Skip to main content
Log in

Comprehensive VOC profiling of an apple germplasm collection by PTR-ToF-MS

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Fruit quality is generally represented by several components, among which aroma plays a fundamental role in determining the overall appreciation. To generate a comprehensive data inventory of aroma compounds in apple, a large collection represented by 190 apple accessions was characterized by a proton transfer reaction-time of flight-mass spectrometry (PTR-ToF-MS) instrument, a valid alternative to a gas chromatography-mass spectrometry (GS-MS) apparatus. The analytical performance of this instrument allowed to profile volatile organic compound (VOC) spectra of a portion of apple fruit flesh in a short time and efficient manner. Based on the VOC composition, the collection resulted grouped into six main clusters, mainly determined by ester and alcohols. These two VOC categories were also further exploited for the definition of an Alcohols/Esters index, which can be considered as a novel fruit quality descriptor useful for a further and more exhaustive characterization of several apple accessions. The distribution of these compounds and the possible further use of these information are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbott, J. A. (1999). Quality measurement of fruits and vegetables. Postharvest Biology and Technology, 15(3), 207–225.

    Article  Google Scholar 

  • Argenta, L., Fan, X., & Mattheis, J. (2002). Impact of watercore on gas permeance and incidence of internal disorders in ‘Fuji’ apples. Postharvest Biology and Technology, 24(2), 113–122.

    Article  Google Scholar 

  • Arvisenet, G., Billy, L., Poinot, P., Vigneau, E., Bertrand, D., & Prost, C. (2008). Effect of apple particle state on the release of volatile compounds in a new artificial mouth device. Journal of Agricultural and Food Chemistry, 56(9), 3245–3253.

    Article  CAS  PubMed  Google Scholar 

  • Bader, G. D., & Hogue, C. W. (2003). An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 4, 2.

    Article  PubMed Central  PubMed  Google Scholar 

  • Batt, P. J. (2006). Fulfilling customer needs in agribusiness supply chains. Acta Horticulturae, 699, 83–89.

    Google Scholar 

  • Berger, R. G. (1991). In H. Maarse (Ed.), Volatile compounds in food and beverages (pp. 283–297). New York: Marcel Dekker.

  • Biasioli, F., Yeretzian, C., Märk, T. D., Dewulf, J., & Van Langenhove, H. (2011). Direct-injection mass spectrometry adds the time dimension to (B)VOC analysis. Trends in Analytical Chemistry, 30(7), 1003–1017.

    Article  CAS  Google Scholar 

  • Bourne, M. (2002). Food texture and viscosity: Concept and measurement (2nd ed.). San Diego: Academic Press.

    Google Scholar 

  • Brückner, B., & Wyllie, S. G. (2008). Fruit and vegetable flavour: recent advances and future prospects. Abington: Woodhead Publishing in Food Science, Technology and Nutrition, pp. 11–16 (ISBN: 978-1-84569-183-7).

  • Cappellin, L., Biasioli, F., Granitto, P. M., Schuhfried, E., Soukoulis, C., Costa, F., et al. (2011a). On data analysis in PTR-TOF-MS: From raw spectra to data mining. Sensors and Actuators B, 155(1), 183–190.

    Article  CAS  Google Scholar 

  • Cappellin, L., Biasioli, F., Schuhfried, E., Soukoulis, C., Märk, T. D., & Gasperi, F. (2011b). Extending the dynamic range of proton transfer reaction time-of-flight mass spectrometers by a novel dead time correction. Rapid Communications in Mass Spectrometry: RCM, 25(1), 179–183.

    Article  CAS  PubMed  Google Scholar 

  • Cappellin, L., Karl, T., Probst, M., Ismailova, O., Winkler, P. M., Soukoulis, C., et al. (2012a). On quantitative determination of volatile organic compound concentrations using proton transfer reaction time-of-flight mass spectrometry. Environmental Science and Technology, 46(4), 2283–2290.

    Article  CAS  PubMed  Google Scholar 

  • Cappellin, L., Soukoulis, C., Aprea, E., Granitto, P., Dallabetta, N., Costa, F., et al. (2012b). PTR-ToF-MS and data mining methods: a new tool for fruit metabolomics. Metabolomics, 8(5), 761–770.

    Article  CAS  Google Scholar 

  • Cline, M. S., Smoot, M., Cerami, E., Kuchinsky, A., Landys, N., Workman, C., et al. (2007). Integration of biological networks and gene expression data using Cytoscape. Nature Protocols, 2(10), 2366–2382.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Contreras, C., & Beaudry, R. (2013). Lipoxygenase-associated apple volatiles and their relationship with aroma perception during ripening. Postharvest Biology and Technology, 82, 28–38.

    Article  CAS  Google Scholar 

  • Cossins, E.A.(1978) Ethanol metabolism in plants. In D. D. Hook & R. M. M. Crawford (Eds.), Plant Life in Anaerobic Environments (pp. 169–202). Ann Arbor: Science Publishers.

  • Costa, F., Cappellin, L., Longhi, S., Guerra, W., Magnano, P., Porro, D., et al. (2011). Assessment of apple (Malus x domestica Borkh.) fruit texture by a combined acoustic-mechanical profiling strategy. Postharvest Biology and Technology, 61(1), 21–28.

    Article  Google Scholar 

  • Dart, J.A., & Newman, S. M. (2005). Watercore of Apples. Primefacts 49 NSW Departmentof Primary Industries, pp. 2 (ISSN 1832-6668).

  • De Jager, A., & de Putter, H. (1999). Preharvest factors and postharvest quality decline of apples. Acta Horticulturae, 485, 103–110.

    Google Scholar 

  • De Roos, K. B. (2003). Effect of texture and microstructure on flavour retention and release. International Dairy Journal, 13(8), 593–605.

    Article  Google Scholar 

  • Dewulf, J., Langenhove, H. V., & Wittmann, G. (2002). Analysis of volatile organic compounds using gas chromatography. Trends in Analytical Chemistry, 21(9–10), 637–646.

    Article  CAS  Google Scholar 

  • Dimick, P., & Hoskin, J. (1983). Review of apple flavour—State of the art. Critical Reviews in Food Science and Nutrition, 18(4), 387–409.

    Article  CAS  PubMed  Google Scholar 

  • Dixon, J., & Hewett, E. W. (2000). Factors affecting apple aroma/flavour volatile concentration: A review. New Zealand Journal of Crop and Horticultural Science, 28(3), 155–173.

    Article  CAS  Google Scholar 

  • Dunemann, F., Ulrich, D., Malysheva-Otto, L., Weber, W. E., Longhi, S., Velascom, R., et al. (2012). Functional allelic diversity of the apple alcohol acyl-transferase gene MdAAT1 associated with fruit ester volatile contents in apple cultivars. Molecular Breeding, 29(3), 609–625.

    Article  CAS  Google Scholar 

  • Farneti, B., Schouten, R. E., Qian, T., Dieleman, J. A., Tijskens, L. M. M., & Woltering, E. J. (2013). Greenhouse climate control affects postharvest tomato quality. Postharvest Biology and Technology, 86, 354–361.

    Article  Google Scholar 

  • Fellman, J. K., Rudell, D. R., Mattinson, D. S., & Mattheis, J. P. (2003). Relationship of harvest maturity to flavor regeneration after CA storage of “Delicious” apples. Postharvest Biology and Technology, 27(1), 39–51.

    Article  Google Scholar 

  • Ferguson, I., Volz, R., & Woolf, A. (1999). Preharvest factors affecting physiological disorders of fruit. Postharvest Biology and Technology, 15(3), 255–262.

    Article  Google Scholar 

  • Fidler, J. C. (1968). The metabolism of acetaldehyde by plant tissues. Journal of Experimental Botany, 19(1), 41–51.

    Article  CAS  Google Scholar 

  • Fuhrmann, E., & Grosch, W. (2002). Character impact odorants of the apple cultivars Elstar and Cox Orange. Nahrung/Food, 46(3), 187–193.

    Article  CAS  Google Scholar 

  • Gilliver, P. J., & Nursten, H. E. (1976). The source of the acyl moiety in the biosynthesis of volatile banana esters. Journal of the Science of Food and Agriculture, 27(2), 152–158.

    Article  CAS  Google Scholar 

  • Giovannoni, J. J. (2001). Molecular biology of fruit maturation and ripening. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 725–749.

    Article  CAS  PubMed  Google Scholar 

  • Goff, S. A., & Klee, H. J. (2006). Plant volatile compounds: sensory cues for health and nutritional value? Science, 311(5762), 815–819.

    Article  CAS  PubMed  Google Scholar 

  • Herremans, E., Melado-Herreros, A., Defraeye, T., Verlinden, B., Hertog, M., Verboven, P., et al. (2014). Comparison of X-ray CT and MRI of watercore disorder of different apple cultivars. Postharvest Biology and Technology, 87, 42–50.

    Article  Google Scholar 

  • Hewett, E. W. (2006). Progressive challenges in horticultural supply chains: Some future challenges. Acta Horticulturae, 712, 39–49.

    Google Scholar 

  • Holland, D., Larkov, O., Bar-Yaákov, I., Bar, E., Zax, A., & Brandeis, E. (2005). Developmental and varietal differences in volatiles ester formation and acetyl-CoA: Alcohol acetyl transferase activities in apple (Malus domestica Borkh.) fruit. Journal of Agricultural and Food Chemistry, 53(18), 7198–7203.

    Article  CAS  PubMed  Google Scholar 

  • Jordan, A., Haidacher, S., Hanel, G., Hartungen, E., Mark, L., Seehauser, H., et al. (2009). A high resolution and high sensitivity proton-transfer-reaction time-of-flight mass spectrometer (PTR-TOF-MS). International Journal of Mass Spectrometry, 286(2–3), 122–128.

    Article  CAS  Google Scholar 

  • Kader, A. A. (2008). Perspective. Flavor quality of fruits and vegetables. Journal of the Science of Food and Agriculture, 88(11), 1863–1868.

    Article  CAS  Google Scholar 

  • Kasai, S., & Arakawa, O. (2010). Antioxidant levels in watercore tissue in ‘Fuji’ apples during storage. Postharvest Biology and Technology, 55(2), 103–107.

    Article  CAS  Google Scholar 

  • Klee, H. J. (2010). Improving the flavor of fresh fruits: Genomics, biochemistry, and biotechnology. New Phytopatologist, 187(1), 44–56.

    Article  CAS  Google Scholar 

  • Klee, H. J., & Giovannoni, J. J. (2011). Genetics and control of tomato fruit ripening and quality attributes. Annual Review of Genetics, 45, 41–59.

    Article  CAS  PubMed  Google Scholar 

  • Lauri, P. É., Combe, F., & Brun, L. (2014). Regular bearing in the apple—Architectural basis for an early diagnosis on the young tree. Scientia Horticulturae, 174(22), 10–16.

    Article  Google Scholar 

  • Lindinger, W., Hansel, A., & Jordan, A. (1998). On-line monitoring of volatile organic compounds at pptv levels by means of proton- transfer-reaction mass spectrometry (PTR-MS)—Medical applications, food control and environmental research. International Journal of Mass Spectrometry and Ion Physics, 173(3), 191–241.

    Article  CAS  Google Scholar 

  • Melado-Herreros, A., Mu˜noz-García, M. A., Blanco, A., Val, J., Fernandez-Valle, M. E., & Barreiro, P. (2013). Assessment of watercore development in apples with MRI: Effect of fruit location in the canopy. Postharvest Biology and Technology, 86, 125–133.

    Article  Google Scholar 

  • Newcomb, R. D., Crowhurst, R. N., Gleave, A. P., Rikkerink, E. H. A., Allan, A. C., Beuning, L. L., et al. (2006). Analyses of expressed sequence tags from apple. Plant Physiology, 141(1), 147–166.

    Article  PubMed Central  PubMed  Google Scholar 

  • Nijssen, L. M., van Ingen-Visscher, C. A., & Donders, J. J. H. (2011) VCF Volatile Compounds in Food: Database (Version 13.1). Zeist (The Netherlands).

  • Nyasordzi, J., Friedman, H., Schmilovitch, Z., Ignat, T., Weksler, A., Rot, I., et al. (2013). Utilizing the IAD index to determine internal quality attributes of apples at harvest and after storage. Postharvest Biology and Technology, 77, 80–86.

    Article  Google Scholar 

  • Pesis, E. (2005). The role of anaerobic metabolites, acetaldehyde and ethanol, in fruit ripening, enhancement of fruit quality and fruit deterioration. Postharvest Biology and Technology, 37(1), 1–19.

    Article  CAS  Google Scholar 

  • Rowan, D. D., Allen, J. M., Fielder, S., & Hunt, M. B. (1999). Biosynthesis of straight-chain ester volatiles in red delicious and Granny Smith apples using deuterium-labeled precursors. Journal of Agricultural and Food Chemistry, 47(7), 2553–2562.

    Article  CAS  PubMed  Google Scholar 

  • Rowan, D. D., Lane, H. P., Allen, J. M., Fielder, S., & Hunt, M. B. (1996). Biosynthesis of 2-methylbutyl, 2-methyl-2-butenyl, and 2-methylbutanoate esters in Red Delicious and Granny Smith apples using deuterium-labelled substrates. Journal of Agricultural and Food Chemistry, 44(10), 3276–3285.

    Article  CAS  Google Scholar 

  • Schaffer, R. J., Friel, E. N., Souleyre, E. J. F., Bolitho, K., Thodey, K., Ledger, S., et al. (2007). A genomics approach reveals that aroma production in apple is controlled by ethylene predominantly at the final step in each biosynthetic pathway. Plant Physiology, 144(4), 1899–1912.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Soukoulis, C., Cappellin, L., Aprea, E., Costa, F., Viola, R., Märk, T. D., et al. (2013). PTR-ToF-MS, a novel, rapid, high sensitivity and non-invasive tool to monitor volatile compound release during fruit post-harvest storage: the case study of apple ripening. Food Bioprocess Technology, 6(10), 2831–2843.

    Article  CAS  Google Scholar 

  • Ting, J. L. V., Soukoulis, C., Silcock, P., Cappellin, L., Romano, A., Aprea, E., et al. (2012). In Vitro and In Vivo flavor release from intact and fresh-cut apple in relation with genetic, textural, and physicochemical parameters. Journal of Food Science, 77(11), 1226–1233.

    Article  Google Scholar 

  • Ulrich, D., & Dunemann, F. (2012). Towards the development of molecular markers for apple volatiles. Flavour and Fragrance Journal, 27(4), 286–289.

    Article  CAS  Google Scholar 

  • Ulrich, D., Hoberg, E., & Fischer, C. (2009). Diversity and dynamic of sensory related traits in different apple cultivars. Journal of Apply Botany and Food Quality, 83, 70–75.

    Google Scholar 

  • Zhu, Y., Rudell, D. R., & Mattheis, J. P. (2008). Characterization of cultivar differences in alcohol acyltransferase and 1-aminocyclopropane-1-carboxylate synthase gene expression and volatile ester emission during apple fruit maturation and ripening. Postharvest Biology and Technology, 49(3), 330–339.

    Article  CAS  Google Scholar 

  • Ziosi, V., Noferini, M., Fiori, G., Tadiello, A., Trainotti, L., Casadoro, G., et al. (2008). A new index based on vis spectroscopy to characterize the progression of ripening in peach fruit. Postharvest Biology and Technology, 49(3), 319–329.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Agroalimentare e Ricerca project (AGER Grant No. 2010–2119). Authors wish to thank Pierluigi Magnago and his team for the maintenance of the apple collection, and Marco Fontanari for his support in fruit sampling.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Compliance with Ethical Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Farneti.

Additional information

Brian Farneti and Iuliia Khomenko have equally contributed to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11306_2014_744_MOESM1_ESM.pptx

Supplementary Fig. 1. VOC production of two apple cultivars, ‘Golden Delicious’ and ‘Fuji’. In panel “a” it is depicted the difference in volatile production (esters, alcohols, carbonyl, and other compounds) between harvest and after two months of cold storage of intact apples for both cultivars, respectively. In panel “b” it is instead reported the same comparison described for panel “a” but performed on cut fruits. Each volatile chemical class, measured by PTR-ToF-MS, and expressed in ppbv, is reported in the legend

11306_2014_744_MOESM2_ESM.pdf

Supplementary Fig. 2. High resolution heat map and two-dimensional hierarchical dendrograms of VOCs patterns of 190 apple accessions assessed by PTR-ToF-MS

Supplementary Fig. 3. Pearson correlations of the PTR-ToF-MS masses detected among the 190 apple accessions

11306_2014_744_MOESM4_ESM.pdf

Supplementary Fig. 4. High resolution bar chart of average values, plus standard deviation, of volatile content of apple accessions belonging to the six clusters determined by Ward’s cluster analysis

Supplementary Fig. 5. VOC profile comparison of healthy and watercore affected apples of cvs. “Jolly” and “Seriana”

11306_2014_744_MOESM6_ESM.pptx

Supplementary Fig. 6. PCA score plot of volatile compounds assessed by PTR-ToF-MS on apple accessions measured during the first (white circle) and on the second (filled triangle) year

11306_2014_744_MOESM7_ESM.pptx

Supplementary Fig. 7. Correlation chart of the first two principal components (panels a, b) and of the index of absorbance difference (IAD, panel c) of 12 apple cultivars (showing a correlation lower than 90 %) assessed by PTR-ToF-MS and DA-meter during two the harvesting seasons

11306_2014_744_MOESM8_ESM.pptx

Supplementary Fig. 8. Correlation between the variation in ripening (ΔIAD, year 1 and 2) with the PC1 (a) and PC2 (b) values

11306_2014_744_MOESM9_ESM.pdf

Supplementary Fig. 9. High resolution bar chart of the values of the AE factor (total alcohol content over the total ester content) of the 190 apple accessions

11306_2014_744_MOESM10_ESM.pdf

Supplementary Table 1. Subdivision of 190 apple accession assessed by PTR-MS into 6 cluster. Cultivar underlined are those assessed for the years consecutively

Supplementary Table 2. Variance analysis of each detected mass (threshold of 25 ppbv) for the six apple clusters

11306_2014_744_MOESM12_ESM.pptx

Supplementary Table 3. Table of the percentages of volatiles statistically different (P < 0.01) between each clusters based on pairwise ANOVA analysis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farneti, B., Khomenko, I., Cappellin, L. et al. Comprehensive VOC profiling of an apple germplasm collection by PTR-ToF-MS. Metabolomics 11, 838–850 (2015). https://doi.org/10.1007/s11306-014-0744-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-014-0744-9

Keywords

Navigation