Skip to main content

Swarm Robotics Behaviors and Tasks: A Technical Review

  • Chapter
  • First Online:
Control Engineering in Robotics and Industrial Automation

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 371))

Abstract

The field of swarm robotics has been researched for the last few decades to mimic the capability and the intelligence of biological insects and animals that possess social behavior. Since the introduction, many valuable contributions from different aspects and scopes of the swarm robotics researches have been made. In this chapter, a technical review related to the swarm robotics tasks is presented. In swarm robotics, some tasks can be considered as fundamental tasks while other tasks are the one that correlated to the fundamental tasks. In this review, the tasks are categorized into two major types: low-level tasks and high-level tasks. The low-level tasks include aggregation, dispersion, self-assembly and self-reconfigurable, pattern formation and flocking, robot–environment interaction, task allocation, and learning. The discussion scopes of the low-level tasks include definition and purpose, classification and methods. The high-level tasks include collective source searching, collective mapping, collective foraging, collective transport, collective manipulation, and collective tracking. High-level tasks are discussed in terms of related skills and methods. As a complementary, in early part of this chapter, some swarm robotics hardware and software platforms are briefly highlighted to give an overview of the platforms that can be useful for swarm robotics behaviors and tasks researched. At the end of this chapter, the challenges and the ways forward of swarm robotics research from the perspective of swarm robotics task are briefly suggested. This review is expected to give an overall swarm robotics research overview and contributes to the knowledge references specifically from the perspective of swarm robotics behaviors and tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abidin, Z.Z., Arshad, M.R., Ngah, U.K.: A simulation based fly optimization algorithm for swarms of mini autonomous surface vehicles application. Indian J. Geo-Marin. Sci. 40(2), 250–266 (2011)

    Google Scholar 

  2. Abidin, Z.Z., Arshad, M.R., Ngah, U.K.: An introduction to swarming robotics: application development trends. Artif. Intell. Rev. 43, 501–514 (2015). https://doi.org/10.1007/s10462-013-9397-8

    Article  Google Scholar 

  3. Abukhalil, T., Patil, M., Sobh, T.: A comprehensive survey on decentralized modular swarm robotics systems and deployment environments. Int. J. Eng. (IJE) 7(2), 44–60 (2013)

    Google Scholar 

  4. Alers, S., Tuyls, K., Ranjbar-Sahraei, B., Claes, D., Weiss, G.: Insect-inspired robot coordination: foraging and coverage. In: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems, pp. 761–768. (2014). https://doi.org/10.7551/978-0-262-32621-6-ch123

  5. Arvin, F., Doraisamy, S.C., Samsudin, K., Ramli, A.R.: Self-localization of swarm robots based on voice signal acquisition. In: International Conference on Computer and Communication Engineering (ICCCE), pp. 1–5 (2010). https://doi.org/10.1109/iccce.2010.5556767

  6. Arvin, F., Doraisamy, S.C., Samsudin, K., Ahmad, F.A., Ramli, A.R.: Implementation of a Cue-based aggregation with a swarm robotic system. In: Lukose, D., Ahmad, A.R., Sulaiman, S. (Eds.) KTW 2011, CCIS 295. Springer, Verlag Berlin Heidelberg, pp. 113–122 (2012). https://doi.org/10.1007/978-3-642-32826-8_12

  7. Atyabi, A., Phon-Amnuaisuk, S., Ho, C.: Applying area extension PSO in robotic swarm. J. Intell. Rob. Syst. 58, 253–285 (2010). https://doi.org/10.1007/s10846-009-9374-2

    Article  MATH  Google Scholar 

  8. Bahgeci, E., Sahin, E.: Evolving aggregation behaviors for swarm robotics systems: a systematic case study. In: Proceeding of Swarm Intelligence Symposium, pp. 333–340 (2005). https://doi.org/10.1109/sis.2005.1501640

  9. Balch, T., Arkin, R.C.: Behavior-based formation control for multirobot teams. IEEE Trans. Robot. Autom. 14, 926–939 (1998). https://doi.org/10.1109/70.736776

    Article  Google Scholar 

  10. Banharnsakun, A., Achalakul, T., Batra, R.C.: Target finding and obstacle avoidance algorithm for microrobot swarms. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 14–17 Oct. 2012, pp. 1610–1615 (2012). https://doi.org/10.1109/icsmc.2012.6377967

  11. Barca, J.C., Sekercioglu, Y.A.: Swarm robotics reviewed. Robotica 31, 345–359 (2013). https://doi.org/10.1017/S026357471200032X

    Article  Google Scholar 

  12. Barnes, L.E., Fields, M.A., Valavanis, K.P.: Swarm formation control utilizing elliptical surfaces and limiting functions. IEEE Trans. Syst. Man Cybern. B Cybern. 39, 1434–1445 (2009). https://doi.org/10.1109/TSMCB.2009.2018139

    Article  Google Scholar 

  13. Barnes, L., Garcia, R., Fields, M.A., Valavanis, K.: Swarm formation control utilizing ground and aerial unmanned systems. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2008), pp. 4205–4205 (2008). https://doi.org/10.1109/iros.2008.4651260

  14. Barnes, L., Alvis, W., Fields, M.A., Valavanis, K., Moreno, W.: Swarm formation control with potential fields formed by bivariate normal functions. In: 14th Mediterranean Conference on Control and Automation, pp. 1–7 (2006). https://doi.org/10.1109/med.2006.328706

  15. Bayindir, L., Sahin, E.A.: Review of Studies in Swarm robotics. Turk J. Elec. Eng. 15(2), 115–147 (2007)

    Google Scholar 

  16. Bayindir, L., Sahin, E.: Modeling self-organized aggregation in swarm robotic systems. In: 2009 IEEE Swarm Intelligence Symposium, March 30 2009-April 2 2009, pp. 88–95 (2009). https://doi.org/10.1109/sis.2009.4937849

  17. Bayındır, L.: A review of swarm robotics tasks. Neurocomputing 172, 292–321 (2015). https://doi.org/10.1016/j.neucom.2015.05.116

    Article  Google Scholar 

  18. Bayındır, L.: A review of swarm robotics tasks. Neurocomputing 172, 292–321 (2016). https://doi.org/10.1016/j.neucom.2015.05.116

  19. Berman, S., Halasz, A., Hsieh, M.A., Kumar, V.: Navigation-based optimization of stochastic strategies for allocating a robot swarm among multiple sites. In: 47th IEEE Conference on Decision and Control, pp. 4376–4381 (2008). https://doi.org/10.1109/cdc.2008.4739482

  20. Berman, S., Kumar, V., Nagpal, R.: Design of control policies for spatially inhomogeneous robot swarms with application to commercial pollination. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 378–385 (2011). https://doi.org/10.1109/icra.2011.5980440

  21. Bin, L., Hao, C., Liangcai, Z., Quanjie, G.: Consensus algorithm with input constraints for swarm robots formation control. In: IEEE 12th International Conference on Networking, Sensing and Control (ICNSC), pp. 157–162 (2015). https://doi.org/10.1109/icnsc.2015.7116027

  22. Blazovics, L., Varga, C., Csorba, K., Feher, M., Forstner, B., Charaf, H.: Vision based area discovery with swarm robots. In: 2nd Eastern European Regional Conference on the engineering of computer based systems (ECBS-EERC), pp. 149–150 (2011). https://doi.org/10.1109/ecbs-eerc.2011.32

  23. Bodi, M., Thenius, R., Szopek, M., Schmickl, T., Crailsheim, K.: Interaction of robot swarms using the honeybee-inspired control algorithm BEECLUST. Mathem. Comput. Modell. Dyn. Syst. 18, 87–100 (2012). https://doi.org/10.1080/13873954.2011.601420

    Article  MATH  Google Scholar 

  24. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm intelligence: from natural to artificial systems. Oxford University Press, New York (1999)

    Book  Google Scholar 

  25. Bonabeau, E., Sobkowski, A., Theraulaz, G., Deneubourg, J.-L.: Adaptive task allocation inspired by a model of division of labor in social insects. In: Proceedings of BCEC97 (1997)

    Google Scholar 

  26. Bordini, R., et al.: Multiagent Systems, 2nd edn. MIT Press, Cambridge, Mass, United States (2013)

    Google Scholar 

  27. Boubou, S., Tagawa, Y.: Determining saturation point in swarm robot. In: 13th International Conference on Advanced Communication Technology (ICACT), pp. 288–291 (2011)

    Google Scholar 

  28. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell 7, 1–41 (2013). https://doi.org/10.1007/s11721-012-0075-2

    Article  Google Scholar 

  29. Brutschy, A., Pini, G., Pinciroli, C., Birattari, M., Dorigo, M.: Self-organized task allocation to sequentially interdependent tasks in swarm robotics. Auton. Agent. Multi-Agent Syst. 28, 101–125 (2014). https://doi.org/10.1007/s10458-012-9212-y

    Article  Google Scholar 

  30. Calitoiu, D.: New search algorithm for randomly located objects: a non-cooperative agent based approach. In: 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, 8–10 July 2009, pp 1–6. https://doi.org/10.1109/cisda.2009.5356564

  31. Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-Organization in Biological Systems. Priceton University Press, New Jersey, United Kingdom (2001)

    Book  Google Scholar 

  32. Cao, M.-L., Meng, Q.-H., Luo, B., Zeng, M.: Experimental comparison of random search strategies for multi-robot based odour finding without wind information Austrian Contributions to Veterinary. Epidemiology 8, 43–50 (2015)

    Google Scholar 

  33. Cao, Y.U., Fukunaga, A.S., Kahng, A.B., Meng, F.: Cooperative mobile robotics: antecedents and directions. In: Intelligent Robots and Systems 95. ‘Human Robot Interaction and Cooperative Robots’, Proceedings. 1995 IEEE/RSJ International Conference on, 5–9 Aug 1995, pp 226–234 vol. 221. https://doi.org/10.1109/iros.1995.525801

  34. Cerda, M., Serrano, A.R.: A 3-D Localization algorithm for robot swarms under the presence of failures. In: Fifth International Conference on Autonomic and Autonomous Systems, pp. 226–231 (2009). https://doi.org/10.1109/icas.2009.64

  35. Chen, Z., Bamann, C., Henkel, P., Gunther, C.: Common field-of-view of cameras in robotic swarms. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5559–5564. https://doi.org/10.1109/iros.2013.6697162

  36. Chennareddy, S.S.R., Agrawal, A., Karuppiah, A.: Modular Self-Reconfigurable robotic systems: a survey on hardware architectures. J. Robot. 2017, 19 (2017). https://doi.org/10.1155/2017/5013532

    Article  Google Scholar 

  37. Chien-Chou, L., Po-Yuan, H., Kun-Cheng, C.: A motion planning of swarm robots using genetic algorithm. In: International Conference on Broadband, Wireless Computing, Communication and Applications (BWCCA), pp. 538–543 (2010). https://doi.org/10.1109/bwcca.2010.128

  38. Christensen, A.L., O’Grady, R., Dorigo, M.: From fireflies to fault-tolerant swarms of robots. IEEE Trans. Evol. Comput. 13, 754–766 (2009). https://doi.org/10.1109/TEVC.2009.2017516

    Article  Google Scholar 

  39. Churavy, C., et al.: Effective implementation of a mapping swarm of robots. IEEE Potentials 27, 28–33 (2008). https://doi.org/10.1109/MPOT.2008.924855

    Article  Google Scholar 

  40. Correll, N., Martinoli, A.: Modeling and designing self-organized aggregation in a swarm of miniature robots. Int. J. Robot. Res. 30, 615–626 (2011). https://doi.org/10.1177/0278364911403017

    Article  Google Scholar 

  41. Correll, N., Rutishauser, S., Martinoli, A.: Comparing coordination schemes for miniature robotic swarms: a case study in boundary coverage of regular structures. In: Khatib, O., Kumar, V., Rus, D. (Eds.) Experimental Robotics, vol 39. Springer Tracts in Advanced Robotics. Springer Berlin Heidelberg, pp. 471–480 (2008). https://doi.org/10.1007/978-3-540-77457-0_44

  42. Couceiro, M.S., Figueiredo, C.M., Rocha, R.P., Ferreira, N.M.F.: Darwinian swarm exploration under communication constraints: initial deployment and fault-tolerance assessment. Robot. Auton. Syst. 62, 528–544 (2014). https://doi.org/10.1016/j.robot.2013.12.009

    Article  Google Scholar 

  43. Couceiro, M.S., Vargas, P.A., Rocha, R.P., Ferreira, N.M.F.: Benchmark of swarm robotics distributed techniques in a search task. Robot. Auton. Syst. 62, 200–213 (2014). https://doi.org/10.1016/j.robot.2013.10.004

    Article  Google Scholar 

  44. Couceiro, M.S., Rocha, R.P., Ferreira, N.M.F.: Ensuring ad hoc connectivity in distributed search with Robotic Darwinian Particle Swarms. In: 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics, 1–5 Nov. 2011. pp. 284–289 (2011). https://doi.org/10.1109/ssrr.2011.6106752

  45. Dadgar, M., Jafari, S., Hamzeh, A.: A PSO-based multi-robot cooperation method for target searching in unknown environments Neurocomputing 177, 62–74 (2016). https://doi.org/10.1016/j.neucom.2015.11.007

    Article  Google Scholar 

  46. Damer, S., Ludwig, L., LaPointa, M.A., Gini, Papanikolopoulos, N., Budenske, J.: Dispersion and exploration algorithms for robots in unknown environments. In: Gerhart, Grant, R., Shoemaker, C.M., Gage, D.W. (Eds.) Unmanned Systems Technology, vol. 6230 (2006). https://doi.org/10.1117/12.668915

  47. Danping, Z., Ping, T.: CoSLAM: collaborative visual SLAM in dynamic environments. IEEE Trans. Pattern Anal. Mach. Intell. 35, 354–366 (2013). https://doi.org/10.1109/TPAMI.2012.104

    Article  Google Scholar 

  48. Das, A.K., Fierro, R., Kumar, V., Ostrowski, J.P., Spletzer, J., Taylor, C.J.: A vision-based formation control framework. IEEE Trans. Robot. Autom. 18, 813–825 (2002). https://doi.org/10.1109/TRA.2002.803463

    Article  Google Scholar 

  49. Decugnière, A., et al.: Enhancing the cooperative transport of multiple objects. In: Dorigo, M., Birattari, M., Blum, C., Clerc, M., Stützle, T., Winfield, A.T. (Eds.) Ant Colony Optimization and Swarm Intelligence, vol 5217. Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 307–314 (2008). https://doi.org/10.1007/978-3-540-87527-7_31

  50. Dhariwal, A., Sukhatme, G.S., Requicha, A.A.G.: Bacterium-inspired robots for environmental monitoring. In: Robotics and Automation, 2004. Proceedings. ICRA ‘04. 2004 IEEE International Conference on, April 26-May 1, 2004, pp. 1436–1443 Vol. 1432 (2004). https://doi.org/10.1109/robot.2004.1308026

  51. Di Caro, G.A., Giusti, A., Nagi, J., Gambardella, L.M.: A simple and efficient approach for cooperative incremental learning in robot swarms. In: 16th International Conference on Advanced Robotics (ICAR), pp. 1–8 (2013). https://doi.org/10.1109/icar.2013.6766596

  52. Dimarogonas, D.V., Kyriakopoulos, K.J.: Decentralized swarm aggregation with static communication links. In: Proceedings of the 1st international Conference on Robot communication and coordination, Athens, Greece (2007)

    Google Scholar 

  53. Dimidov, C., Oriolo, G., Trianni, V.: Random Walks in Swarm Robotics: An Experiment with Kilobots. In: Dorigo, M., Birattari, M., Li, X., López-Ibáñez, M., Ohkura, K., Pinciroli, C., Stützle, T. (eds) Swarm Intelligence: 10th International Conference, ANTS 2016, Brussels, Belgium, September 7–9, 2016, Proceedings. Springer International Publishing, Cham, pp. 185–196 (2016). https://doi.org/10.1007/978-3-319-44427-7_16

  54. Dirafzoon, A., Betthauser,.J, Schornick, J., Benavides, D., Lobaton, E.: Mapping of unknown environments using minimal sensing from a stochastic swarm. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp. 3842–3849 (2014). https://doi.org/10.1109/iros.2014.6943102

  55. Dirafzoon, A., Lobaton, E.: Topological mapping of unknown environments using an unlocalized robotic swarm. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5545–5551 (2013). https://doi.org/10.1109/iros.2013.6697160

  56. Dong, S., Can, W.: Controlling swarms of mobile robots for switching between formations using synchronization concept. In: IEEE International Conference on Robotics and Automation, pp. 2300–2305 (2007). https://doi.org/10.1109/robot.2007.363662

  57. Dorigo, M., et al.: Evolving self-organizing behaviors for a swarm-bot. Auton. Robot. 17, 223–245 (2004). https://doi.org/10.1023/B:AURO.0000033973.24945.f3

    Article  Google Scholar 

  58. Dorigo, M., et al.: Swarmanoid: a novel concept for the study of heterogeneous robotic swarms. IEEE Robot. Autom. Mag. 20, 60–71 (2013). https://doi.org/10.1109/MRA.2013.2252996

    Article  Google Scholar 

  59. Doty, K.L., Van Aken, R.E.: Swarm robot materials handling paradigm for a manufacturing workcell. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 778–782 vol. 771 (1993). https://doi.org/10.1109/robot.1993.292072

  60. Ducatelle, F., et al.: Cooperative navigation in robotic swarms. Swarm Intell. 8, 1–33 (2014). https://doi.org/10.1007/s11721-013-0089-4

    Article  Google Scholar 

  61. Ducatelle, F., Foerster, A., Di Caro, G.A., Gambardella, L.M.: New task allocation methods for robotic swarms. In: Proceedings of the 9th IEEE/RAS Conference on Autonomous Robot Systems and Competitions, Castelo Branco, Portugal (2009)

    Google Scholar 

  62. Ducatelle, F., Di Caro, G., Gambardella, L.: Cooperative Stigmergic Navigation in a heterogeneous robotic swarm. In: Doncieux, S., Girard, B., Guillot, A., Hallam, J., Meyer, J.-A., Mouret, J.-B. (Eds.) From Animals to Animats 11, vol 6226. Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 607–617 (2010). https://doi.org/10.1007/978-3-642-15193-4_57

  63. Ekanayake, S.W., Pathirana, P.N.: Formations of robotic swarm: an artificial force based approach. Int. J. Adv. Rob. Syst. 7(3), 173–190 (2010)

    Google Scholar 

  64. Elkilany, B.G., Abouelsoud, A.A., Fathelbab, A.M.R.: Adaptive formation control of robot swarms using optimized potential field method. In: 2017 IEEE International Conference on Industrial Technology (ICIT), 22–25 March 2017, pp. 721–725 (2017). https://doi.org/10.1109/icit.2017.7915448

  65. Ercan, M.F., Li, X., Liang, X.: A Regular tetrahedron formation strategy for swarm robots in three-dimensional environment. In: Graña Romay, M., Corchado, E., Garcia Sebastian, M.T. (Eds.) Hybrid Artificial Intelligence Systems, vol 6076. Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 24–31 (2010). https://doi.org/10.1007/978-3-642-13769-3_3

  66. Fidan, B., Gazi, V., Shaohao, Z., Na, C., Karatas, E.: Single-view distance-estimation-based formation control of robotic swarms. IEEE Trans. Industr. Electron. 60, 5781–5791 (2013). https://doi.org/10.1109/TIE.2012.2236996

    Article  Google Scholar 

  67. Frey, C., et al.: A physicomimetics control framework for swarms of Autonomous Surface Vehicles. OCEANS 2008, 1–6 (2008). https://doi.org/10.1109/OCEANS.2008.5151855

    Article  Google Scholar 

  68. Fukui, S., Naruse, K.: Swarm EKF localization for a multiple robot system with range-only measurements. In: IEEE/SICE International Symposium on System Integration (SII), pp. 796–801 (2013). https://doi.org/10.1109/sii.2013.6776751

  69. Garnier, S., Gautrais, J., Theraulaz, G.: The biological principles of swarm intelligence. Swarm Intell 1, 3–31 (2007). https://doi.org/10.1007/s11721-007-0004-y

    Article  Google Scholar 

  70. Garnier, S.: From ants to robots and back: how robotics can contribute to the study of collective animal behavior. In: Meng, Y., Jin, Y. (Eds.) Bio-Inspired Self-Organizing Robotic Systems, vol 355. Studies in Computational Intelligence. Springer Berlin Heidelberg, pp. 105–120 (2011). https://doi.org/10.1007/978-3-642-20760-0_5

  71. Garnier, S., Jost, C., Jeanson, R., Gautrais, J., Asadpour, M., Caprari, G., Theraulaz, G.: Aggregation behaviour as a source of collective decision in a group of cockroach-like-robots. In: Capcarrère, M., Freitas, A., Bentley, P., Johnson, C., Timmis, J. (Eds.) Advances in Artificial Life, vol 3630. Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 169–178 (2005). https://doi.org/10.1007/11553090_18

  72. Gauci, M., Chen, J., Dodd, T.J., Groß, R.: Evolving aggregation behaviors in multi-robot systems with binary sensors. In: Ani Hsieh, M., Chirikjian, G. (Eds.) Distributed Autonomous Robotic Systems: The 11th International Symposium. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 355–367 (2014). https://doi.org/10.1007/978-3-642-55146-8_25

  73. Gazi, V.: Swarm aggregations using artificial potentials and sliding-mode control. IEEE Trans. Rob. 21, 1208–1214 (2005). https://doi.org/10.1109/TRO.2005.853487

    Article  Google Scholar 

  74. Gazi, V., Passino, K.M.: Stability analysis of swarms. IEEE Trans. Autom. Control 48, 692–697 (2003). https://doi.org/10.1109/TAC.2003.809765

    Article  MathSciNet  MATH  Google Scholar 

  75. Gerkey, B.P., Matarić, M.J.: A formal analysis and taxonomy of task allocation in multi-robot systems. Int. J. Robot. Res. 23, 939–954 (2004). https://doi.org/10.1177/0278364904045564

    Article  Google Scholar 

  76. Gioioso, G., Franchi, A., Salvietti, G., Scheggi, S., Prattichizzo, D.: The flying hand: a formation of uavs for cooperative aerial tele-manipulation. In: 2014 IEEE International Conference on Robotics and Automation, pp. 4335–4341 (2014)

    Google Scholar 

  77. Gomes, J., Urbano, P., Christensen, A.L.: Evolution of swarm robotics systems with novelty search. Swarm Intell. 7, 115–144 (2013). https://doi.org/10.1007/s11721-013-0081-z

    Article  Google Scholar 

  78. Grady, R.O., Christensen, A.L., Dorigo, M.: SWARMORPH: Multirobot morphogenesis using directional self-assembly. IEEE Trans. Robot. 25, 738–743 (2009). https://doi.org/10.1109/tro.2008.2012341

  79. Groß, R., Dorigo, M.: Towards group transport by swarms of robots. Int J Bio-Inspired Comput. 1, 1–13 (2009). https://doi.org/10.1504/ijbic.2009.022770

    Article  Google Scholar 

  80. Groß, R., Bonani, M., Mondada, F., Dorigo, M.: Autonomous Self-assembly in a Swarm-bot. In: Murase, K., Sekiyama, K., Naniwa, T., Kubota, N., Sitte, J. (Eds.) Proceedings of the 3rd International Symposium on Autonomous Minirobots for Research and Edutainment (AMiRE 2005). Springer, Berlin, Heidelberg, pp. 314–322 (2006). https://doi.org/10.1007/3-540-29344-2_47

  81. Guerrero, G., Oliver, G.: Multi-robot task allocation strategies using auction-like mechanisms. In: Proceeding 6th Congress, Catalan Asscoc, Artif. Intll 2003, pp. 111–122

    Google Scholar 

  82. Haghighi, R., Chien Chern, C. (2011) Asynchronous dynamic multi-group formation for swarm robots. In: 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), pp. 2744–2749. https://doi.org/10.1109/cdc.2011.6160232

  83. Halasz, A., Hsieh, M.A., Berman, S., Kumar, V.: Dynamic redistribution of a swarm of robots among multiple sites. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2320–2325 (2007). https://doi.org/10.1109/iros.2007.4399528

  84. Hamann, H., Worn, H., Crailsheim, K., Schmick, T.: Spatial macroscopic models of a bio-inspired robotic swarm algorithm. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 22–26 Sept. 2008, pp. 1415–1420. https://doi.org/10.1109/iros.2008.4651038

  85. Hereford, J.M., Siebold, M.A.: Bio-inspired search strategies for robot swarms, swarm robotics from biology to robotics. In: Ester Martinez Martin (Ed.), InTech (2010), https://doi.org/10.5772/8600

  86. Heylighen, F.: The science of self-organization and adaptivity. Encyclopedia Life Support Syst. 5, 253–28 (2001)

    Google Scholar 

  87. Higgins, F., Tomlinson, A., Martin, K.M.: Threats to the swarm: security considerations for swarm robotics. Int. J. Adv. Secur. 2(2&3), 228–297 (2009)

    Google Scholar 

  88. Higgins, F., Tomlinson, A., Martin, K.M.: Survey on security challenges for swarm robotics. In: Fifth International Conference on Autonomic and Autonomous Systems, pp. 307–312 (2009a). https://doi.org/10.1109/icas.2009.62

  89. Hoff, N., Wood, R., Nagpal, R.: Distributed colony-level algorithm switching for robot swarm foraging. In: Martinoli A et al. (eds) Distributed autonomous robotic systems, vol 83. Springer Tracts in Advanced Robotics. Springer Berlin Heidelberg, pp. 417–430 (2013). https://doi.org/10.1007/978-3-642-32723-0_30

  90. Hoff, N.R. III, Sagoff, A., Wood, R.J., Nagpal, R.: Two foraging algorithms for robot swarms using only local communication. In: IEEE International Conference on Robotics and Biomimetics (IEEE-ROBIO 2010), pp. 123–130 (2010)

    Google Scholar 

  91. Hongxing, W., Yingpeng, C., Haiyuan, L., Dezhong, L., Tianmiao, W.: Sambot: a self-assembly modular robot for swarm robot. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 66–71 (2010). https://doi.org/10.1109/robot.2010.5509214

  92. Hou, S.P., Cheah, C.C.: Dynamic compound shape control of robot swarm. IET Control Theory Appl. 6, 454–460 (2012). https://doi.org/10.1049/iet-cta.2011.0115

    Article  MathSciNet  Google Scholar 

  93. Hou, S.P., Cheah, C.C., Slotine, J.E.: Dynamic region following formation control for a swarm of robots. In: International Conference on Robotics and Automation, pp. 1929–1934 (2009). https://doi.org/10.1109/robot.2009.5152422

  94. Housheng, S., Xiaofan, W., Zongli, L.: Flocking of multi-agents with a virtual leader part II: with a virtual leader of varying velocity. In: 46th IEEE Conference on Decision and Control, pp. 1429–1434 (2007). https://doi.org/10.1109/cdc.2007.4434067

  95. Howard, A., Parker, L., Sukhatme, G.: The SDR experience: experiments with a large-scale heterogeneous mobile robot team. In: Ang, M., Jr., Khatib, O. (Eds.) Experimental Robotics IX, vol 21. Springer Tracts in Advanced Robotics. Springer Berlin Heidelberg, pp. 121–130 (2006). https://doi.org/10.1007/11552246_12

  96. Hsiang, R., Arkin, E.M., Bender, M.A., Fekete, S.P., Mitchell, J.S.B.: Algorithms for rapidly dispersing robot swarms in unknown environments. Algorithm. Found. Robot. 7, 77–93 (2004)

    Article  Google Scholar 

  97. Hsiang, T.R., Sztainberg, M.: Pheromone-guided dispersion for swarms of robots. In: Nineteenth European Workshop in Computational Geometry (2003)

    Google Scholar 

  98. Hu, C., Yongqiang, B., Huagang, L.: Distributed rigid formation control algorithm for multi-agent systems. Kybernetes 41, 1650–1661 (2012). https://doi.org/10.1108/03684921211276819

    Article  Google Scholar 

  99. Iima, H., Kuroe, Y.: Swarm reinforcement learning method for a multi-robot formation problem. In: International Conference on Systems, Man, and Cybernetics (SMC), pp. 2298–2303 (2013). https://doi.org/10.1109/smc.2013.393

  100. Itami, T.: Brownian motion applied to macroscopic group robots without mutual communication. In: Suzuki, Y., Hagiya, M. (Eds.) Recent Advances in Natural Computing: Selected Results from the IWNC 8 Symposium. Springer Japan, Tokyo, pp. 51–70 (2016). https://doi.org/10.1007/978-4-431-55429-5_5

  101. Jacky Chang, H., George Lee, C.S., Charlie Hu, Y., Yung-Hsiang, L.: Multi-robot SLAM with topological/metric maps. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1467–1472 (2007)

    Google Scholar 

  102. Jatmiko, W., et al.: Robots implementation for odor source localization using PSO algorithm WSEAS Trans Cir and Sys 10, 115–125 (2011)

    Google Scholar 

  103. Jevti, A., Gazi, P., Andina, D., Jamshidi, M.: Building a swarm of robotic bees. In: World Automation Congress (WAC), 19–23 Sept. 2010, pp. 1–6 (2010)

    Google Scholar 

  104. Jevtic, A., Gutierrez, A., Andina, D., Jamshidi, M.: Distributed bees algorithm for task allocation in swarm of robots. IEEE Syst. J. 6, 296–304 (2012). https://doi.org/10.1109/JSYST.2011.2167820

    Article  Google Scholar 

  105. Jianhua, W., Mingshun, Q.: Research on formation handling of serial swarm robots. In: Third Global Congress on Intelligent Systems (GCIS), pp. 338–341 (2012). https://doi.org/10.1109/gcis.2012.37

  106. Jong-Hyun, L., Wook, C.: A evolutionary self-assembling swarm robots using genetic programming. In: Proceedings of SICE Annual Conference (SICE), pp. 807–811 (2012)

    Google Scholar 

  107. Jong-Hyun, L., Chang Wook, A., Jinung, A.: A honey bee swarm-inspired cooperation algorithm for foraging swarm robots: An empirical analysis. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 489–493 (2013). https://doi.org/10.1109/aim.2013.6584139

  108. Karthikeyan, S., Ali, M.A.: A general approach to swarm coordination using circle formation. In: Stigmergic Optimization. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 65–84 (2006). https://doi.org/10.1007/978-3-540-34690-6_3

  109. Keeter, M. et al.: Cooperative search with autonomous vehicles in a 3D aquatic testbed. In: 2012 American Control Conference (ACC), 27–29 June 2012, pp. 3154–3160 (2012). https://doi.org/10.1109/acc.2012.6314965

  110. Kernbach, S., Thenius, R., Kernbach, O., Schmickl, T.: Re-embodiment of Honeybee Aggregation behavior in an artificial micro-robotic system. Adaptive Behav. 17, 237–259 (2009). https://doi.org/10.1177/1059712309104966

    Article  Google Scholar 

  111. Khaluf, Y., Rammig, F.J.: Task allocation strategy for time-constrained tasks in robot swarms. In: ECAL, pp. 737–744 (2013)

    Google Scholar 

  112. Kim, D.H., Wang, H.O., Guohua, Y., Seiichi, S.: Decentralized control of autonomous swarm systems using artificial potential functions: analytical design guidelines. In: 43rd IEEE Conference on Decision and Control, pp. 159–164 (2004). https://doi.org/10.1109/cdc.2004.1428623

  113. Kober, J., Peters, J.: Reinforcement learning in robotics: a survey. In: Wiering, M., van Otterlo, M. (Eds.), Reinforcement Learning, vol 12. Adaptation, Learning, and Optimization. Springer Berlin Heidelberg, pp. 579–610 (2012). https://doi.org/10.1007/978-3-642-27645-3_18

  114. Kolling, A., Walker, P., Chakraborty, N., Sycara, K., Lewis, M.: Human interaction with robot swarms: a survey ieee transactions on human-machine systems 46, 9–26 (2016). https://doi.org/10.1109/THMS.2015.2480801

    Article  Google Scholar 

  115. Krieger, M.J.B., Billeter, J.-B.: The call of duty: Self-organised task allocation in a population of up to twelve mobile robots. Robot. Autonom. Syst. 30, 65–84 (2000). https://doi.org/10.1016/S0921-8890(99)00065-2

    Article  Google Scholar 

  116. Krishnanand, K.N., Amruth, P., Guruprasad, M.H., Bidargaddi, S.V., Ghose, D.: Glowworm-inspired robot swarm for simultaneous taxis towards multiple radiation sources. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, pp. 958–963 (2006). https://doi.org/10.1109/robot.2006.1641833

  117. Krishnanand, K.N., Ghose, D.: A glowworm swarm optimization based multi-robot system for signal source localization. In: Liu, D., Wang, L., Tan, K.C. (Eds.) Design and Control of Intelligent Robotic Systems. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 49–68 (2009). https://doi.org/10.1007/978-3-540-89933-4_3

  118. Kube, C.R., Bonabeau, E.: Cooperative transport by ants and robots. Robot. Autonom. Syst. 30(1), 85–101 (2000)

    Article  Google Scholar 

  119. Kube, C.R., Zhang, H.: Collective robotics: from social insects to robots. Adapt. Behav. 2, 189–218 (1993). https://doi.org/10.1177/105971239300200204

    Article  Google Scholar 

  120. Labella, T.H., Dorigo, M., Deneubourg, J.-L.: Self-organised task allocation in a group of robots. In: Alami, R., Chatila, R., Asama, H. (Eds.) Distributed Autonomous Robotic Systems 6. Springer Japan, Tokyo, pp. 389–398 (2007). https://doi.org/10.1007/978-4-431-35873-2_38

  121. Lee, G., Chong, N.Y., Christensen, H.: Tracking multiple moving targets with swarms of mobile robots. Intel. Serv. Robot. 3, 61–72 (2010). https://doi.org/10.1007/s11370-010-0059-2

    Article  Google Scholar 

  122. Lerman, K., Galstyan, A.: Mathematical model of foraging in a group of robots: effect of interference. Auton Robot 13, 127–141 (2002). https://doi.org/10.1023/A:1019633424543

    Article  MATH  Google Scholar 

  123. Lerman, K., Martinoli, A., Galstyan, A.: A review of probabilistic macroscopic models for swarm robotics systems. In: Şahin, E., Spears, W. (Eds.) Swarm robotics, vol. 3342. Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 143–152 (2005). https://doi.org/10.1007/978-3-540-30552-1_12

  124. Li, M., Harris, J., Chen, M., Mao, S., Xiao, Y., Read, W., Prabhakaran, B.: Architecture and protocol design for a pervasive robot swarm communication networks. Wirel. Commun. Mobile Comput. 11, 1092–1106 (2011). https://doi.org/10.1002/wcm.856

    Article  Google Scholar 

  125. Li, F., Meng, Q.-H., Bai, S., Li, J.-G., Popescu, D.: Probability-PSO algorithm for multi-robot based odor source localization in ventilated indoor environments. In: Xiong, C., Huang, Y., Xiong, Y., Liu, H. (Eds.) Intelligent Robotics and Applications: First International Conference, ICIRA 2008, Wuhan, China, October 15–17, 2008, Proceedings, Part I. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1206–1215 (2008). https://doi.org/10.1007/978-3-540-88513-9_128

  126. Li, X., Ercan, M.F., Fung, Y.: A triangular formation strategy for collective behaviors of robot swarm. In: Gervasi, O., Taniar, D., Murgante, B., Laganà, A., Mun, Y., Gavrilova, M. (Eds.) Computational Science and Its Applications—ICCSA 2009, vol 5592. Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 897–911 (2009). https://doi.org/10.1007/978-3-642-02454-2_70

  127. Liang, X., Liu, Y.H., Wang, H., Chen, W., Xing, K., Liu, T.: Leader-following formation tracking control of mobile robots without direct position measurements. IEEE Trans. Autom. Control 61, 4131–4137 (2016). https://doi.org/10.1109/TAC.2016.2547872

    Article  MathSciNet  MATH  Google Scholar 

  128. Liekna, A., Grundspenkis, J.: Towards practical application of swarm robotics: overview of swarm tasks. Eng. Rural Dev. 13, 271–277 (2014)

    Google Scholar 

  129. Linda, O., Manic, M.: Fuzzy manual control of multi-robot system with built-in swarm behavior. In: 2nd Conference on Human System Interactions, pp. 4–9 (2009). https://doi.org/10.1109/hsi.2009.5090944

  130. Lindhé, M., Johansson, K.H.: A Formation Control Algorithm using Voronoi regions [Elektronisk resurs]. In. Taming Heterogeneity and Complexity of Embedded Control John Wiley & Sons (2007)

    Google Scholar 

  131. Liu, W., Winfield, A.F.T., Sa, J.: Modeling Swarm robotics Systems: a case study in collaborative distributed manipulation. Int. J. Robot. Res. 23(4–5), 415–436 (2004)

    Google Scholar 

  132. Liu, W., Winfield, A.T., Sa, J., Chen, J., Dou, L.: Towards energy optimization: emergent task allocation in a swarm of foraging robots. Adaptive Behav. 15(3), 289–305 (2007). https://doi.org/10.1177/1059712307082088

    Article  Google Scholar 

  133. Liu, W., Winfield, A.T.: Autonomous morphogenesis in self-assembling robots using ir-based sensing and local communications. In: Dorigo, M. et al. (Eds.) Swarm Intelligence, vol. 6234. Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 107–118 (2010). https://doi.org/10.1007/978-3-642-15461-4_10

  134. Ludwig, L., Gini,M.: Robotic swarm dispersion using wireless intensity signals. In: Gini, M., Voyles, R. (Eds.) Distributed Autonomous Robotic Systems 7. Springer Japan, pp. 135–144 (2006). https://doi.org/10.1007/4-431-35881-1_14

  135. Luo, J., Liu, C.L., Liu, F.: A leader-following formation control of multiple mobile robots with obstacle. In: 2015 IEEE International Conference on Information and Automation, 8–10 Aug. 2015, pp. 2153–2158 (2015). https://doi.org/10.1109/icinfa.2015.7279644

  136. Lytridis, C., Kadar, E.E., Virk, G.S.: A systematic approach to the problem of odour source localization. Autonomous Robot 20, 261–276 (2006). https://doi.org/10.1007/s10514-006-7414-3

    Article  Google Scholar 

  137. Marjovi, A., Marques, L.: Optimal spatial formation of swarm robotic gas sensors in odor plume finding. Autonomous Robots 35, 93–109 (2013). https://doi.org/10.1007/s10514-013-9336-1

    Article  Google Scholar 

  138. Marjovi, A., Marques, L.: Swarm robotic plume tracking for intermittent and time-variant odor dispersion. In: Mobile Robots (ECMR), 2013 European Conference on, 25–27 Sept. 2013, pp. 379–384 (2013b). https://doi.org/10.1109/ecmr.2013.6698871

  139. Marques, L., Nunes, U., de Almeida, A.T.: Particle swarm-based olfactory guided search Autonomous Robots 20, 277–287 (2006). https://doi.org/10.1007/s10514-006-7567-0

    Article  Google Scholar 

  140. Martinez, F., Jacinto, E., Acero, D.: Brownian motion as exploration strategy for autonomous swarm robots. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2375–2380 (2012). https://doi.org/10.1109/robio.2012.6491325

  141. Martinoli, A., Ijspeert, A.J., Gambardella, L.M.: A probabilistic model for understanding and comparing collective aggregation mechanisms. In: Floreano, D., Nicoud, J.-D., Mondada, F. (Eds.) Advances in Artificial Life: 5th European Conference, ECAL’99 Lausanne, Switzerland, September 13–17, 1999 Proceedings. Springer, Berlin, Heidelberg, pp. 575–584 (1999). https://doi.org/10.1007/3-540-48304-7_77

  142. Martinson, E., Payton, D.: Lattice formation in mobile autonomous sensor arrays. In: Şahin, E., Spears, W. (Eds.) Swarm robotics, vol 3342. Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 98–111 (2005). https://doi.org/10.1007/978-3-540-30552-1_9

  143. Ma’sum, M.A., Jati, G., Arrofi, M.K., Wibowo, A., Mursanto, P., Jatmiko, W.: Autonomous quadcopter swarm robots for object localization and tracking. In: International Symposium on Micro- NanoMechatronics and Human Science (MHS), pp. 1–6 (2013). https://doi.org/10.1109/mhs.2013.6710447

  144. McCune, R.R., Madey, G.R.: Swarm control of UAVs for cooperative hunting with DDDAS. Procedia Comput. Sci. 18, 2537–2544 (2013). https://doi.org/10.1016/j.procs.2013.05.436

    Article  Google Scholar 

  145. McLurkin, J., Smith, J.: Distributed algorithms for dispersion in indoor environments using a swarm of autonomous mobile robots. In: Alami, R., Chatila, R., Asama, H. (Eds.) Distributed Autonomous Robotic Systems 6. Springer Japan, pp. 399–408 (2007). https://doi.org/10.1007/978-4-431-35873-2_39

  146. McLurkin, J., Yamins, D.: Dynamic task assignment in robot swarms. In: Biologically-inspired Distributed and Multi-agent Systems, Harvard University, pp. 2007–214838 (2005)

    Google Scholar 

  147. Melhuish, C., Holland, O., Hoddell, S.: Convoying: using chorusing to form travelling groups of minimal agents. Robot. Autonom. Syst. 28:207–216 (1999). https://doi.org/10.1016/S0921-8890(99)00018-4

  148. Meng, Q.-H., Yang, W.-X., Wang, Y., Zeng, M.: Collective Odor Source Estimation and Search in Time-Variant Airflow Environments Using Mobile Robots Sensors (Basel, Switzerland) 11:10415–10443 (2011). https://doi.org/10.3390/s111110415

  149. Meng, Y., Kazeem, O., Muller, J.C.: A Hybrid ACO/PSO control algorithm for distributed swarm robots. In: 2007 IEEE Swarm Intelligence Symposium, 1–5 April 2007, pp. 273–280 (2007). https://doi.org/10.1109/sis.2007.367948

  150. Meyer, J.-A., Guillot, A.: biologically inspired robots. In: Siciliano, B., Khatib, O. (Eds.) Springer Handbook of Robotics. Springer, Berlin, Heidelberg, pp. 1395–1422 (2008). https://doi.org/10.1007/978-3-540-30301-5_61

  151. Michel, O.: WebotsTM: professional mobile robot simulation. Int. J. Adv. Rob. Syst. 1(1), 39–42 (2004)

    Google Scholar 

  152. Mittal, P., Tripathi, C., Kumar, A.: A centralized approach for resolving physical interference between robots using nearest first swarm method. In: 6th International Conference on Computer Science and Information Technology (CSIT), pp. 117–121. https://doi.org/10.1109/csit.2014.6805988

  153. Mohan, Y., Ponnambalam, S.G.: An extensive review of research in swarm robotics. In: Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on, 9–11 Dec. 2009, pp. 140–145 (2009). https://doi.org/10.1109/nabic.2009.5393617

  154. Momen, S., Sharkey, A.J.C.: An ant-like task allocation model for a swarm of heterogeneous robots. In: The 2nd Swarm Intelligence Algorithms and Applications Symposium (SIAAS 2009), AISB 2009 convention, pp: 31–38 (2009)

    Google Scholar 

  155. Mondada, F., Floreano, D., Guignard, A., Deneubourg, J.L., Gambardella, L., Nolfi, S., Dorigo, M.: Search for Rescue: an Application for the SWARM-BOT Self-Assembling Robot Concept (2002)

    Google Scholar 

  156. Moore, B.J.: Canudas-de-Wit C Source seeking via collaborative measurements by a circular formation of agents. In: Proceedings of the 2010 American Control Conference, June 30 2010-July 2 2010, pp. 6417–6422 (2010). https://doi.org/10.1109/acc.2010.5531473

  157. Morlok, R., Gini, M.: Dispersing robots in an unknown environment. In: Alami, R., Chatila, R., Asama, H. (Eds.) Distributed Autonomous Robotic Systems 6. Springer Japan, pp. 253–262 (2007). https://doi.org/10.1007/978-4-431-35873-2_25

  158. Mourikis, A.I., Roumeliotis, S.I.: Performance analysis of multirobot Cooperative localization. IEEE Trans. Rob. 22, 666–681 (2006). https://doi.org/10.1109/TRO.2006.878957

    Article  Google Scholar 

  159. Muniganti, P., Pujol, A.O.: Survey on Mathematical models of Swarm robotics. In: XI Workshop of Physical Agents, p 10 (2010)

    Google Scholar 

  160. Navarro, I., Matía, F.: An Introduction to Swarm robotics. ISRN Robotics 2013, 10 (2013). https://doi.org/10.5402/2013/608164

    Article  Google Scholar 

  161. Navarro, I., Matía, F.: A survey of collective movement of mobile robots. Int. J. Adv. Robot. Syst. 10, 73 (2013). https://doi.org/10.5772/54600

    Article  Google Scholar 

  162. Navarro-Serment, L.E., Paredis, C.J.J., Khosla, P.K.: A beacon system for the localization of distributed robotic teams. In: In Proceedings of the International Conference on Field and Service Robotics 1999, pp. 232–237 (1999)

    Google Scholar 

  163. Nishimura, Y., Geunho, L., Nak Young, C.: Control of swarming robots in an area with dead-end passage. In: 8th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 467–472 (2011). https://doi.org/10.1109/urai.2011.6145865

  164. Nouyan, S., Campo, A., Dorigo, M.: Path formation in a robot swarm. Swarm Intell 2, 1–23 (2008). https://doi.org/10.1007/s11721-007-0009-6

    Article  Google Scholar 

  165. Novischi, D.M., Florea, A.M.: Toward a real-time heterogeneous mobile robotic swarm: Robot platform and agent architecture. In: 17th International Conference System Theory, Control and Computing (ICSTCC), pp. 772–776 (2013). https://doi.org/10.1109/icstcc.2013.6689055

  166. Nurzaman, S.G., Matsumoto, Y., Nakamura, Y., Koizumi, S., Ishiguro, H.: Biologically inspired adaptive mobile robot search with and without gradient sensing. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 10–15 Oct. 2009, pp. 142–147 (2009). https://doi.org/10.1109/iros.2009.5353998

  167. Oh, H., Ramezan Shirazi, A., Sun, C., Jin, Y.: Bio-inspired self-organising multi-robot pattern formation: a review. Robot. Autonom. Syst. 91, 83–100 (2017). https://doi.org/10.1016/j.robot.2016.12.006

    Article  Google Scholar 

  168. Oh, H., Jin, Y.: Evolving hierarchical gene regulatory networks for morphogenetic pattern formation of swarm robots. In: 2014 IEEE Congress on Evolutionary Computation (CEC), 6–11 July 2014, pp. 776–783 (2014a). https://doi.org/10.1109/cec.2014.6900365

  169. Oh, H., Jin, Y.: Adaptive swarm robot region coverage using gene regulatory networks. In: Mistry, M., Leonardis, A., Witkowski, M., Melhuish, C. (Eds.) Advances in Autonomous Robotics Systems: 15th Annual Conference, TAROS 2014, Birmingham, UK, September 1–3, 2014. Proceedings. Springer International Publishing, Cham, pp. 197–208 (2014b). https://doi.org/10.1007/978-3-319-10401-0_18

  170. Oh, H., Shiraz, A.R., Jin, Y.: Morphogen diffusion algorithms for tracking and herding using a swarm of kilobots Soft Comput (2016). https://doi.org/10.1007/s00500-016-2182-2

  171. Ohkura, K., Yasuda, T., Kotani, Y., Matsumura, Y.: A swarm robotics approach to cooperative package-pushing problems with evolving recurrent neural networks. In: Proceedings of SICE Annual Conference, pp. 706–711 (2010)

    Google Scholar 

  172. Patil, M., Abukhalil, T., Patel, S., Sobh, T.: Hardware architecture review of swarm robotics system: self reconfigurability, self reassembly and self replication. In: Sobh, T., Elleithy, K. (Eds.) Innovations and Advances in Computing, Informatics, Systems Sciences, Networking and Engineering, vol 313. Lecture Notes in Electrical Engineering. Springer International Publishing, pp. 433–444 (2015). https://doi.org/10.1007/978-3-319-06773-5_58

  173. Payton, D., Daily, M., Estowski, R., Howard, M., Lee, C.: Pheromone Robot. Auton. Robots 11, 319–324 (2001). https://doi.org/10.1023/a:1012411712038

    Article  Google Scholar 

  174. Perrin, D., Ohsaki, H.: Decentralised communication in autonomous agent swarms. In: 26th International Conference on Advanced Information Networking and Applications Workshops (WAINA), pp. 1143–1146 (2012). https://doi.org/10.1109/waina.2012.201

  175. Phan, T.A., Russell, R.A.: A swarm robot methodology for collaborative manipulation of non-identical objects. Int. J. Robot. Res. 31, 101–122 (2012). https://doi.org/10.1177/0278364911416392

    Article  Google Scholar 

  176. Phan, T.A., Russell, R.A.: An effective collaboration algorithm for swarm robots communicating by sematectonic stigmergy. In: 2010 11th International Conference on Control Automation Robotics & Vision, 7–10 Dec. 2010, pp. 390–397 (2010). https://doi.org/10.1109/icarcv.2010.5707786

  177. Pitonakova, L., Crowder, R., Bullock, S.: Understanding the role of recruitment in collective robot foraging, MIT Press, pp. 264–271 (2014). http://dx.doi.org/10.7551/-0-262-32621-6-ch043

  178. Pugh, J., Martinoli, A.: Distributed scalable multi-robot learning using particle swarm optimization. Swarm Intell 3, 203–222 (2009). https://doi.org/10.1007/s11721-009-0030-z

    Article  Google Scholar 

  179. Pugh, J., Martinoli, A.: inspiring and modeling multi-robot search with particle swarm optimization. In: 2007 IEEE Swarm Intelligence Symposium, 1–5 April 2007, pp. 332–339 (2007). https://doi.org/10.1109/sis.2007.367956

  180. Qin, L., Zha, Y., Yin, Q., Peng, Y.: Formation control of robotic swarm using bounded artificial forces. Scientific World J. 2013, 15 (2013). https://doi.org/10.1155/2013/194280

    Article  Google Scholar 

  181. Rakesh, S.K.: Article: algorithm for movement of swarm robots. Int. J. Comput. Appl. 46(2), 36–39 (2012)

    Google Scholar 

  182. Rezaee, H., Abdollahi, F.: A decentralized cooperative control scheme with obstacle avoidance for a team of mobile robots. IEEE Trans. Industr. Electron. 61, 347–354 (2014). https://doi.org/10.1109/TIE.2013.2245612

    Article  Google Scholar 

  183. Rothermich, J., Ecemiş, M.I., Gaudiano, P.: Distributed localization and mapping with a robotic swarm. In: Şahin, E,, Spears, W. (Eds.) Swarm robotics, vol. 3342. Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 58–69 (2005). https://doi.org/10.1007/978-3-540-30552-1_6

  184. Rutishauser, S., Correll, N., Martinoli, A.: Collaborative coverage using a swarm of networked miniature robots. Robotics Autonom. Syst. 57, 517–525 (2009). https://doi.org/10.1016/j.robot.2008.10.023

    Article  Google Scholar 

  185. Schmickl, T., Thenius, R., Moeslinger, C., Radspieler, G., Kernbach, S., Szymanski, M., Crailsheim, K.: Get in touch: cooperative decision making based on robot-to-robot collisions. Auton. Agent. Multi-Agent Syst. 18, 133–155 (2009). https://doi.org/10.1007/s10458-008-9058-5

    Article  Google Scholar 

  186. Senanayake, M., Senthooran, I., Barca, J.C., Chung, H., Kamruzzaman, J., Murshed, M.: Search and tracking algorithms for swarms of robots: a survey. Robot. Autonom. Syst. 75, Part B:422–434 (2016). https://doi.org/10.1016/j.robot.2015.08.010

  187. Seo, S.-W., Yang, H.-C., Sim, K.-B.: Behavior learning and evolution of swarm robot system for cooperative behavior. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 673–678 (2009a). https://doi.org/10.1109/aim.2009.5229933

  188. Seo, S.-W., Yang, H.-C., Sim. K.-B.: Object tracking algorithm of swarm robot system for using polygon based Q-learning and cascade SVM. In: IEEE International Symposium on Industrial Electronics, pp. 2115–2120 (2009b). https://doi.org/10.1109/isie.2009.5213140

  189. Seung-Mok, L., Hyun, M.: A cooperative coevolutionary approach to multi-robot formation control. In: IEEE Congress on Evolutionary Computation (CEC), pp. 1225–1231 (2004). https://doi.org/10.1109/cec.2014.6900348

  190. Seçkin, A.Ç., Karpuz, C., Özek, A.: Feature matching based positioning algorithm for swarm robotics. Comput. Electr. Eng. (2016). https://doi.org/10.1016/j.compeleceng.2016.06.006

  191. Shao, J., Xie, G., Wang, L.: Leader-following formation control of multiple mobile vehicles. IET Control Theory Appl. 1, 545–552 (2007). https://doi.org/10.1049/iet-cta:20050371

    Article  Google Scholar 

  192. Shaohao, Z., Fidan, B., Ozturk, S.C., Gazi, V.: Single view depth estimation based formation control of robotic swarms: Obstacle avoidance, simulation, and practical issues. In: 16th Mediterranean Conference on Control and Automation, pp. 1162–1167 (2008). https://doi.org/10.1109/med.2008.4602269

  193. Sharkey, A.C.: Robots, insects and swarm intelligence. Artif. Intell. Rev. 26, 255–268 (2006). https://doi.org/10.1007/s10462-007-9057-y

    Article  Google Scholar 

  194. Shiming, C., Xianda, D., Xiaoling, C.: Formation control of robot swarm based on community division and multilevel topology design via pining. In: The 26th Chinese Control and Decision Conference (2014 CCDC), pp. 1631–1636 (2014). https://doi.org/10.1109/ccdc.2014.6852429

  195. Shlyakhov, N.E., Vatamaniuk, I.V., Ronzhin, A.L.: Survey of methods and algorithms of robot swarm aggregation. J. Phys: Conf. Ser. 803, (2017)

    Google Scholar 

  196. Shuai, Z., Xingguang, P., Yunke, H., Panpan, Y.: Gene regulatory networks with asymmetric information for swarm robot pattern formation. In: Liu, H. et al. (Eds.) Intelligent Robotics and Applications, part III, Switzland, pp. 14–24 (2015)

    Google Scholar 

  197. Simmons, R.G. et al.: Coordination for multi-robot exploration and mapping. In: Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelligence, pp. 852–858 (2000)

    Google Scholar 

  198. Song, P., Li, K., Han, X., Qi, G.: Formation and obstacle-avoidance control for mobile swarm robots based on artificial potential field. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 2273–2277 (2009). https://doi.org/10.1109/robio.2009.5420385

  199. Songdong, X., Jianchao, Z.: Sense limitedly, interact locally: the control strategy for swarm robots search. In: 2008 IEEE International Conference on Networking, Sensing and Control, 6–8 April 2008, pp. 402–407 (2008). https://doi.org/10.1109/icnsc.2008.4525249

  200. Soysal, O.: Bahcecei, Sahin E. Aggregation in swarm robotic systems: evolution and probabilistic control Turk J. Elec. Eng. 5, 199–225 (2007)

    Google Scholar 

  201. Soysal, O., Sahin, E.: Probabilistic aggregation strategies in swarm robotic systems. In: Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005., 8–10 June 2005, pp. 325–332 (2005). https://doi.org/10.1109/sis.2005.1501639

  202. Spears, W., Spears, D., Hamann, J., Heil, R.: Distributed, physics-based control of swarms of vehicles. Auton Robot 17, 137–162 (2004). https://doi.org/10.1023/B:AURO.0000033970.96785.f2

    Article  Google Scholar 

  203. Stormont, D.P., Kutiyanawala: A localization using triangulation in swarms of autonomous rescue robots. In: Safety, Security and Rescue Robotics, 2007. SSRR 2007. IEEE International Workshop on, 27–29 Sept. 2007, pp. 1–6 (2007). https://doi.org/10.1109/ssrr.2007.4381290

  204. Stoy, K., Brandt, D., Christensen, D.J.: Self-Reconfigurable Robots An Introduction. The MIT Press, Cambridge, Massachusetts (2010)

    Google Scholar 

  205. Stoy, K., Christensen, D.J., Brandt, D., Bordignon, M., Schultz, U.P.: Exploit morphology to simplify docking of self-reconfigurable robots. In: Asama, H., Kurokawa, H., Ota, J., Sekiyama, K. (Eds.) Distributed Autonomous Robotic Systems 8. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 441–452 (2009). https://doi.org/10.1007/978-3-642-00644-9_39

  206. Sugawara, K., Correll, N., Reishus, D.: Object Transportation by granular convection using swarm robots. In: Ani Hsieh, M., Chirikjian, G. (Eds.) Distributed Autonomous Robotic Systems: The 11th International Symposium. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 135–147 (2014). https://doi.org/10.1007/978-3-642-55146-8_10

  207. Sutantyo, D.K., Kernbach, S., Levi, P., Nepomnyashchikh, V.A.: Multi-robot searching algorithm using L´evy flight and artificial potential field. In: 2010 IEEE Safety Security and Rescue Robotics, 26–30 July 2010, pp. 1–6 (2010). https://doi.org/10.1109/ssrr.2010.5981560

  208. Tan, Y., Zheng, Z.-y.: Research advance in swarm robotics. Defence Technol. 9, 18–39 (2013). https://doi.org/10.1016/j.dt.2013.03.001

    Article  Google Scholar 

  209. Tanackov, I., Simić, D., Sremac, S., Tepić, J., Kocić-Tanackov, S.: Markovian ants in a queuing system. In: Graña Romay M, Corchado E, Garcia Sebastian MT (eds) Hybrid Artificial Intelligence Systems, vol 6076. Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 32–39 (2010). https://doi.org/10.1007/978-3-642-13769-3_4

  210. Tang, Q., Eberhard, P.: Mechanical PSO aided by extremum seeking for swarm robots cooperative search. In: Tan, Y., Shi, Y., Mo, H. (Eds.) Advances in Swarm Intelligence: 4th International Conference, ICSI 2013, Harbin, China, June 12–15, 2013, Proceedings, Part I. Springer, Berlin, Heidelberg, pp. 64–71 (2013). https://doi.org/10.1007/978-3-642-38703-6_7

  211. Tereshko, V., Loengarov, A.: Collective decision-making in honey bee foraging dynamics. Comput. Inform. Syst. J. 9, 3 (2005)

    Google Scholar 

  212. Thrun, S.: Robotic Mapping. In: Lakemeyer, G., Nebel, B. (eds.) A Survey in Exploring Artificial Intelligence in the New Millennium. Morgan Kaufmann, California (2002)

    Google Scholar 

  213. Tran, V.-H., Lee, S.-G.: Stable swarm formation control using onboard sensor information. In: Tan, Y., Shi, Y., Tan, K.C. (Eds.) Advances in Swarm Intelligence: First International Conference, ICSI 2010, Beijing, China, June 12–15, 2010, Proceedings, Part II. Springer, Berlin, Heidelberg, pp. 268–275 (2010). https://doi.org/10.1007/978-3-642-13498-2_35

  214. Trianni, V., Groß, R., Labella, T.H., Şahin, E., Dorigo, M.: Evolving aggregation behaviors in a swarm of robots. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (Eds.) Advances in Artificial Life: 7th European Conference, ECAL 2003, Dortmund, Germany, September 14–17, 2003. Proceedings. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 865–874 (2003). https://doi.org/10.1007/978-3-540-39432-7_93

  215. Trianni, V., Labella, T., Dorigo, M.: Evolution of direct communication for a swarm-bot performing hole avoidance. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L., Mondada, F., Stützle, T. (Eds.) Ant Colony Optimization and Swarm Intelligence, vol 3172. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg, pp. 130–141 (2004). https://doi.org/10.1007/978-3-540-28646-2_12

  216. Turduev, M., Kirtay, M., Sousa, P., Gazi, V., Marques, L.: Chemical concentration map building through bacterial foraging optimization based search algorithm by mobile robots. In: Systems Man and Cybernetics (SMC), 2010 IEEE International Conference on, 10–13 Oct. 2010, pp. 3242–3249 (2010). https://doi.org/10.1109/icsmc.2010.5642297

  217. Turgut, A., Çelikkanat, H., Gökçe, F., Şahin, E.: Self-organized flocking in mobile robot swarms. Swarm Intell 2, 97–120 (2008). https://doi.org/10.1007/s11721-008-0016-2

    Article  Google Scholar 

  218. Vaishak, N.L., Shilpa, B.: A review of swarm robotics: a different approach to service robot. Int. J. Sci. Eng. Technol. Res. (IJSETR) 2(8), 1560–1565 (2013)

    Google Scholar 

  219. Varghese, B., McKee, G.: A review and implementation of swarm pattern formation and transformation models. Int. J. Intell. Comput. Cybern. 2(4), 786–817 (2009). https://doi.org/10.1108/17563780911005872

    Article  MathSciNet  MATH  Google Scholar 

  220. Vaughan, R.: Massively multi-robot simulation in stage. Swarm Intell 2, 189–208 (2008). https://doi.org/10.1007/s11721-008-0014-4

    Article  Google Scholar 

  221. Vorobyev, G., Vardy, A., Banzhaf, W.: Supervised learning in robotic swarms: from training samples to emergent behavior. In: Hsieh, M.A., Chirikjian, G. (Eds.), Distributed autonomous robotic systems, 104, Springer Tracts in Advanced Robotics, pp. 435–448 (2014). https://doi.org/10.1007/978-3-642-55146-8_31

  222. Wahby, M., Weinhold, A., Hamann, H.: Revisiting BEECLUST: aggregation of swarm robots with adaptiveness to different light settings. Paper presented at the Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS), New York City, United States (2016)

    Google Scholar 

  223. Wang, Z., Gu, D.: Cooperative target tracking control of multiple robots. IEEE T Ind Electron 59, 3232–3240 (2012). https://doi.org/10.1109/TIE.2011.2146211

    Article  Google Scholar 

  224. Wang, G., Guo, L., Duan, H., Liu, L., Wang, H.: A Modified Firefly Algorithm for UCAV Path Planning International Journal of Hybrid Information Technology 5, 123–144 (2012)

    Google Scholar 

  225. Wei, J.L., Meng, Q.H., Yan, C., Zeng, M., Li, W.: Multi-Robot gas-source localization based on reinforcement learning. In: 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO), 11–14 Dec. 2012, pp. 1440–1445 (2012). https://doi.org/10.1109/robio.2012.6491171

  226. Wei-Min, S., Will, P., Galstyan, A.: Hormone-inspired self-organization and distributed control of robotic swarms. Autonomous Robot 17, 93–105 (2004)

    Article  Google Scholar 

  227. Werfel, J.: Collective construction with robot swarms. In: Doursat, R., Sayama, H., Michel, O. (Eds.) Morphogenetic Engineering. Understanding Complex Systems. Springer, Berlin Heidelberg, pp. 115–140 (2012). https://doi.org/10.1007/978-3-642-33902-8_5

  228. Winfield, A.F., Sa, J., Fernandez-Gago, M.-C., Dixon, C., Fisher, M.: On formal specification of emergent behaviours in swarm robotics systems. Int. J. Adv. Rob. Syst. 2(4), 363–370 (2005)

    Google Scholar 

  229. Wu, H., Qu, S., Xu, D., Chen, C.: Precise localization and formation control of swarm robots via wireless sensor networks. Mathem. Problems Eng. 2014, 12 (2014). https://doi.org/10.1155/2014/942306

    Article  Google Scholar 

  230. Xu, D., Zhang, X., Zhu, Z., Chen, C., Yang, P.: Behavior-based formation control of swarm robots. Mathem. Problems Eng. 2014, 13 (2014). https://doi.org/10.1155/2014/205759

    Article  MATH  Google Scholar 

  231. Yan, X., Chen, J., Sun, D.: Multilevel-based topology design and shape control of robot swarms. Automatica 48, 3122–3127 (2012). https://doi.org/10.1016/j.automatica.2012.08.019

    Article  MathSciNet  MATH  Google Scholar 

  232. Yan, M., Hongliang, G.: A bio-inspired developmental approach to swarm robots self-organization. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3512–3517 (2012). https://doi.org/10.1109/iros.2012.6385951

  233. Yan, M., Kazeem, O., Muller, J.C.: A hybrid aco/pso control algorithm for distributed swarm robots. In: IEEE Swarm Intelligence Symposium, pp. 273–280 (2007). https://doi.org/10.1109/sis.2007.367948

  234. Yan, X., Liang, A., Guan, H.: An algorithm for self-organized aggregation of swarm robotics using timer. In: 2011 IEEE Symposium on Swarm Intelligence, 11–15 April 2011, pp. 1–7 (2011). https://doi.org/10.1109/sis.2011.5952567

  235. Yim, M., et al.: Modular self-reconfigurable robot systems [Grand challenges of robotics]. IEEE Robot. Autom. Mag. 14, 43–52 (2007). https://doi.org/10.1109/MRA.2007.339623

    Article  Google Scholar 

  236. Yogeswaran, M., Ponnambalam, S.G.: Swarm robotics: an extensive research review, advanced knowledge application in practice. In: Fuerstner, I. (Ed.), ISBN: 978–953-307-141-1, InTech (2010), Available from: http://www.intechopen.com/books/advanced-knowledge-application-in-practice/swarm-robotics-an-extensiveresearch-review

  237. Yongming, Y., Yantao, T.: Swarm robots aggregation formation control inspired by fish school. In: IEEE International Conference on Robotics and Biomimetics, pp. 805–809 (2007). https://doi.org/10.1109/robio.2007.4522266

  238. Yu, Z., Jindong, T.: Deployment of multi-robot systems under the nonholonomic constraint. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 389–394 (2008). https://doi.org/10.1109/aim.2008.4601692

  239. Zaburdaev, V., Denisov, S., Klafter, J.: L’evy walks Rev. Modern Phys. 87, 483–530 (2015)

    Article  Google Scholar 

  240. Zahugi, E.M.H., Prasad, S.V.A.V., Prasad, T.V.: Advanced communication protocols for swarm robotics: a survey. Int. J. Eng. Res. Appl. (IJERA) 2(5), 119–123 (2012)

    Google Scholar 

  241. Zan, Y., Xue, S., Zeng, J., Du, J.: Target position estimation aided swarm robotics search under conditions of relative localization mechanism. In: International Conference on Computing, Measurement, Control and Sensor Network (CMCSN), pp. 183–186 (2012). https://doi.org/10.1109/cmcsn.2012.47

  242. Zhang, S., Peng, X., Huang, Y., Yang, P.: Gene regulatory networks with asymmetric information for swarm robot pattern formation. In: Liu, H., Kubota, N., Zhu, X., Dillmann, R., Zhou, D. (Eds.) 8th International Conference Intelligent Robotics and Applications:, Portsmouth, UK, August 24–27, 2015, Proceedings, Part III. Springer International Publishing, Cham, pp. 14–24 (2015). https://doi.org/10.1007/978-3-319-22873-0_2

  243. Zhang, Y., Ma, X., Miao, Y.: Localization of multiple odor sources using modified glowworm swarm optimization with collective robots. In: Proceedings of the 30th Chinese Control Conference, 22–24 July 2011, pp. 1899–1904 (2011)

    Google Scholar 

  244. Zhiguo, S., Jun, T., Junming, W., Qiao, Z., Xiaomeng, Z.: The simulation scenario for swarm robots based on open-source software Player/Stage. In: International Workshop on Open-Source Software for Scientific Computation (OSSC), pp. 107–113 (2011). https://doi.org/10.1109/ossc.2011.6184704

  245. Zhiguo, S., Jun, T., Qiao, Z., Xiaomeng, Z., Junming, W.: The improved Q-Learning algorithm based on pheromone mechanism for swarm robot system. In: 32nd Chinese Control Conference (CCC), pp. 6033–6038 (2013a)

    Google Scholar 

  246. Zhiguo, S., Jun, T., Yuankai, L., Zeying, W.: Adaptive reinforcement Q-Learning algorithm for swarm-robot system using pheromone mechanism. In: IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 952–957 (2013b). https://doi.org/10.1109/robio.2013.6739586

  247. Zhu, S., Wang, D., Low, C.B.: Cooperative control of multiple uavs for source seeking. J. Intell. Rob. Syst. 70, 293–301 (2013). https://doi.org/10.1007/s10846-012-9739-9

    Article  Google Scholar 

  248. Zohar, P., Frederic, B., Frank, W.G.: Lévy-taxis: a novel search strategy for finding odor plumes in turbulent flow-dominated environments. J. Phys.: Mathem. Theor. 42, 1–13 (2009)

    Google Scholar 

  249. Zongchun, L., Yantao, T., Mao, Y.: Neighborhood description and flocking behavior analysis of swarm robots based on fuzzy logic. In: 2nd International Conference on Advanced Computer Control (ICACC), pp. 25–29 (2010). https://doi.org/10.1109/icacc.2010.5486778

  250. Zou, R., Kalivarapu, V., Winer, E., Oliver, J., Bhattacharya, S.: Particle swarm optimization-based source seeking. IEEE Trans. Autom. Sci. Eng. 12, 865–875 (2015). https://doi.org/10.1109/TASE.2015.2441746

    Article  Google Scholar 

  251. Zou, Y., Luo, D., Chen, W.: Swarm robotic odor source localization using ant colony algorithm. In: 2009 IEEE International Conference on Control and Automation, 9–11 Dec. 2009, pp. 792–796 (2009). https://doi.org/10.1109/icca.2009.5410516

  252. Şahin, E.: Swarm robotics: from sources of inspiration to domains of application. In: Şahin, E., Spears, W. (Eds.) Swarm robotics, vol 3342. Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 10–20 (2005). https://doi.org/10.1007/978-3-540-30552-1_2

Download references

Acknowledgements

This work was supported by Universiti Sains Malaysia (USM) under Research University Incentive (RUI) Grant (Account No.: 1001/PELECT/814234).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Majid, M.H.A., Arshad, M.R., Mokhtar, R.M. (2022). Swarm Robotics Behaviors and Tasks: A Technical Review. In: Mariappan, M., Arshad, M.R., Akmeliawati, R., Chong, C.S. (eds) Control Engineering in Robotics and Industrial Automation. Studies in Systems, Decision and Control, vol 371. Springer, Cham. https://doi.org/10.1007/978-3-030-74540-0_5

Download citation

Publish with us

Policies and ethics