Skip to main content

Algorithms for Rapidly Dispersing Robot Swarms in Unknown Environments

  • Chapter
Algorithmic Foundations of Robotics V

Abstract

We develop and analyze algorithms for dispersing a swarm of primitive robots in an unknown environment, R. The primary objective is to minimize the makespan, that is, the time to fill the entire region. An environment is composed of pixels that form a connected subset of the integer grid. There is at most one robot per pixel and robots move horizontally or vertically at unit speed. Robots enter R by means of k ≥ 1 door pixels. Robots are primitive finite automata, only having local communication, local sensors, and a constant-sized memory.

We first give algorithms for the single-door case (i.e., k = 1), analyzing the algorithms both theoretically and experimentally. We prove that our algorithms have optimal makespan 2A − 1, where A is the area of R.

We next give an algorithm for the multi-door case (k ≥ 1), based on a wall-following version of the leader-follower strategy. We prove that our strategy is O(log(k + l))-competitive, and that this bound is tight for our strategy and other related strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Awerbuch, M. Betke, R. L. Rivest, and M. Singh. Piecemeal graph exploration by a mobile robot. In Proc. 8th Annual ACM Conference on Computational Learning Theory, pages 321–328, 1995.

    Chapter  Google Scholar 

  2. T. Balch. http://www.teambots.org.

  3. T. Balch and R. C. Arkin. Behavior-based formation control for multi-robot teams. IEEE Transactions on Robotics and Automation, 14 (6): 926–939, 1998.

    Article  Google Scholar 

  4. M. A. Batalin and G. S. Sukhatme. Multi-robot dynamic coverage of a planar bounded environment. Technical report, Robotic Embedded Systems Laboratory, University of Southern California, 2002.

    Google Scholar 

  5. M. A. Batalin and G. S. Sukhatme. Spreading out: A local approach to multi-robot coverage. In H. Asama, T. Arai, T. Fukuda, and T. Hasegawa, editors, Proc. 6th International Symposium on Distributed Autonomous Robotic Systems, Fukuoka, Japan, 2002. Springer-Verlag.

    Google Scholar 

  6. O. B. Bayazit, J.-M. Lien, and N. M. Amato. Better flocking behaviors using rule-based roadmaps. In Proc. 5th International Workshop on Algorithmic Foundations of Robotics, 2002.

    Google Scholar 

  7. M. A. Bender, A. Fernandez, D. Ron, A. Sahai, and S. Vadhan. The power of a pebble: Exploring and mapping directed graphs. Information and Computation, 176: 1–21, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. A. Bender and D. Slonim. The power of team exploration: Two robots can learn unlabeled directed graphs. In Proc. 35th Annual Symposium on Foundations of Computer Science, pages 75–85, 1994.

    Chapter  Google Scholar 

  9. A. M. Bruckstein, C. L. Mallows, and I. A. Wagner. Probabilistic pursuits on the grid. American Mathematical Monthly, 104 (4): 323–343, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  10. X. Deng and C. H. Papadimitriou. Exploring an unknown graph. In Proc. 31st Annual Symposium on Foundations of Computer Science, pages 356–361, 1990.

    Google Scholar 

  11. G. Dudek, M. Jenkin, E. Milios, and D. Wilkes. Map validation and robot self-location in a graph-like world. Robotics and Autonomous Systems, 22 (2): 159–178, 1997.

    Article  Google Scholar 

  12. A. Dumitrescu, I. Suzuki, and M. Yamashita. High speed formations of recon-figurable modular robotic systems. In Proc. IEEE International Conference on Robotics and Automation (ICRA ‘02), pages 123–128, 2002.

    Google Scholar 

  13. P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Distributed coordination of a set of autonomous mobile robots. In Proc. IEEE Intelligent Vehicle Symposium (IV 2000), pages 480–485, 2000.

    Google Scholar 

  14. D. Gage. Many-robot systems. http://www.spawar.navy.mil/robots/research/manyrobo/manyrobo.html/robots/research/manyrobo/manyrobo.html.

  15. D. Gage. Sensor abstractions to support many-robot systems. In Proc. of SPIE Mobile Robots VII, Boston MA, 1992, Vol. 1831, pages 235–246, 1992.

    Google Scholar 

  16. V. Gervasi and G. Prencipe. Flocking by a set of autonomous mobile robots. Technical Report TR-01–24, University of Pisa, Oct. 2001.

    Google Scholar 

  17. A. Howard, M. J. Mataric, and G. S. Sukhatme. Mobile sensor network deployment using potential fields: A distributed scalable solution to the area coverage problem. In H. Asama, T. Arai, T. Fukuda, and T. Hasegawa, editors, Proc. 6th International Symposium on Distributed Autonomous Robotic Systems, Fukuoka, Japan, 2002. Springer-Verlag.

    Google Scholar 

  18. N. Jovanovic, T-R. Hsiang, and M. Sztainberg. T-R. Hsiang, N. Jovanovic, and M. Sztainberg. Experimental Comparison of Dispersion Protocols for Robot Swarms. Technical Report, Stony Brook University, 2002.

    Google Scholar 

  19. J. S. B. Mitchell, Geometric shortest paths and network optimization, In Handbook of Computational Geometry ( J.-R. Sack and J. Urrutia, editors), pages 633–701. Elsevier Science Publishers B.V. North-Holland, Amsterdam, 2000.

    Chapter  Google Scholar 

  20. D. Payton, R. Estkowski, M. Howard. Progress in Pheromone Robotics. In Proc. 7th International Conference on Intelligent Autonomous Systems, 2002.

    Google Scholar 

  21. D. Payton, M. Daily, R. Estkowski, M. Howard, C. Lee. Pheromone Robotics. Autonomous Robots, Vol. 11, No. 3, pages 319–324, 2001.

    Article  MATH  Google Scholar 

  22. G. Prencipe. Distributed Coordination of a Set of Autonomous Mobile Robots. Ph.D. thesis Dipartimento di Informatica, Universitâ degli Studi di Pisa, 2002. http://www.di.unipi.it/phd/tesi/tesi_2002/PhDthesis_Prencipe.ps.gz/phd/tesi/tesi_2002/PhDthesis_Prencipe.ps.gz.

    Google Scholar 

  23. J. H. Reif and H. Wang. Social potential fields: A distributed behavioral control for autonomous robots. Robotics and Autonomous Systems, 27 (3): 171–194, 1999.

    Article  Google Scholar 

  24. W. Spears and D. Gordon. Using artificial physics to control agents. In Proc. IEEE Internat. Conf. on Information, Intelligence, and Systems, 1999.

    Google Scholar 

  25. K. Sugihara and I. Suzuki. Distributed algorithms for formation of geometric patterns with many mobile robots. Journal of Robotic Systems, 13 (3): 127–139, 1996.

    Article  MATH  Google Scholar 

  26. I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: Formation of geometric patterns. SI AM Journal on Computing, 28 (4): 1347–1363, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  27. I. Wagner and A. Bruckstein. Cooperative cleaners: a study in ant robotics. Technical Report CIS9512, Technion, 1995.

    Google Scholar 

  28. I. Wagner, M. Lindenbaum, and A. Bruckstein. Distributed covering by ant-robots using evaporating traces. IEEE Transactions on Robotics and Automation, 15 (5): 918–933, 1999.

    Article  Google Scholar 

  29. I. A. Wagner, M. Lindenbaum, and A. M. Bruckstein. Efficiently searching a graph by a smell-oriented vertex process. Annals of Mathematics and Artificial Intelligence, 24 (l-4): 211–223, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  30. A. Winfield. Distributed sensing and data collection via broken ad hoc wireless connected networks of mobile robots. In L.E. Parker, G.W. Bekey, and J. Barhen, editors, Distributed Autonomous Robotic Systems, Vol. 4, pp. 273–282, 2000. Springer-Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hsiang, TR., Arkin, E.M., Bender, M.A., Fekete, S.P., Mitchell, J.S.B. (2004). Algorithms for Rapidly Dispersing Robot Swarms in Unknown Environments. In: Boissonnat, JD., Burdick, J., Goldberg, K., Hutchinson, S. (eds) Algorithmic Foundations of Robotics V. Springer Tracts in Advanced Robotics, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45058-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45058-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07341-0

  • Online ISBN: 978-3-540-45058-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics