fricker FJ, Olesnevich P, Blume ED, Addonizio L, et al. Lymphoproliferative disorders after paediatric heart transplantation: a multi-institutional study. Lancet. 2006;367(9506):233–9.

    Article  PubMed  Google Scholar 

  244. Morath C, Mueller M, Goldschmidt H, Schwenger V, Opelz G, Zeier M. Malignancy in renal transplantation. J Am Soc Nephrol. 2004;15(6):1582–8.

    Article  PubMed  Google Scholar 

  245. Euvrard S, Morelon E, Rostaing L, Goffin E, Brocard A, Tromme I, et al. Sirolimus and secondary skin-cancer prevention in kidney transplantation. N Engl J Med. 2012;367(4):329–39.

    Article  CAS  PubMed  Google Scholar 

  246. Josephson MA, McKay DB. Women and transplantation: fertility, sexuality, pregnancy, contraception. Adv Chronic Kidney Dis. 2013;20(5):433–40.

    Article  PubMed  Google Scholar 

  247. Dalby J, Hayon R, Carlson J. Adolescent pregnancy and contraception. Prim Care. 2014;41(3):607–29.

    Article  PubMed  Google Scholar 

  248. Coscia LA, Constantinescu S, Davison JM, Moritz MJ, Armenti VT. Immunosuppressive drugs and fetal outcome. Best Pract Res Clin Obstet Gynaecol. 2014;28(8):1174–87.

    Article  PubMed  Google Scholar 

  249. Kim H, Jeong JC, Yang J, Yang WS, Ahn C, Han DJ, et al. The optimal therapy of calcineurin inhibitors for pregnancy in kidney transplantation. Clin Transpl. 2015;29(2):142–8.

    Article  CAS  Google Scholar 

  250. Shah S, Verma P. Overview of pregnancy in renal transplant patients. Int J Nephrol. 2016;2016:4539342.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  251. Coscia LA, Constantinescu S, Moritz MJ, Frank AM, Ramirez CB, Maley WR, et al. Report from the National Transplantation Pregnancy Registry (NTPR): outcomes of pregnancy after transplantation. Clin Transpl. 2010:65–85.

    Google Scholar 

  252. López LF, Martínez CJ, Castañeda DA, Hernández AC, Pérez HC, Lozano E. Pregnancy and kidney transplantation, triple hazard? Current concepts and algorithm for approach of preconception and perinatal care of the patient with kidney transplantation. Transplant Proc. 2014;46(9):3027–31.

    Article  PubMed  Google Scholar 

  253. Makol A, Wright K, Amin S. Rheumatoid arthritis and pregnancy: safety considerations in pharmacological management. Drugs. 2011;71(15):1973–87.

    Article  CAS  PubMed  Google Scholar 

  254. Christensen LA, Dahlerup JF, Nielsen MJ, Fallingborg JF, Schmiegelow K. Azathioprine treatment during lactation. Aliment Pharmacol Ther. 2008;28(10):1209–13.

    Article  CAS  PubMed  Google Scholar 

  255. Constantinescu S, Coscia LA, Armenti D, Moritz MJ. Mycophenolic acid product discontinuation prior to conception: analysis of pregnancies in kidney transplant recipients. Am J Transplant. 2016;16:66.

    Google Scholar 

  256. Perez-Aytes A, Marin-Reina P, Boso V, Ledo A, Carey JC, Vento M. Mycophenolate mofetil embryopathy: a newly recognized teratogenic syndrome. Eur J Med Genet. 2017;60(1):16–21.

    Article  PubMed  Google Scholar 

  257. Hoeltzenbein M, Elefant E, Vial T, Finkel-Pekarsky V, Stephens S, Clementi M, et al. Teratogenicity of mycophenolate confirmed in a prospective study of the European Network of Teratology Information Services. Am J Med Genet A. 2012;158A(3):588–96.

    Article  PubMed  CAS  Google Scholar 

  258. Kasiske BL, Zeier MG, Chapman JR, Craig JC, Ekberg H, Garvey CA, et al. KDIGO clinical practice guideline for the care of kidney transplant recipients: a summary. Kidney Int. 2010;77(4):299–311.

    Article  PubMed  Google Scholar 

  259. Transplantation EEGoR. European best practice guidelines for renal transplantation. Section IV: long-term management of the transplant recipient. Nephrol Dial Transplant. 2002;17 Suppl 4:1–67.

    Google Scholar 

  260. Jones A, Clary MJ, McDermott E, Coscia LA, Constantinescu S, Moritz MJ, et al. Outcomes of pregnancies fathered by solid-organ transplant recipients exposed to mycophenolic acid products. Prog Transplant. 2013;23(2):153–7.

    Article  PubMed  Google Scholar 

  261. Teruel C, López-San Román A, Bermejo F, Taxonera C, Pérez-Calle JL, Gisbert JP, et al. Outcomes of pregnancies fathered by inflammatory bowel disease patients exposed to thiopurines. Am J Gastroenterol. 2010;105(9):2003–8.

    Article  CAS  PubMed  Google Scholar 

  262. Zuber J, Anglicheau D, Elie C, Bererhi L, Timsit MO, Mamzer-Bruneel MF, et al. Sirolimus may reduce fertility in male renal transplant recipients. Am J Transplant. 2008;8(7):1471–9.

    Article  CAS  PubMed  Google Scholar 

  263. Framarino dei Malatesta M, Corona LE, De Luca L, Rocca B, Manzia TM, Orlando G, et al. Successful pregnancy in a living-related kidney transplant recipient who received sirolimus throughout the whole gestation. Transplantation. 2011;91(9):e69–71.

    Article  PubMed  Google Scholar 

  264. Carta P, Caroti L, Zanazzi M. Pregnancy in a kidney transplant patient treated with everolimus. Am J Kidney Dis. 2012;60(2):329.

    Article  PubMed  Google Scholar 

  265. Armenti VT, Moritz MJ, Cardonick EH, Davison JM. Immunosuppression in pregnancy: choices for infant and maternal health. Drugs. 2002;62(16):2361–75.

    Article  CAS  PubMed  Google Scholar 

  266. Sifontis NM, Coscia LA, Constantinescu S, Lavelanet AF, Moritz MJ, Armenti VT. Pregnancy outcomes in solid organ transplant recipients with exposure to mycophenolate mofetil or sirolimus. Transplantation. 2006;82(12):1698–702.

    Article  CAS  PubMed  Google Scholar 

  267. Beitins IZ, Bayard F, Ances IG, Kowarski A, Migeon CJ. The transplacental passage of prednisone and prednisolone in pregnancy near term. J Pediatr. 1972;81(5):936–45.

    Article  CAS  PubMed  Google Scholar 

  268. Bay Bjørn AM, Ehrenstein V, Hundborg HH, Nohr EA, Sørensen HT, Nørgaard M. Use of corticosteroids in early pregnancy is not associated with risk of oral clefts and other congenital malformations in offspring. Am J Ther. 2014;21(2):73–80.

    Article  PubMed  Google Scholar 

  269. Fine RN, Becker Y, De Geest S, Eisen H, Ettenger R, Evans R, et al. Nonadherence consensus conference summary report. Am J Transplant. 2009;9(1):35–41.

    Article  CAS  PubMed  Google Scholar 

  270. Chisholm-Burns MA, Spivey CA, Graff Zivin J, Lee JK, Sredzinski E, Tolley EA. Improving outcomes of renal transplant recipients with behavioral adherence contracts: a randomized controlled trial. Am J Transplant. 2013;13(9):2364–73.

    Article  CAS  PubMed  Google Scholar 

  271. Dobbels F, Ruppar T, De Geest S, Decorte A, Van Damme-Lombaerts R, Fine RN. Adherence to the immunosuppressive regimen in pediatric kidney transplant recipients: a systematic review. Pediatr Transplant. 2010;14(5):603–13.

    Article  CAS  PubMed  Google Scholar 

  272. Steinberg EA, Moss M, Buchanan CL, Goebel J. Adherence in pediatric kidney transplant recipients: solutions for the system. Pediatr Nephrol. 2018;33(3):361–72.

    Article  PubMed  Google Scholar 

  273. Simons LE, Blount RL. Identifying barriers to medication adherence in adolescent transplant recipients. J Pediatr Psychol. 2007;32(7):831–44.

    Article  PubMed  Google Scholar 

  274. Burkhart PV, Sabaté E. Adherence to long-term therapies: evidence for action. J Nurs Scholarsh. 2003;35(3):207.

    Article  PubMed  Google Scholar 

  275. Bunchman TE. Compliance in pediatric transplant. Pediatr Transplant. 2000;4(3):165–9.

    Article  CAS  PubMed  Google Scholar 

  276. Rodig NM, Vakili K, Harmon WE. Pediatric renal transplantation. Pediatric nephrology. Berlin, Heidelberg: Springer; 2016. p. 2501–2552.

    Google Scholar 

  277. Hart A, Smith JM, Skeans MA, Gustafson SK, Wilk AR, Castro S, et al. OPTN/SRTR 2018 annual data report: kidney. Am J Transplant. 2020;20 Suppl s1:20–130.

    Article  CAS  PubMed  Google Scholar 

  278. Guilfoyle SM, Goebel JW, Pai AL. Efficacy and flexibility impact perceived adherence barriers in pediatric kidney post-transplantation. Fam Syst Health. 2011;29(1):44–54.

    Article  PubMed  Google Scholar 

  279. Tucker CM, Fennell RS, Pedersen T, Higley BP, Wallack CE, Peterson S. Associations with medication adherence among ethnically different pediatric patients with renal transplants. Pediatr Nephrol. 2002;17(4):251–6.

    Article  PubMed  Google Scholar 

  280. Moseley KL, Kershaw DB. African American and white disparities in pediatric kidney transplantation in the United States -- unfortunate or unjust? Camb Q Healthc Ethics. 2012;21(3):353–65.

    Article  PubMed  Google Scholar 

  281. Blowey DL, Hébert D, Arbus GS, Pool R, Korus M, Koren G. Compliance with cyclosporine in adolescent renal transplant recipients. Pediatr Nephrol. 1997;11(5):547–51.

    Article  CAS  PubMed  Google Scholar 

  282. Raiz LR, Kilty KM, Henry ML, Ferguson RM. Medication compliance following renal transplantation. Transplantation. 1999;68(1):51–5.

    Article  CAS  PubMed  Google Scholar 

  283. Wolff G, Strecker K, Vester U, Latta K, Ehrich JH. Non-compliance following renal transplantation in children and adolescents. Pediatr Nephrol. 1998;12(9):703–8.

    Article  CAS  PubMed  Google Scholar 

  284. Fernandez HE, Amaral S, Shaw PA, Doyle AM, Bloom RD, Palmer JA, et al. The effect of transfer to adult transplant care on kidney function and immunosuppressant drug level variability in pediatric kidney transplant recipients. Pediatr Transplant. 2019;23(6):e13527.

    Article  PubMed  CAS  Google Scholar 

  285. Samuel SM, Nettel-Aguirre A, Hemmelgarn BR, Tonelli MA, Soo A, Clark C, et al. Graft failure and adaptation period to adult healthcare centers in pediatric renal transplant patients. Transplantation. 2011;91(12):1380–5.

    Article  PubMed  Google Scholar 

  286. Remorino R, Taylor J. Smoothing things over: the transition from pediatric to adult care for kidney transplant recipients. Prog Transplant. 2006;16(4):303–8.

    Article  PubMed  Google Scholar 

  287. Raina R, Wang J, Krishnappa V, Ferris M. Pediatric renal transplantation: focus on current transition care and proposal of the “RISE to Transition” protocol. Ann Transplant. 2018;23:45–60.

    Article  PubMed  PubMed Central  Google Scholar 

  288. Haddad M, Winnicki E. Transition of care for adolescent kidney transplant recipients. Ann Pediatr Child Health. 2014;2(1):1008.

    Google Scholar 

  289. (OPTN) OPaTN. Pediatric transition and transfer guidance document 2018. Available from: https://optn.transplant.hrsa.gov/media/2759/pediatric_guidance_201812.pdf.

  290. Transplantation ASo. Pediatric transition portal 2020. Available from: https://www.myast.org/education/specialty-resources/peds-transition.

  291. Shellmer DA, Dew MA, Mazariegos G, DeVito Dabbs A. Development and field testing of Teen Pocket PATH(®), a mobile health application to improve medication adherence in adolescent solid organ recipients. Pediatr Transplant. 2016;20(1):130–40.

    Article  PubMed  PubMed Central  Google Scholar 

  292. Schäfer-Keller P, Steiger J, Bock A, Denhaerynck K, De Geest S. Diagnostic accuracy of measurement methods to assess non-adherence to immunosuppressive drugs in kidney transplant recipients. Am J Transplant. 2008;8(3):616–26.

    Article  PubMed  Google Scholar 

  293. Simons LE, Gilleland J, Blount RL, Amaral S, Berg A, Mee LL. Multidimensional adherence classification system: initial development with adolescent transplant recipients. Pediatr Transplant. 2009;13(5):590–8.

    Article  PubMed  Google Scholar 

  294. Amatya K, Monnin K, Steinberg CE. Psychological functioning and psychosocial issues in pediatric kidney transplant recipients. Pediatr Transplant. 2021;25:e13842.

    Article  PubMed  Google Scholar 

  295. Foster BJ, Pai ALH, Zelikovsky N, Amaral S, Bell L, Dharnidharka VR, et al. A randomized trial of a multicomponent intervention to promote medication adherence: the Teen Adherence in Kidney Transplant Effectiveness of Intervention Trial (TAKE-IT). Am J Kidney Dis. 2018;72(1):30–41.

    Article  PubMed  PubMed Central  Google Scholar 

  296. Zelikovsky N, Schast AP, Palmer J, Meyers KE. Perceived barriers to adherence among adolescent renal transplant candidates. Pediatr Transplant. 2008;12(3):300–8.

    Article  PubMed  Google Scholar 

  297. Levine D, Torabi J, Choinski K, Rocca JP, Graham JA. Transplant surgery enters a new era: increasing immunosuppressive medication adherence through mobile apps and smart watches. Am J Surg. 2019;218(1):18–20.

    Article  PubMed  Google Scholar 

  298. Browning RB, McGillicuddy JW, Treiber FA, Taber DJ. Kidney transplant recipients’ attitudes about using mobile health technology for managing and monitoring medication therapy. J Am Pharm Assoc (2003). 2016;56(4):450–4.e1.

    Article  Google Scholar 

  299. Verghese PS. Pediatric kidney transplantation: a historical review. Pediatr Res. 2017;81(1):259–64.

    Article  PubMed  Google Scholar 

  300. Murray JE, Tilney NL, Wilson RE. Renal transplantation: a twenty-five year experience. Ann Surg. 1976;184(5):565–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Meakins JL, Smith EJ, Alexander JW. En bloc transplantation of both kidneys from pediatric donors into adult patients. Surgery. 1972;71:72–5.

    CAS  PubMed  Google Scholar 

  302. McCauley J. History of kidney transplantation, A. In: Ramirez C, McCauley J, editors. Contemporary kidney transplantation. Organ and tissue transplantation. Cham: Springer; 2018. https://doi.org/10.1007/978-3-319-14779-6_1-1.

    Chapter  Google Scholar 

  303. Miller LC, Lum CT, Bock GH, et al. Transplantation of the adult kidney into the very small child: technical considerations. Am J Surg. 1983;145:243–7.

    Article  CAS  PubMed  Google Scholar 

  304. Starzl TE, Porter KA, Iwatsuki S, et al. Reversibility of lymphomas and lymphoproliferative lesions developing under cyclosporin-steroid therapy. Lancet. 1984;1(8377):583–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Muramatsu M, Gonzalez HD, Cacciola R, et al. ABO incompatible renal transplants: good or bad? World J Transplant. 2014;4(1):18–29.

    Article  PubMed  PubMed Central  Google Scholar 

  306. Gjertson DW, Cecka JM. Living unrelated donor kidney transplantation. Kidney Int. 2000;58:491–9.

    Article  CAS  PubMed  Google Scholar 

  307. Kwak JY, Kwon OJ, Lee KS, et al. Exchange-donor program in renal transplantation: a single-center experience. Transplant Proc. 1999;31:344–5.

    Article  CAS  PubMed  Google Scholar 

  308. Sarwal MM, Yorgin PD, Alexander S, et al. Promising early outcomes with a novel, complete steroid avoidance immunosuppression protocol in pediatric renal transplantation. Transplantation. 2001;72(1):13–21.

    Article  CAS  PubMed  Google Scholar 

  309. Al-Uzri AY, Seltz B, Yorgin PD, et al. Successful renal transplant outcome after intravenous gamma-globulin treatment of a highly sensitized pediatric recipient. Pediatr Transplant. 2002;6:161–5.

    Article  CAS  PubMed  Google Scholar 

  310. Werbel WA, Durand CM. Solid organ transplantation in HIV-infected recipients: history, progress, and frontiers. Curr HIV/AIDS Rep. 2019;16(3):191–203.

    Article  PubMed  PubMed Central  Google Scholar 

  311. Goldberg DS, Abt PL, Blumberg EA, et al. Trial of transplantation of HCV-infected kidneys into uninfected recipients. New Engl J Med. 2017;376(24):2394–5.

    Article  PubMed  Google Scholar 

  312. Groth CG, Brent LB, Calne RY, et al. Historic landmarks in clinical transplantation: conclusions from the consensus conference at the University of California, Los Angeles. World J Surg. 2000;24(7):834–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Thiyagarajan UM, Ponnuswamy A, Bagul A. Thymoglobulin and its use in renal transplantation: a review. Am J Nephrol. 2013;37:586–601.

    Article  CAS  PubMed  Google Scholar 

  314. Barnett AN, Hadkianastassiou VG, Mamode N. Rituximab in renal transplantation. Transpl Int. 2013;26:563–75.

    Article  CAS  PubMed  Google Scholar 

  315. Raghavan R, Jeroudi A, Achkar K, et al. Bortezomib in kidney transplantation. J Transplant. 2010; article ID 698594, 2010:1–6.

    Google Scholar 

  316. Friend PJ. Alemtuzumab induction therapy in solid organ transplantation. Transplant Res. 2013;2(S1):S5.

    Article  PubMed  PubMed Central  Google Scholar 

  317. Jordan SC, Toyoda M, Kahwaji J, et al. Clinical aspects of intravenous immunoglobulin use in solid organ transplant recipients. Am J Transplant. 2011;11:196–202.

    Article  CAS  PubMed  Google Scholar 

  318. Barnett ANR, Asgari E, Chowdhury P, et al. The use of eculizumab in renal transplantation. Clin Transpl. 2013;27:E216–29.

    Article  CAS  Google Scholar 

  319. Vo AA, Choi J, Kim I, et al. A phase I/II trial of the interleukin-6 receptor specific humanized monoclonal (tocilizumab) + intravenous immunoglobulin in difficult to desensitize patients. Transplantation. 2015;99:2356–63.

    Article  CAS  PubMed  Google Scholar 

  320. Sethi S, Choi J, Toyoda M, et al. Desensitization: overcoming the immunologic barriers to transplantation. J Immunol Res. 2017; article ID 6804678, 2017:1–11.

    Google Scholar 

  321. Starzl TE, Barker C. The origin of clinical organ transplantation revisited. JAMA. 2009;301(19):2041–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nida Siddiqi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siddiqi, N., Campbell, A. (2021). Post-transplant Medication Challenges. In: Twombley, K.E. (eds) Challenges in Pediatric Kidney Transplantation . Springer, Cham. https://doi.org/10.1007/978-3-030-74783-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74783-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74782-4

  • Online ISBN: 978-3-030-74783-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics