Skip to main content

Metabolomic Approaches for Apple Fruit Quality Improvement

  • Chapter
  • First Online:
The Apple Genome

Abstract

Knowledge of plant metabolism is fundamental for understanding mechanisms involved in plant growth and development, as well as those related to plant responses to various abiotic and biotic stresses. Metabolomics is a scientific field that provides valuable information and contributes to our understanding of the biology of any organism, such as plants, by unravelling the metabolic profile of an organism. Essentially, metabolomics is a key analytical tool useful to study plant systems and it has already contributed to our understanding of a number of different biological processes. This valuable tool has become even more important and useful with the development of high-throughput metabolomic technologies. These tools have allowed for our global understanding of functional outcomes of metabolites in apples, including those associated with fruit quality traits. Therefore, as the amount of metabolomics data has increased, public databases have evolved in order to collect and catalog these data to aid in exploiting the fundamental knowledge of these metabolite datasets in order to unravel metabolic pathways. In this chapter, we will explore the global value of metabolomics, provide an overview of analytical tools that are commonly used in metabolic profiling, as well as assess their values in developing a better understanding of apple fruit quality traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulra’uf LB, Tan GH (2015) Chemometric approach to the optimization of HS-SPME/GC–MS for the determination of multiclass pesticide residues in fruits and vegetables. Food Chem 177:267–273

    Google Scholar 

  • Adebo OA, Oyeyinka SA, Adebiyi JA, Feng X, Wilkin JD, Kewuyemi YO, Abrahams AM, Tugizimana F (2020) Application of gas chromatography–mass spectrometry (GC-MS)-based metabolomics for the study of fermented cereal and legume foods: A review. Int J Food Sci Technol. https://doi.org/10.1111/ijfs.14794

    Article  Google Scholar 

  • Alseekh S, Fernie AR (2018) Metabolomics 20 years on: what have we learned and what hurdles remain? Plant J 94:933–942

    Article  CAS  PubMed  Google Scholar 

  • Aprea E, Gika H, Carlin S, Theodoridis G, Vrhovsek U, Mattivi F (2011) Metabolite profiling on apple volatile content based on solid phase microextraction and gas-chromatography time of flight mass spectrometry. J Chromatogr A 1218(28):4517–4524

    Article  CAS  PubMed  Google Scholar 

  • Aprea E, Corollaro ML, Betta E, Endrizzi I, Demattè ML, Biasioli F, Gasperi F (2012) Sensory and instrumental profiling of 18 apple cultivars to investigate the relation between perceived quality and odour and flavour. Food Res Int 49(2):677–686

    Article  CAS  Google Scholar 

  • Ara T, Enomoto M, Arita M, Ikeda C, Kera K, Yamada M, Nishioka T, Ikeda T, Nihei Y, Shibata D, Kanaya S, Sakurai N (2015) Metabolonote: a wiki-based database for managing hierarchical metadata of metabolome analyses. Front Bioeng Biotechnol 3:38. https://doi.org/10.3389/fbioe.2015.00038

    Article  PubMed  PubMed Central  Google Scholar 

  • Arbulu M, Sampedro MC, Sanchez-Ortega A, Gómez-Caballero A, Unceta N, Goicolea MA, Barrio RJ (2013) Characterisation of the flavor profile from Graciano Vitis vinifera wine variety by a novel dual stir bar sorptive extraction methodology coupled to thermal desorption and gas chromatography–mass spectrometry. Anal Chim Acta 777:41–48

    Article  CAS  PubMed  Google Scholar 

  • Bais P, Moon-Quanbeck, SM, Nikolau BJ, Dickerson JA (2011) Plantmetabolomics.org: mass spectrometry-based Arabidopsis metabolomics database and tools update. Nucleic Acids Res 40:D1216–D1220

    Google Scholar 

  • Bais P, Moon SM, He K, Leitao R, Dreher K, Walk T, Sucaet Y, Barkan L, Wohlgemuth G, Roth MR, Wurtele ES, Dixon P, Fiehn O, Lange BM, Shulaev V, Sumner LW, Welti R, Nikolau BJ, Rhee SY, Dickerson JA (2010) PlantMetabolomics.org: a web portal for plant metabolomics experiments. Plant Physiol 152:1807–1816

    Article  CAS  PubMed  Google Scholar 

  • Bartels B, Svatoš A (2015) Spatially resolved in vivoplant metabolomics by laser ablation-based mass spectrometry imaging (MSI) techniques: LDI-MSI and LAESI. Front Plant Sci 6:471. https://doi.org/10.3389/fpls.2015.00471

    Article  PubMed  PubMed Central  Google Scholar 

  • Beale DJ, Pinu FR, Kouremenos KA, Poojary MM, Narayana VK, Boughton BA, Kanojia K, Dayalan S, Jones OAH, Dias DA (2018) Review of recent developments in GC–MS approaches to metabolomics-based research. Metabolomics 14(11):152. https://doi.org/10.1007/s11306-018-1449-2

    Article  CAS  PubMed  Google Scholar 

  • Bean HD, Dimandja JMD, Hill JE (2012) Bacterial volatile discovery using solid phase microextraction and comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. J Chromatogr B 901:41–46

    Article  CAS  Google Scholar 

  • Bekele EA, Beshir WF, Hertog M, Nicolai BM, Geeraerd AH (2015) Metabolic profiling reveals ethylene mediated metabolic changes and a coordinated adaptive mechanism of ‘Jonagold’ apple to low oxygen stress. Physiol Plant 155:232–247. https://doi.org/10.1111/ppl.12351

    Article  CAS  PubMed  Google Scholar 

  • Bekele EA, Ampofo-Asiama J, Alis RR, Hertog M, Nicolai BM, Geeraerd AH (2016) Dynamics of metabolic adaptation during initiation of controlled atmosphere storage of ‘Jonagold’ apple: effects of storage gas concentrations and conditioning. Postharv Biol Technol 117:9–20. https://doi.org/10.1016/j.postharvbio.2016.02.003

    Article  CAS  Google Scholar 

  • Bernini P, Bertini I, Luchinat C, Nincheri P, Staderini S, Turano P (2011) Standard operating procedures for pre-analytical handling of blood and urine for metabolomic studies and biobanks. J Biomol NMR 49(3–4):231–243. https://doi.org/10.1007/s10858-011-9489-1

    Article  CAS  PubMed  Google Scholar 

  • Beshir WF, Mbong V, Hertog ML, Geeraerd AH, Van den Ende W, Nicolaï BM (2017) Dynamic labeling reveals temporal changes in carbon re-allocation within the central metabolism of developing apple fruit. Front Plant Sci 8:1785. https://doi.org/10.3389/fpls.2017.01785

    Article  PubMed  Google Scholar 

  • Beshir WF, Tohge T, Watanabe M, Hertog MLATM, Hoefgen R, Fernie AR, Nicolaï BM (2019) Non-aqueous fractionation revealed changing subcellular metabolite distribution during apple fruit development. Hortic Res 6:98. https://doi.org/10.1038/s41438-019-0178-7

    Article  CAS  PubMed  Google Scholar 

  • Both V, Brackmann A, Thewes FR, de Freitas Ferreira D, Wagner R (2014) Effect of storage under extremely low oxygen on the volatile composition of ‘Royal Gala’ apples. Food Chem 156:50–57

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw A (2006) Unravelling phenotypic plasticity – why should we bother? New Phytol 170: 644-648

    Google Scholar 

  • Branković M, Anđelković D, Kocić H, Kocić G (2019) Assessment of GC–MS response of selected pesticides in apple matrices related to matrix concentration. J Environ Sci Health B 54(5):376–386

    Article  PubMed  CAS  Google Scholar 

  • Brizzolara S, Santucci C, Tenori L, Hertog M, Nicolai B, Stürz S, Zanella A, Tonutti P (2017) A metabolomics approach to elucidate apple fruit responses to static and dynamic controlled atmosphere storage. Postharv Biol Technol 127:76–87

    Article  CAS  Google Scholar 

  • Brizzolara S, Hertog M, Tosetti R, Nicolai B, Tonutti P (2018) Metabolic responses to low temperature of three peach fruit cultivars differently sensitive to cold storage. Front Plant Sci 9:706. https://doi.org/10.3389/fpls.2018.00706

    Article  PubMed  PubMed Central  Google Scholar 

  • Brizzolara S, Cukrov D, Mercadini M, Martinelli F, Ruperti B, Tonutti P (2019) Short-term responses of apple fruit to partial reoxygenation during extreme hypoxic storage conditions. J Agric Food Chem 67:4754–4763. https://doi.org/10.1021/acs.jafc.9b00036

    Article  CAS  PubMed  Google Scholar 

  • Brizzolara S, Manganaris GA, Fotopoulos V, Watkins CB, Tonutti P (2020) Primary metabolism in fresh fruits during storage. Front Plant Sci 11:80. https://doi.org/10.3389/fpls.2020.00080

    Article  PubMed  PubMed Central  Google Scholar 

  • Brunetti C, George RM, Tattini M, Field K, Davey MP (2013) Metabolomics in plant environmental physiology. J Exp Bot 64:4011–4020. https://doi.org/10.1093/jxb/ert244

    Article  CAS  PubMed  Google Scholar 

  • Cacciatore S, Hu X, Viertler C, Kap M, Bernhardt GA, Mischinger H-J, Riegman P, Zatloukal K, Luchinat C, Turano P (2013) Effects of intra- and post-operative ischemia on the metabolic profile of clinical liver tissue specimens monitored by NMR. J Proteome Res 12(12):5723–5729. https://doi.org/10.1021/pr400702d

    Article  CAS  PubMed  Google Scholar 

  • Calabrò A, Gralka E, Luchinat C, Saccenti E, Tenori L (2014) A metabolomic perspective on coeliac disease. Autoimmune Dis 2014:1–13. https://doi.org/10.1155/2014/756138

    Article  CAS  Google Scholar 

  • Carraturo F, Libralato G, Esposito R, Galdiero E, Aliberti F, Amoresano A, Fontanarosa C, Trifuoggi M, Guida M (2020) Metabolomic profiling of food matrices: Preliminary identification of potential markers of microbial contamination. J Food Sci 85(10):3467–3477

    Article  CAS  PubMed  Google Scholar 

  • Caruso M, Galgano F, Castiglione Morelli MA, Viggiani L, Lencioni L, Giussani B, Favati F (2012) Chemical profile of white wines produced from ‘Greco Bianco’ grape variety in different Italian areas by Nuclear Magnetic Resonance (NMR) and conventional physicochemical analyses. J Agric Food Chem 60(1):7–15. https://doi.org/10.1021/jf204289u

    Article  CAS  PubMed  Google Scholar 

  • Carroll AJ, Badger MR, Harvey Millar A (2010) The MetabolomeExpress Project: enabling web-based processing, analysis and transparent dissemination of GC/MS metabolomics datasets. BMC Bioinform 11:376. https://doi.org/10.1186/1471-2105-11-376

    Article  CAS  Google Scholar 

  • Cebulj A, Cunja V, Mikulic-Petkovsek M, Veberic R (2017) Importance of metabolite distribution in apple fruit. Sci Hortic 214:214–220. https://doi.org/10.1016/j.scienta.2016.11.048

    Article  CAS  Google Scholar 

  • Cellini A, Biondi E, Blasioli S, Rocchi L, Farneti B, Braschi I, Savioli S, Rodriguez-Estrada MT, Biasioli F, Spinelli F (2016) Early detection of bacterial diseases in apple plants by analysis of volatile organic compounds profiles and use of electronic nose. Ann Appl Biol 168(3):409–420

    Article  CAS  Google Scholar 

  • Cevallos-Cevallos JM, Danyluk MD, Reyes-De-Corcuera JI (2011) GC-MS based metabolomics for rapid simultaneous detection of Escherichia coli O157:H7, Salmonella typhimurium, Salmonella muenchen, and Salmonella hartford in ground beef and chicken. J Food Sci 76:M238–M246

    Article  CAS  PubMed  Google Scholar 

  • Cheng LL, Chang IW, Louis DN, Gonzalez RG (1998) Correlation of high-resolution magic angle spinning proton magnetic resonance spectroscopy with histopathology of intact human brain tumor specimens. Cancer Res 58:1825–1832

    CAS  PubMed  Google Scholar 

  • Chitarrini G, Dordevic N, Guerra W, Robatscher P, Lozano L (2020) Aroma investigation of new and standard apple varieties grown at two altitudes using gas chromatography-mass spectrometry combined with sensory analysis. Molecules 25(13):3007. https://doi.org/10.3390/molecules25133007

    Article  CAS  PubMed Central  Google Scholar 

  • Claridge TDW (2008) High-resolution NMR techniques in organic chemistry. Elsevier Publications, The Netherlands

    Google Scholar 

  • Cordero C, Liberto E, Bicchi C, Rubiolo P, Schieberle P, Reichenbach SE, Tao Q (2010) Profiling food volatiles by comprehensive two-dimensional gas chromatography coupled with mass spectrometry: Advanced fingerprinting approaches for comparative analysis of the volatile fraction of roasted hazelnuts (Corylus avellana L.) from different origins. J Chromatogr A 1217:5848–5858

    Article  CAS  PubMed  Google Scholar 

  • Cubero-Leon E, Peñalver R, Maquet A (2014) Review on metabolomics for food authentication. Food Res Int 60:95–107

    Google Scholar 

  • Cukrov D, Zermiani M, Brizzolara S, Cestaro A, Licausi F, Luchinat C, Santucci C, Tenori L, Van Veen H, Zuccolo A, Ruperti B, Tonutti P (2016) Extreme hypoxic conditions induce selective molecular responses and metabolic reset in detached apple fruit. Front Plant Sci 7:146. https://doi.org/10.3389/fpls.2016.00146

    Article  PubMed  PubMed Central  Google Scholar 

  • Cunha SC, Faria MA, Fernandes JO (2009) Determination of patulin in apple and quince products by GC–MS using 13C5–7 patulin as internal standard. Food Chem 115(1):352–359

    Article  CAS  Google Scholar 

  • Cuthbertson D, Andrews PK, Reganold JP, Davies NM, Lange BM (2012) Utility of metabolomics toward assessing the metabolic basis of quality traits in apple fruit with an emphasis on antioxidants. J Agric Food Chem 60:8552–8560. https://doi.org/10.1021/jf3031088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Paepe D, Valkenborg D, Noten B, Servaes K, Diels L, de Loose M, Van Droogenbroeck B, Voorspoels S (2015) Variability of the phenolic profiles in the fruits from old, recent and new apple cultivars cultivated in Belgium. Metabolomics 11:739–752. https://doi.org/10.1007/s11306-014-0730-2

    Article  CAS  Google Scholar 

  • de Souza LP, Naake T, Tohge T, Fernie AR (2017) From chromatogram to analyte to metabolite. How to pick horses for courses from the massive web resources for mass spectral plant metabolomics. Giga Sci 6:1–20. https://doi.org/10.1093/gigascience/gix037

    Article  CAS  Google Scholar 

  • Del Campo G, Santos JI, Berregi I, Munduate A (2005) Differentiation of Basque cider apple juices from different cultivars by means of chemometric techniques. Food Control 16(6):549–555. https://doi.org/10.1016/j.foodcont.2004.05.013

    Article  CAS  Google Scholar 

  • Del Campo G, Santos JI, Iturriza N, Berregi I, Munduate A (2006) Use of the 1H Nuclear Magnetic Resonance spectra signals from polyphenols and acids for chemometric characterization of cider apple juices. J Agric Food Chem 54(8):3095–3100. https://doi.org/10.1021/jf051818c

    Article  CAS  PubMed  Google Scholar 

  • Du G, Xiao Y, Yang HR, Wang L, Song YL, Wang YT (2012) Rapid determination of pesticide residues in herbs using selective pressurized liquid extraction and fast gas chromatography coupled with mass spectrometry. J Sep Sci 35:1922–1932

    Article  CAS  PubMed  Google Scholar 

  • Duan S, Wu Y, Fu R, Wang L, Chen Y, Xu W, Zhang C, Ma C, Shi J, Wang S (2019) Comparative metabolic profiling of grape skin tissue along grapevine berry developmental stages reveals systematic influences of root restriction on skin metabolome. Int J Mol Sci 20(3):534. https://doi.org/10.3390/ijms20030534

    Article  CAS  PubMed Central  Google Scholar 

  • Dunemann F, Ulrich D, Boudichevskaia A, Grafe C, Weber WE (2009) QTL mapping of aroma compounds analysed by headspace solid-phase microextraction gas chromatography in the apple progeny ‘Discovery’ × ‘Prima’. Mol Breed 23(3):501–521

    Article  CAS  Google Scholar 

  • El Hawari K, Mokh S, Al Iskandarani M, Halloum W, Jaber F (2019) Pesticide residues in Lebanese apples and health risk assessment. Food Addit Contamin B 12(2):81–89

    Article  CAS  Google Scholar 

  • Eisenmann P, Ehlers M, Weinert CH, Tzvetkova P, Silber M, Rist MJ, Luy B, Muhle-Goll C (2016) Untargeted NMR spectroscopic analysis of the metabolic variety of new apple cultivars. Metabolites 6(3):29. https://doi.org/10.3390/metabo6030029

    Article  CAS  PubMed Central  Google Scholar 

  • Emwas A-H, Roy R, McKay RT, Tenori L, Saccenti E, Nagana Gowda GA, Raftery D, Alahmari F, Jaremko L, Jaremko M, Wishart DS (2019) NMR spectroscopy for metabolomics research. Metabolites 9(7):123. https://doi.org/10.3390/metabo9070123

    Article  CAS  PubMed Central  Google Scholar 

  • Espino-Díaz M, Sepúlveda DR, González-Aguilar G, Olivas GI (2016) Biochemistry of apple aroma: a review. Food Technol Biotech 54(4):375–394

    Article  CAS  Google Scholar 

  • Etalo DW, de Vos RC, Joosten MH, Hall RD (2015) Spatially resolved plant metabolomics: some potentials and limitations of laser-ablation electrospray ionization mass spectrometry metabolite imaging. Plant Physiol 169:1424–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezhilan M, Nesakumar N, Babu KJ, Srinandan CS, Rayappan JBB (2018) An electronic nose for royal delicious apple quality assessment–a tri-layer approach. Food Res Int 109:44–51

    Article  CAS  PubMed  Google Scholar 

  • Farag MA, Mohsen M, Heinke R, Wessjohann LA (2014) Metabolomic fingerprints of 21 date palm fruit varieties from Egypt using UPLC/PDA/ESI–qTOF-MS and GC–MS analyzed by chemometrics. Food Res Int 64:218–226

    Article  CAS  PubMed  Google Scholar 

  • Farcuh M, Rivero RM, Sadka A, Blumwald E (2018) Ethylene regulation of sugar metabolism in climacteric and non-climacteric plums. Postharv Biol Technol 139:20–30

    Article  CAS  Google Scholar 

  • Farneti B, Khomenko I, Cappellin L, Ting V, Romano A, Biasioli F, Costa G, Costa F (2015) Comprehensive VOC profiling of an apple germplasm collection by PTR-ToF-MS. Metabolomics 11:838–850. https://doi.org/10.1007/s11306-014-0744-9

    Article  CAS  Google Scholar 

  • Fernandes AR, Rose M, Mortimer D, Carr M, Panton S, Smith F (2011) Mixed brominated/chlorinated dibenzo-p-dioxins, dibenzofurans and biphenyls: Simultaneous congener-selective determination in food. J Chromatogr A 185(1218):9279–9287

    Article  CAS  Google Scholar 

  • Fernie AR, Stitt M (2012) On the discordance of metabolomics with proteomics and transcriptomics: coping with increasing complexity in logic, chemistry, and network interactions. Plant Physiol 158:1139–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferry-Dumazet H, Gil L, Deborde C, Moing A, Bernillon S, Rolin D, Nikolski M, de Daruvar A, Jacob D (2011) MeRy-B: a web knowledgebase for the storage, visualization, analysis and annotation of plant NMR metabolomic profiles. BMC Plant Biol 11:104. https://doi.org/10.1186/1471-2229-11-104

    Article  PubMed  Google Scholar 

  • Frainay C, Schymanski E, Neumann S, Merlet B, Salek R, Jourdan F, Yanes O (2018) Mind the gap: mapping mass spectral databases in genome-scale metabolic networks reveals poorly covered areas. Metabolites 8:51. https://doi.org/10.3390/metabo8030051

    Article  CAS  Google Scholar 

  • Francini A, Sebastiani L (2013) Phenolic compounds in apple (Malus x domestica Borkh.): compounds characterization and stability during postharvest and after processing. Antioxidants 2:81–193. https://doi.org/10.3390/antiox2030181

    Article  CAS  Google Scholar 

  • Fuhrmann E, Grosch W (2002) Character impact odorants of the apple cultivars Elstar and Cox Orange. Nahrung/Food 46(3):187–193

    Article  CAS  PubMed  Google Scholar 

  • Gapper NE, Hertog MLATM, Lee J, Buchanan DA, Leisso RS, Fei Z, Qu G, Giovannoni JJ, Johnston JW, Schaffer RJ, Nicolaï BM, Mattheis JP, Watkins CB, Rudell DR (2017) Delayed response to cold stress is characterized by successive metabolic shifts culminating in apple fruit peel necrosis. BMC Plant Biol 17(1):77. https://doi.org/10.1186/s12870-017-1030-6

    Article  CAS  PubMed  Google Scholar 

  • Garrod S, Humpfer E, Spraul M, Connor SC, Polley S, Connelly J, Lindon JC, Nicholson JK, Holmes E (1999) High-resolution magic angle spinning 1H NMR spectroscopic studies on intact rat renal cortex and medulla. Magn Reson Med 41(6):1108–1118. https://doi.org/10.1002/(SICI)1522-2594(199906)41:6

    Article  CAS  PubMed  Google Scholar 

  • Gauthier L, Atanasova-Penichon V, Chéreau S, Richard-Forget F (2015) Metabolomics to decipher the chemical defense of cereals against Fusarium graminearum and deoxynivalenol accumulation. Int J Mol Sci 16:24839–24872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghini V, Quaglio D, Luchinat C, Turano P (2019) NMR for sample quality assessment in metabolomics. N Biotechnol 52:25–34. https://doi.org/10.1016/j.nbt.2019.04.004

    Article  CAS  PubMed  Google Scholar 

  • Giannetti V, Mariani MB, Mannino P, Marini F (2017) Volatile fraction analysis by HS-SPME/GC-MS and chemometric modeling for traceability of apples cultivated in the Northeast Italy. Food Control 78:215–221

    Article  CAS  Google Scholar 

  • Girelli CR, Del Coco L, Zelasco S, Salimonti A, Conforti FL, Biagianti A, Barbini D, Fanizzi FP (2018) Traceability of “Tuscan PGI” extra virgin olive oils by 1H NMR metabolic profiles collection and analysis. Metabolites 8(4):60. https://doi.org/10.3390/metabo8040060

    Article  CAS  Google Scholar 

  • Gomes NGM, Pereira DM, Valentão P, Andrade PB (2018) Hybrid MS/NMR methods on the prioritization of natural products: applications in drug discovery. J Pharm Biomed Anal 147:234–249

    Article  CAS  PubMed  Google Scholar 

  • Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB (2004) Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol 22:245–252

    Article  CAS  PubMed  Google Scholar 

  • Gorzolka K, Lissel M, Kessler N, Loch-Ahring S, Niehaus K (2012) Metabolite fingerprinting of barley whole seeds, endosperms, and embryos during industrial malting. J Biotechnol 159:177–187

    Article  CAS  PubMed  Google Scholar 

  • Hall R, Beale M, Fiehn O, Hardy N, Sumner L, Bino R (2002) Plant metabolomics: the missing link in functional genomics strategies. Plant Cell 14:1437–1440

    Article  CAS  PubMed  Google Scholar 

  • Hatoum D, Annaratone C, Hertog MLATM, Geeraerd AH, Nicolai BM (2014) Targeted metabolomics study of ‘Braeburn’ apples during long-term storage. Postharv Biol Technol 96:33–41. https://doi.org/10.1016/j.postharvbio.2014.05.004

    Article  CAS  Google Scholar 

  • Hatoum D, Hertog MLATM, Geeraerd AH, Nicolai BM (2016) Effect of browning related pre- and post-harvest factors on the ‘Braeburn’ apple metabolome during CA storage. Postharv Biol Technol 111:106–116. https://doi.org/10.1016/j.postharvbio.2015.08.004

    Article  CAS  Google Scholar 

  • Haug K, Salek RM, Conesa P, Hastings J, de Matos P, Rijnbeek M, Mahendraker T, Williams M, Neumann S, Rocca-Serra P, Maguire E, González-Beltrán A, Sansone SA, Griffin JL, Steinbeck C (2013) MetaboLights — an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucl Acids Res 41:D781–D786

    Article  CAS  PubMed  Google Scholar 

  • Hong J, Yang L, Zhang D, Shi J (2016) Plant metabolomics: An indispensable system biology tool for plant science. Int J Mol Sci 17:767. https://doi.org/10.3390/ijms1706076

    Article  Google Scholar 

  • Humston EM, Knowles JD, McShea A, Synovec RE (2010) Quantitative assessment of moisture damage for cacao bean quality using two- dimensional gas chromatography combined with time-of-flight mass spectrometry and chemometrics. J Chromatogr A 1217:1963–1970

    Article  CAS  PubMed  Google Scholar 

  • Johnson SR, Lange BM (2015) Open-access metabolomics databases for natural product research: present capabilities and future potential. Front Bioeng Biotechnol 3:22. https://doi.org/10.3389/fbioe.2015.00022

    Article  PubMed  Google Scholar 

  • Jorge TF, Mata AT, António C (2016a) Mass spectrometry as a quantitative tool in plant metabolomics. Philos Trans R Soc A 374:20150370. https://doi.org/10.1098/rsta.2015.0370

    Article  CAS  Google Scholar 

  • Jorge TF, Rodrigues JA, Caldana C, Schmidt R, van Dongen JT, Thomas-Oates J, António C (2016b) Mass spectrometry-based plant metabolomics: metabolite responses to abiotic stress. Mass Spectrom Rev 35:620–649. https://doi.org/10.1002/mas.21449

    Article  CAS  PubMed  Google Scholar 

  • Kalachova K, Pulkrabova J, Cajka T, Drabova L, Hajslova J (2012) Implementation of comprehensive two-dimensional GC-time-of-flight-MS for the simultaneous determination of halogenated contaminants and polycyclic aromatic hydrocarbons in fish. Anal Bioanal Chem 403:2813–2824

    Article  CAS  PubMed  Google Scholar 

  • Kebede B, Ting V, Eyres G, Oey I (2020) Volatile changes during storage of shelf stable apple juice: Integrating GC-MS fingerprinting and chemometrics. Foods 9:165. https://doi.org/10.3390/foods9020165

    Article  CAS  Google Scholar 

  • Kessler N, Walter F, Persicke M, Albaum SP, Kalinowski J, Goesmann A, Niehaus K, Nattkemper TW (2014) Allocator: an interactive web platform for the analysis of metabolomic LC-ESI-MS datasets, enabling semi-automated, user-revised compound annotation and mass isotopomer ratio analysis. PLoS ONE 9: https://doi.org/10.1371/journal.pone.0113909

    Article  CAS  PubMed  Google Scholar 

  • Khan SA, Chibon PY, de Vos RC, Schipper BA, Walraven E, Beekwilder J, van Dijk T, Finkers R, Visser RG, van de Weg EW, Bovy A, Cestaro A, Velasco R, Jacobsen E, Schouten HJ (2012) Genetic analysis of metabolites in apple fruits indicates an mQTL hotspot for phenolic compounds on linkage group 16. J Exp Bot 63(8):2895–2908. https://doi.org/10.1093/jxb/err464

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Kim YJ, Kwon YS, Seo JS (2016) Development of multi-residue analysis of 320 pesticides in apple and rice using LC-MS/MS and GC-MS/MS. Kor J Pest Sci 20(2):104–127

    Google Scholar 

  • Kim I, Ku KH, Jeong MC, Kim SS, Mitchell AE, Lee J (2019a) A comparison of the chemical composition and antioxidant activity of several new early- to mid-season apple cultivars for a warmer climate with traditional cultivars. J Sci Food Agric 99:4712–4724

    Article  CAS  PubMed  Google Scholar 

  • Kim I, Ku KH, Jeong MC, Kim SS, Mitchell AE, Lee J (2019b) A comparison of the chemical composition and antioxidant activity of several new early- to mid-season apple cultivars for a warmer climate with traditional cultivars. J Sci Food Agric 99:4712–4724

    Article  CAS  PubMed  Google Scholar 

  • Kim I, Ku K-H, Jeong M-C, Kwon S-I, Lee J (2020) Metabolite profiling and antioxidant activity of 10 new early- to mid-season apple cultivars and 14 traditional cultivars. Antioxidants (Basel) 9:443. https://doi.org/10.3390/antiox9050443

    Article  CAS  Google Scholar 

  • Kleessen S, Nikoloski Z (2012) Dynamic regulatory on/off minimization for biological systems under internal temporal perturbations. BMC Syst Biol 6:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Korban SS, Swiader JM (1984) Genetic and nutritional status in bitter pit-resistant and -susceptible apple seedlings. J Am Soc Hortic Sci 109:428–432

    Article  CAS  Google Scholar 

  • Kueger S, Steinhauser D, Willmitzer L, Giavalisco P (2012) High-resolution plant metabolomics: from mass spectral features to metabolites and from whole-cell analysis to subcellular metabolite distributions. Plant J 70:39–50

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Bohra A, Pandey AK, Pandey MK, Kumar A (2017) Metabolomics for plant improvement: status and prospects. Front Plant Sci 8:1302. https://doi.org/10.3389/fpls.2017.01302

    Article  PubMed  PubMed Central  Google Scholar 

  • Kusano M, Tohge T, Fukushima A, Kobayashi M, Hayashi N, Otsuki H, Kondou Y, Goto H, Kawashima M, Matsuda F, Niida R, Matsui M, Saito K, Fernie AR (2011) Metabolomics reveals comprehensive reprogramming involving two independent metabolic responses of Arabidopsis to UV-B light. Plant J 67:354–369

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Rudell DR, Davies PJ, Watkins CB (2011) Metabolic changes in 1-methylcyclopropene (1-MCP)-treated “Empire” apple fruit during storage. Metabolomics 8:742–753

    Google Scholar 

  • Lee J, Rudell DR, Davies PJ, Watkins CB (2012a) Metabolic changes in 1-methylcyclopropene (1-MCP)-treated ‘Empire’ apple fruit during storage. Metabolomics 8(4):742–753. https://doi.org/10.1007/s11306-011-0373-5

    Article  CAS  Google Scholar 

  • Lee J, Mattheis JP, Rudell DR (2012b) Antioxidant treatment alters metabolism associated with internal browning in ‘Braeburn’ apples during controlled atmosphere storage. Postharv Biol Technol 68:32–42

    Article  CAS  Google Scholar 

  • Lee YY, Jeong MC, Jang HW (2017) Determination of volatile compounds by headspace-solid phase microextraction-gas chromatography/mass spectrometry: quality evaluation of Fuji apple. Anal Sci Technol 30(2):68–74

    Article  CAS  Google Scholar 

  • Leisso RS, Buchanan DA, Lee J, Mattheis JP, Sater C, Hanrahan I, Watkins CB, Gapper N, Johnston JW, Schaffer RJ, Hertog M, Nicolai BM, Rudell DR (2015) Chilling-related cell damage of apple (Malus × domestica Borkh.) fruit cortical tissue impacts antioxidant, lipid and phenolic metabolism. Physiol Plant 153(2):204–220. https://doi.org/10.1111/ppl.12244

  • Leisso RS, Gapper NE, Mattheis JP, Sullivan NL, Watkins CB, Giovannoni JJ, Schaffer RJ, Johnston JW, Hanrahan I, Hertog MLATM, Nicolaï BM, Rudell DR (2016) Gene expression and metabolism preceding soft scald, a chilling injury of ‘Honeycrisp’ apple fruit. BMC Genomics 17(1):798. https://doi.org/10.1186/s12864-016-3019-1

    Article  CAS  PubMed  Google Scholar 

  • Li C, Schmidt NE, Gitaitis R (2011) Detection of onion postharvest diseases by analyses of headspace volatiles using a gas sensor array and GC-MS. LWT-Food Sci Technol 44:1019–1025

    Article  CAS  Google Scholar 

  • López-Ruiz R, Romero-González R, Frenich AG (2019) Metabolomics approaches for the determination of multiple contaminants in food. Curr Opin Food Sci 28:49–57

    Article  Google Scholar 

  • Lucht F, Rinken M, Haberlandt S (2020) Differentiation of volatile aroma components in organically and conventionally produced apples by stir bar sorptive extraction combined with gas chromatography and EI/CI TOF mass spectrometry. Int J Food Sci Technol. https://doi.org/10.1111/ijfs.14738

    Article  Google Scholar 

  • Ma P, Zhang Z, Zhou X, Yun Y, Liang Y, Lu H (2016) Feature extraction from resolution perspective for gas chromatography-mass spectrometry datasets. RSC Adv 6:113997–114004. https://doi.org/10.1039/C6RA17864B

    Article  CAS  Google Scholar 

  • Mannina L, D’Imperio M, Capitani D, Rezzi S, Guillou C, Mavromoustakos T, Vilchez MDM, Fernández AH, Thomas F, Aparicio R (2009) 1H NMR-based protocol for the detection of adulterations of refined olive oil with refined hazelnut oil. J Agric Food Chem 57(24):11550–11556. https://doi.org/10.1021/jf902426b

    Article  CAS  PubMed  Google Scholar 

  • Maoz I, De Rosso M, Kaplunov T, Vedova AD, Sela N, Flamini R, Lewinsohn E, Lichter A (2019) Metabolomic and transcriptomic changes underlying cold and anaerobic stresses after storage of table grapes. Sci Rep 9:2917. https://doi.org/10.1038/s41598-019-39253-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maragò E, Michelozzi M, Calamai L, Camangi F, Sebastiani L (2016) Antioxidant properties, sensory characteristics and volatile compounds profile of apple juices from ancient Tuscany (Italy) apple varieties. Eur J Hortic Sci 81:255–263

    Article  Google Scholar 

  • Masi E, Taiti C, Vignolini P, Petrucci AW, Giordani E, Heimler D, Romani A, Mancuso S (2017) Polyphenols and aromatic volatile compounds in biodynamic and conventional ‘Golden Delicious’ apples (Malus domestica Bork.). Euro Food Res Technol 243(9):1519–1531

    Google Scholar 

  • McGhie TK, Rowan DD (2012) Metabolomics for measuring phytochemicals, and assessing human and animal responses to phytochemicals in food science. Mol Nutr Food Res 56:147–158

    Article  CAS  PubMed  Google Scholar 

  • McQuilton P, Gonzalez‐Beltran A, Rocca‐Serra P, Thurston M, Lister A, Maguire E, Sansone SA (2016) BioSharing: curated and crowd‐sourced metadata standards, databases and data policies in the life sciences. Database (Oxford) 2016: baw075. https://doi.org/10.1093/database/baw075

  • Medina S, Perestrelo R, Santos R, Pereira R, Câmara JS (2019) Differential volatile organic compounds signatures of apple juices from Madeira Island according to variety and geographical origin. Microchem J 150: https://doi.org/10.1016/J.MICROC.2019.104094

    Article  CAS  Google Scholar 

  • Mehinagic E, Royer G, Symoneaux R, Jourjon F, Prost C (2006) Characterization of odor-active volatiles in apples: influence of cultivars and maturity stage. J Agric Food Chem 54(7):2678–2687

    Article  CAS  PubMed  Google Scholar 

  • Meoni G, Tenori L, Luchinat C (2020) Nuclear magnetic resonance-based metabolomic comparison of breast milk and organic and traditional formula milk brands for infants and toddlers. OMICS: J Integr Biol 24(7):424–436. https://doi.org/10.1089/omi.2019.0125

  • Merkle S, Kleeberg KK, Fritsche J (2015) Recent developments and applications of solid phase microextraction (SPME) in food and environmental analysis—a review. Chromatograph 2:293–381

    Article  CAS  Google Scholar 

  • Misra BB, van der Hooft JJ (2016) Updates in metabolomics tools and resources: 2014–2015. Electrophoresis 37:86–110. https://doi.org/10.1002/elps.201500417

    Article  CAS  PubMed  Google Scholar 

  • Misra VV, Assmann SM, Chen S (2014) Plant single-cell and single-cell type metabolomics. Trends Plant Sci 19:637–646

    Article  CAS  PubMed  Google Scholar 

  • Moing A, Pétriacq P, Osorio S (2020) Fruit metabolism and metabolomics, vol 10, p 230. https://doi.org/10.3390/metabo10060230

  • Nicolini G, Roman T, Carlin S, Malacarne M, Nardin T, Bertoldi D, Larcher R (2018) Characterisation of single-variety still ciders produced with dessert apples in the Italian Alps. J Inst Brew 124:457–466

    Article  CAS  Google Scholar 

  • Pan Z, Raftery D (2007) Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. Anal Bioanal Chem 387(2):525–527. https://doi.org/10.1007/s00216-006-0687-8

    Article  CAS  PubMed  Google Scholar 

  • Pereira GE, Gaudillere J-P, Van Leeuwen C, Hilbert G, Lavialle O, Maucourt M, Deborde C, Moing A, Rolin D (2005) 1H NMR and chemometrics to characterize mature grape berries in four wine-growing areas in Bordeaux, France. J Agric Food Chem 53(16):6382–6389. https://doi.org/10.1021/jf058058q

    Article  CAS  PubMed  Google Scholar 

  • Perestrelo R, Silva CL, Silva P, Medina S, Pereira R, Camara JS (2019) Untargeted fingerprinting of cider volatiles from different geographical regions by HS-SPME/GC-MS. Microchem J 148:643–651

    Article  CAS  Google Scholar 

  • Pinu FR (2016) Early detection of food pathogens and food spoilage microorganisms: application of metabolomics. Trends Food Sci Technol 54:213–215

    Article  CAS  Google Scholar 

  • Risticevic S, DeEll JR, Pawliszyn J (2012) Solid phase microextraction coupled with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry for high-resolution metabolite profiling in apples: implementation of structured separations for optimization of sample preparation procedure in complex samples. J Chromatogr A 1251:208–218

    Article  CAS  PubMed  Google Scholar 

  • Rivas-Ubach A, Sardans J, Perez-Trujillo M, Estiarte M, Penuelas J (2012) Strong relationship between elemental stoichiometry and metabolome in plants. Proc Natl Acad Sci USA 109:4181–4186

    Article  CAS  PubMed  Google Scholar 

  • Roberts G, Spadafora ND (2020) Analysis of apple flavours: the use of volatile organic compounds to address cultivar differences and the correlation between consumer appreciation and aroma profiling. J Food Qual 2020. Article ID 8497259. https://doi.org/10.1155/2020/8497259

  • Rodrigues AM, Miguel C, Chaves I, António C (2019) Mass spectrometry-based forest tree metabolomics. Mass Spectrom Rev 40(2):126–157. https://doi.org/10.1002/mas.21603

    Article  CAS  PubMed  Google Scholar 

  • Rongai D, Sabatini N, Del Coco L, Perri E, Del Re P, Simone N, Marchegiani D, Fanizzi FP (2017) 1H NMR and multivariate analysis for geographic characterization of commercial extra virgin olive oil: a possible correlation with climate data. Foods 6(11):96. https://doi.org/10.3390/foods6110096

    Article  CAS  Google Scholar 

  • Rosend J, Kuldjärv R, Rosenvald S, Paalme T (2019) The effects of apple variety, ripening stage, and yeast strain on the volatile composition of apple cider. Heliyon 5: https://doi.org/10.1016/j.heliyon.2019.e01953

    Article  PubMed  Google Scholar 

  • Rudell DR, Mattheis JP (2009) Superficial scald development and related metabolism is modified by postharvest light irradiation. Postharv Biol Technol 51:174–182

    Article  CAS  Google Scholar 

  • Rudell DR, Mattheis JP, Hertog MLATM (2009) Metabolomic change precedes apple superficial scald symptoms. J Agric Food Chem 57:8459–8466

    Article  CAS  PubMed  Google Scholar 

  • Sacchi R, Mannina L, Fiordiponti P, Barone P, Paolillo L, Patumi M, Segre A (1998) Characterization of Italian extra virgin olive oils using 1H-NMR spectroscopy. J Agric Food Chem 46(10):3947–3951. https://doi.org/10.1021/jf970666l

    Article  CAS  Google Scholar 

  • Santucci C, Brizzolara S, Tenori L (2015a) Comparison of frozen and fresh apple pulp for NMR-based metabolomic analysis. Food Anal Methods 8:2135–2140. https://doi.org/10.1007/s12161-015-0107-9

    Article  Google Scholar 

  • Santucci C, Tenori L, Luchinat C (2015b) NMR fingerprinting as a tool to evaluate post-harvest time-related changes of peaches, tomatoes and plums. Food Res Int 75:106–114. https://doi.org/10.1016/j.foodres.2015.05.046

    Article  CAS  PubMed  Google Scholar 

  • Schulz M, Seraglio SKT, Della Betta F, Nehring P, Valese AC, Daguer H, Gonzaga LV, Oliveira Costa AC, Fett R (2020) Determination of phenolic compounds in three edible ripening stages of yellow guava (Psidium cattleianum Sabine) after acidic hydrolysis by LC-MS/MS. Plant Foods Human Nutr 75(1):110–115

    Article  CAS  Google Scholar 

  • Seo M, Kim B, Baek S-Y (2015) An optimized method for the accurate determination of patulin in apple products by isotope dilution-liquid chromatography/mass spectrometry. Anal Bioanal Chem 18:5433–5442. https://doi.org/10.1007/s00216-015-8705-3

    Article  CAS  Google Scholar 

  • Soltis NE, Kliebenstein DJ (2015) Natural variation of plant metabolism: genetic mechanisms, interpretive caveats, and evolutionary and mechanistic insights. Plant Physiol 169:1456–1468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song J, Gardner BD, Holland JF, Beaudry RM (1997) Rapid analysis of volatile flavor compounds in apple fruit using SPME and GC/time-of-flight mass spectrometry. J Agric Food Chem 45(5):1801–1807

    Article  CAS  Google Scholar 

  • Song J, Forney CF, Jordan MA (2014) A method to detect diphenylamine contamination of apple fruit and storages using headspace solid phase micro-extraction and gas chromatography/mass spectroscopy. Food Chem 160:255–259

    Article  CAS  PubMed  Google Scholar 

  • Sousa A, Vareda J, Pereira R, Silva C, Câmara JS, Perestrelo R (2020) Geographical differentiation of apple ciders based on volatile fingerprint. Food Res Int 137: https://doi.org/10.1016/j.foodres.2020.109550

    Article  CAS  PubMed  Google Scholar 

  • Stall S, Yarmey L, Cutcher-Gershenfeld J, Hanson B, Lehnert K, Nosek B, Parsons M, Robinson E, Wyborn L (2019) Make scientific data FAIR. Nature 570:27–29

    Article  CAS  PubMed  Google Scholar 

  • Stevens C, Dise N, Mountford J, Gowing D (2004) Impact of nitrogen deposition on the species richness of grasslands. Science 303:1876–1879

    Article  CAS  PubMed  Google Scholar 

  • Sud M, Fahy E, Cotter D, Azam K, Vadivelu I, Burant C, Edison A, Fiehn O, Higashi R, Nair KS, Sumner S, Subramaniam S (2016) Metabolomics Workbench: an international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools. Nucl Acids Res 44:D463–D470

    Article  CAS  PubMed  Google Scholar 

  • Sumner LW, Lei Z, Nikolau BJ, Saito K (2015) Modern plant metabolomics: Advanced natural product gene discoveries, improved technologies, and future prospects. Nat Prod Rep 32:212–229

    Article  CAS  PubMed  Google Scholar 

  • Takis PG, Ghini V, Tenori L, Turano P, Luchinat C (2019) Uniqueness of the NMR approach to metabolomics. Trac-Trends Anal Chem 120: https://doi.org/10.1016/j.trac.2018.10.036

    Article  CAS  Google Scholar 

  • Tenori L, Santucci C, Meoni G, Morrocchi V, Matteucci G, Luchinat C (2018) NMR Metabolomic fingerprinting distinguishes milk from different farms. Food Res Int 113:131–139. https://doi.org/10.1016/j.foodres.2018.06.066

    Article  CAS  PubMed  Google Scholar 

  • Thewes FR, Brackmann A, de Oliveira Anese R, Bronzatto ES, Schultz EE, Wagner R (2017) Dynamic controlled atmosphere storage suppresses metabolism and enhances volatile concentrations of ‘Galaxy’ apple harvested at three maturity stages. Postharv Biol Technol 127:1–13

    Article  CAS  Google Scholar 

  • Tohge T, de Souza LP, Fernie AR (2014) Genome-enabled plant metabolomics. J Chromatogr 966:7–20

    CAS  Google Scholar 

  • Tohge T, Scossa F, Fernie AR (2015) Integrative approaches to enhance understanding of plant metabolic pathway structure and regulation. Plant Physiol 169:1499–1511

    Article  CAS  PubMed  Google Scholar 

  • Töpfer N, Seaver SMD, Aharoni A (2018) Integration of plant metabolomics data with metabolic networks: progresses and challenges. In: António C (ed) Plant metabolomics: methods in molecular biology 1778. Humana Press, New York, pp 297–310

    Chapter  Google Scholar 

  • Tomita S, Nemoto T, Matsuo Y, Shoji T, Tanaka F, Nakagawa H, Ono H, Kikuchi J, Ohnishi-Kameyama M, Sekiyama Y (2015) A NMR-based, non-targeted multistep metabolic profiling revealed l-rhamnitol as a metabolite that characterised apples from different geographic origins. Food Chem 174:163–172. https://doi.org/10.1016/j.foodchem.2014.11.028

    Article  CAS  PubMed  Google Scholar 

  • Tomlins A, Foxall PJD, Lindon JC, Lynch MJ, Spraul M, Everett JR (1998) High resolution magic angle spinning 1H nuclear magnetic resonance analysis of intact prostatic hyperplastic and tumour tissues. Anal Commun 35(3):113–115

    Article  CAS  Google Scholar 

  • Toubiana D, Fernie AR, Nikoloski Z, Fait A (2013) Network analysis: Tackling complex data to study plant metabolism. Trends Biotechnol 31:29–36

    Article  CAS  PubMed  Google Scholar 

  • Tranchida PQ, Mondello L (2012) Current-day employment of the micro-bore open-tubular capillary column in the gas chromatography field. J Chromatogr A 1261:23–36

    Article  CAS  PubMed  Google Scholar 

  • Tranchida PQ, Purcaro G, Dugo P, Mondello L (2011) Modulators for comprehensive two-dimensional gas chromatography. Trends Anal Chem 30:1437–1461

    Article  CAS  Google Scholar 

  • Tsao R, Yang R, Young JC, Zhu H (2003) Polyphenolic profiles in eight apple cultivars using high-performance liquid chromatography (HPLC). J Agric Food Chem 51:6347–6353

    Article  CAS  PubMed  Google Scholar 

  • Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, Kanazawa M, Jean VanderGheynst J, Fiehn O, Arita M (2015) MS-DIAL: Data independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods 12(6):523–526. https://doi.org/10.1038/nmeth.3393

  • Vallarino JG, de Abreu e Lima F, Soria C, Tong H, Pott DM, Willmitzer L, Fernie AR, Nikoloski Z, Osorio S (2018) Genetic diversity of strawberry germplasm using metabolomic biomarkers. Sci Rep 8:14386. https://doi.org/10.1038/s41598-018-32212-9

  • Vandendriessche T, Schäfer H, Verlinden BE, Humpfer E, Hertog MLATM, Nicolaï BM (2013) High-throughput NMR based metabolic profiling of Braeburn apple in relation to internal browning. Postharv Biol Technol 80:18–24. https://doi.org/10.1016/j.postharvbio.2013.01.008

    Article  CAS  Google Scholar 

  • Vanzo A, Jenko M, Vrhovsek U, Stopar M (2013) Metabolomic profiling and sensorial quality of ‘Golden Delicious’, ‘Liberty’, ‘Santana’, and ‘Topaz’ apples grown using organic and integrated production systems. J Agric Food Chem 61:6580–6587

    Article  CAS  PubMed  Google Scholar 

  • Veberic R, Trobec M, Herbinger K, Hofer M, Grill D, Stampar F (2005) Phenolic compounds in some apple (Malus domestica Borkh.) cultivars of organic and integrated production. J Sci Food Agric 85:1687–1694. https://doi.org/10.1002/jsfa.2113

    Article  CAS  Google Scholar 

  • Vermathen M, Marzorati M, Baumgartner D, Good C, Vermathen P (2011) Investigation of different apple cultivars by high resolution magic angle spinning NMR. A Feasibility Study. J Agric Food Chem 59(24):12784–12793. https://doi.org/10.1021/jf203733u

  • Villas-Bôas SG, Mas S, Akesson M, Smedsgaard J, Nielsen J (2005) Mass Spectro Rev 24:613–646

    Article  CAS  Google Scholar 

  • Vignoli A, Ghini V, Meoni G, Licari C, Takis PG, Tenori L, Turano P, Luchinat C (2019) High-throughput metabolomics by 1D NMR. Angew Chem 58(4):968–994. https://doi.org/10.1002/anie.201804736

    Article  CAS  Google Scholar 

  • Volz RK, Alspach PA, Fletcher David J, Ferguson IB (2006) Genetic variation in bitter pit and fruit calcium concentrations within a diverse apple germplasm collection. Euphytica 149:1–10. https://doi.org/10.1007/s10681-005-9000-8

    Article  Google Scholar 

  • Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, Blomberg N, Boiten JW, da Silva Santos LB, Bourne PE, Bouwman J, Brookes AJ, Clark T, Crosas M, Dillo I, Dumon O, Edmunds S, Evelo CT, Finkers R, Gonzalez‐Beltran A, Gray AJ, Groth P, Goble C, Grethe JS, Heringa J, ‘t Hoen PA, Hooft R, Kuhn T, Kok R, Kok J, Lusher SJ, Martone ME, Mons A, Packer AL, Persson B, Rocca‐Serra P, Roos M, van Schaik R, Sansone SA, Schultes E, Sengstag T, Slater T, Strawn G, Swertz MA, Thompson M, van der Lei J, van Mulligen E, Velterop J, Waagmeester A, Wittenburg P, Wolstencroft K, Zhao J, Mons B (2016) The FAIR guiding principles for scientific data management and stewardship. Sci Data 3:160018. https://doi.org/10.1038/sdata.2016.18

  • Wishart DS, Tzur, D, Knox C, Eisner R, Guo AC, Young N, Cheng D, Jewell K, Arndt D, Sawhney S, Fung C, Nikolai L, Lewis M, Coutouly MA, Forsythe I, Tang P, Shrivastava S, Jeroncic K, Stothard P, Amegbey G, Block D, Hau DD, Wagner J, Miniaci J, Clements M, Gebremedhin M, Guo N, Zhang Y, Duggan GE, Macinnis GD, Weljie AM, Dowlatabadi R, Bamforth F, Clive D, Greiner R, Li L, Marrie T, Sykes BD, Vogel H J, Querengesser L (2007) HMDB: the human metabolome database. Nucl Acids Res 35(1362–4962 (Electronic)):D521–D526

    Google Scholar 

  • Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, Sajed T, Johnson D, Li C, Karu N, Sayeeda Z, Lo E, Assempour N, Berjanskii M, Singhal S, Arndt D, Liang Y, Badran H, Grant J, Serra-Cayuela A, Liu Y, Mandal R, Neveu V, Pon A, Knox C, Wilson M, Manach C, Scalbert A (2018) HMDB 4.0: The human metabolome database for 2018. Nucl Acids Res 46(D1):D608–D617. https://doi.org/10.1093/nar/gkx1089

  • Wu H, Huang W, Chen Z, Chen Z, Shi J, Kong Q, Sun S, Jiang X, Chen D, Yan S (2019) GC–MS-based metabolomic study reveals dynamic changes of chemical compositions during black tea processing. Food Res Int 120:330–338

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Zhang Y, Qi D, Huo H, Dong X, Tian L, Zhang X, Liu C, Cao Y (2018) Postharvest metabolomic changes in Pyrus ussuriensis Maxim. wild accession ‘Zaoshu Shanli’. J Sep Sci 41:4001–4013

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Chang J, Lei Z, Huhman D, Sumner LW, Zhao PX (2014) MET-COFEA: a liquid chromatography/mass spectrometry data processing platform for metabolite compound feature extraction and annotation. Anal Chem 86:6245–6253. https://doi.org/10.1021/ac501162k

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Lei Z, Huhman D, Sumner LW, Zhao PX (2015) MET-XAlign: a metabolite cross-alignment tool for LC/MS-based comparative metabolomics. Anal Chem 87:9114–9119. https://doi.org/10.1021/acs.analchem.5b01324

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Chen H, Wang W, Jiao W, Chen W, Zhong Q, Yun Y-H, Chen W (2020) Characterization of volatile profiles and marker substances by HS-SPME/GC-MS during the concentration of coconut jam. Foods 9:347. https://doi.org/10.3390/foods9030347

    Article  CAS  PubMed Central  Google Scholar 

  • Zhu D, Ren X, Wei L, Cao X, Ge Y, Liu H, Li J (2020) Collaborative analysis on difference of apple fruits flavor using electronic nose and electronic tongue. Sci Hortic 260:108879

    Google Scholar 

  • Zupan A, Mkulic-Petkovesk M, Cunja V, Stampar F Veberic R (2013) Comparison of phenolic composition of healthy apple tissues and tissues affected by bitter pit. J Agric Food Chem 61:12066–12071

    Google Scholar 

  • Zupan A, Mikulic-Petkovsek M, Stampar F, Veberic R (2016) Sugar and phenol content in apple with or without watercore. J Sci Food Agric 96:2845–2850. https://doi.org/10.1002/jsfa.7453

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Brizzolara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brizzolara, S., Tenori, L., Korban, S.S. (2021). Metabolomic Approaches for Apple Fruit Quality Improvement. In: Korban, S.S. (eds) The Apple Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-74682-7_15

Download citation

Publish with us

Policies and ethics