Skip to main content

PAWR as a Direct SRC-1/HOXC11 Suppression Target

  • Chapter
  • First Online:
Tumor Suppressor Par-4
  • 258 Accesses

Abstract

Regulation of cell fate is controlled through complex and highly regulated transcription of key genes including growth factors, pluripotency, cell differentiation and apoptotic genes. Dysregulation of this process in cancer is central to tumour cell plasticity, the ability of the cancer to resist drug treatment and adaptation to new metastatic environments. The p160 family of coactivator proteins, including SRC-1, are known to partner with nuclear receptor proteins to promote gene transcription and enhance cell growth. More recently, SRC-1 has also been shown to associate with other transcription factors including the homeobox protein HOXC11 to activate pluripotency and development genes. The HOXC11/SRC-1 partnership can also repress gene expression. SRC-1 has been shown to utilise the DNA methylation machinery to silence cancer cell differentiation genes including CD24, NTRK2, NR2F2, CTDP1, SETBP1, and POU3F2. Prostate apoptosis response-4 (Par-4, PAWR) is an apoptotic gene associated with prolonged disease-free survival in breast cancer patients. HOXC11-SRC-1 can utilise the histone demethylase, jumonji domain containing 2C (JMJD2C) to recruit the histone deacetylating protein HDAC1 and histone H3 lysine 27 trimethylation to silence PAWR and promote cancer cells survival in the advanced setting. Master transcriptional regulatory machinery can cooperate to aberrantly silence PAWR, to inhibit mechanisms of controlled cell death and provide a survival advantage for cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ward E, Varešlija D, Charmsaz S, Fagan A, Browne AL, Cosgrove N et al (2018) Epigenome-wide SRC-1-mediated gene silencing represses cellular differentiation in advanced breast Cancer. Clin Cancer Res Off J Am Assoc Cancer Res 24(15):3692–3703

    Article  CAS  Google Scholar 

  2. Walsh CA, Bolger JC, Byrne C, Cocchiglia S, Hao Y, Fagan A et al (2014) Global gene repression by the steroid receptor coactivator SRC-1 promotes oncogenesis. Cancer Res 74(9):2533–2544

    Article  CAS  PubMed  Google Scholar 

  3. Browne AL, Charmsaz S, Varešlija D, Fagan A, Cosgrove N, Cocchiglia S et al (2018) Network analysis of SRC-1 reveals a novel transcription factor hub which regulates endocrine resistant breast cancer. Oncogene 37(15):2008–2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McIlroy M, McCartan D, Early S (2010) P OG, Pennington S, Hill AD, et al. interaction of developmental transcription factor HOXC11 with steroid receptor coactivator SRC-1 mediates resistance to endocrine therapy in breast cancer [corrected]. Cancer Res 70(4):1585–1594

    Article  CAS  PubMed  Google Scholar 

  5. Voight BF, Kudaravalli S, Wen X, Pritchard JK (2006) A map of recent positive selection in the human genome. PLoS Biol 4(3):e72

    Article  PubMed  PubMed Central  Google Scholar 

  6. Xu J, Qiu Y, DeMayo FJ, Tsai SY, Tsai M-J, O’Malley BW (1998) Partial hormone resistance in mice with disruption of the steroid receptor Coactivator-1 (SRC-1) gene. Science 279(5358):1922–1925

    Article  CAS  PubMed  Google Scholar 

  7. Xu J, Wu RC, O’Malley BW (2009) Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nat Rev Cancer 9(9):615–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Myers E, Hill ADK, Kelly G, McDermott EW, O’Higgins NJ, Buggy Y et al (2005) Associations and interactions between Ets-1 and Ets-2 and coregulatory proteins, SRC-1, AIB1, and NCoR in breast Cancer. Clin Cancer Res 11(6):2111–2122

    Article  CAS  PubMed  Google Scholar 

  9. Al-azawi D, Ilroy MM, Kelly G, Redmond AM, Bane FT, Cocchiglia S et al (2008) Ets-2 and p160 proteins collaborate to regulate c-Myc in endocrine resistant breast cancer. Oncogene 27(21):3021–3031

    Article  CAS  PubMed  Google Scholar 

  10. Zhao S, Geybels MS, Leonardson A, Rubicz R, Kolb S, Yan Q et al (2017) Epigenome-wide tumor DNA methylation profiling identifies novel prognostic biomarkers of metastatic-lethal progression in men diagnosed with clinically localized prostate Cancer. Clin Cancer Res 23(1):311–319

    Article  CAS  PubMed  Google Scholar 

  11. Varešlija D, Ward E, Purcell SP, Cosgrove NS, Cocchiglia S, O’Halloran PJ et al (2021) Comparative analysis of the AIB1 interactome in breast cancer reveals MTA2 as a repressive partner which silences E-Cadherin to promote EMT and associates with a pro-metastatic phenotype. Oncogene

    Google Scholar 

  12. McBryan J, Theissen SM, Byrne C, Hughes E, Cocchiglia S, Sande S et al (2012) Metastatic progression with resistance to aromatase inhibitors is driven by the steroid receptor coactivator SRC-1. Cancer Res 72(2):548–559

    Article  CAS  PubMed  Google Scholar 

  13. McCartan D, Bolger JC, Fagan A, Byrne C, Hao Y, Qin L et al (2012) Global characterization of the SRC-1 transcriptome identifies ADAM22 as an ER-independent mediator of endocrine-resistant breast Cancer. Cancer Res 72(1):220–229

    Article  CAS  PubMed  Google Scholar 

  14. Lewis MT (2000) Homeobox genes in mammary gland development and neoplasia. Breast Cancer Res BCR 2(3):158–169

    Article  CAS  PubMed  Google Scholar 

  15. McCoy EL, Iwanaga R, Jedlicka P, Abbey NS, Chodosh LA, Heichman KA et al (2009) Six1 expands the mouse mammary epithelial stem/progenitor cell pool and induces mammary tumors that undergo epithelial-mesenchymal transition. J Clin Invest 119(9):2663–2677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pineault KM, Wellik DM (2014) Hox genes and limb musculoskeletal development. Curr Osteoporos Rep 12(4):420–427

    Article  PubMed  PubMed Central  Google Scholar 

  17. Visvader JE, Lindeman GJ (2003) Transcriptional regulators in mammary gland development and cancer. Int J Biochem Cell Biol 35(7):1034–1051

    Article  CAS  PubMed  Google Scholar 

  18. Shah N, Sukumar S (2010) The Hox genes and their roles in oncogenesis. Nat Rev Cancer 10(5):361–371

    Article  CAS  PubMed  Google Scholar 

  19. Chen F, Capecchi MR (1999) Paralogous mouse Hox genes, Hoxa9, Hoxb9, and Hoxd9, function together to control development of the mammary gland in response to pregnancy. Proc Natl Acad Sci U S A 96(2):541–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Garcia-Gasca A, Spyropoulos DD (2000) Differential mammary morphogenesis along the anteroposterior axis in Hoxc6 gene targeted mice. Dev DynamicsOff Pub Am Assoc Anatomists 219(2):261–276

    CAS  Google Scholar 

  21. Pearson JC, Lemons D, McGinnis W (2005) Modulating Hox gene functions during animal body patterning. Nat Rev Genet 6(12):893–904

    Article  CAS  PubMed  Google Scholar 

  22. Jin K, Kong X, Shah T, Penet MF, Wildes F, Sgroi DC et al (2012) The HOXB7 protein renders breast cancer cells resistant to tamoxifen through activation of the EGFR pathway. Proc Natl Acad Sci U S A 109(8):2736–2741

    Article  CAS  PubMed  Google Scholar 

  23. Ma XJ, Wang Z, Ryan PD, Isakoff SJ, Barmettler A, Fuller A et al (2004) A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 5(6):607–616

    Article  CAS  PubMed  Google Scholar 

  24. Jerevall PL, Brommesson S, Strand C, Gruvberger-Saal S, Malmström P, Nordenskjöld B et al (2008) Exploring the two-gene ratio in breast cancer--independent roles for HOXB13 and IL17BR in prediction of clinical outcome. Breast Cancer Res Treat 107(2):225–234

    Article  CAS  PubMed  Google Scholar 

  25. Raman V, Martensen SA, Reisman D, Evron E, Odenwald WF, Jaffee E et al (2000) Compromised HOXA5 function can limit p53 expression in human breast tumours. Nature 405(6789):974–978

    Article  CAS  PubMed  Google Scholar 

  26. Chu MC, Selam FB, Taylor HS (2004) HOXA10 regulates p53 expression and matrigel invasion in human breast cancer cells. Cancer Biol Ther 3(6):568–572

    Article  CAS  PubMed  Google Scholar 

  27. Zhang X, Hamada J, Nishimoto A, Takahashi Y, Murai T, Tada M et al (2007) HOXC6 and HOXC11 increase transcription of S100β gene in BrdU-induced in vitro differentiation of GOTO neuroblastoma cells into Schwannian cells. J Cell Mol Med 11(2):299–306

    Google Scholar 

  28. deBlacam C, Byrne C, Hughes E, McIlroy M, Bane F, Hill AD et al (2011) HOXC11-SRC-1 regulation of S100β in cutaneous melanoma: new targets for the kinase inhibitor dasatinib. Br J Cancer 105(1):118–123

    Google Scholar 

  29. Charmsaz S, Hughes É, Bane FT, Tibbitts P, McIlroy M, Byrne C et al (2017) S100β as a serum marker in endocrine resistant breast cancer. BMC Med 15(1):79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Waddington CH (1959) Canalization of development and genetic assimilation of acquired characters. Nature 183(4676):1654–1655

    Article  CAS  PubMed  Google Scholar 

  31. Lande-Diner L, Zhang J, Ben-Porath I, Amariglio N, Keshet I, Hecht M et al (2007) Role of DNA methylation in stable gene repression. J Biol Chem 282(16):12194–12200

    Article  CAS  PubMed  Google Scholar 

  32. Bird AP (1996) The relationship of DNA methylation to cancer. Cancer Surv 28:87–101

    CAS  PubMed  Google Scholar 

  33. Cheng X, Blumenthal RM (2008) Mammalian DNA methyltransferases: a structural perspective. Structure (London, England : 1993) 16(3):341–350

    Article  CAS  Google Scholar 

  34. Dahl C, Grønbæk K, Guldberg P (2011) Advances in DNA methylation: 5-hydroxymethylcytosine revisited. Clinica chimica acta; international journal of clinical chemistry 412(11–12):831–83e

    Article  CAS  PubMed  Google Scholar 

  35. Schaefer M, Pollex T, Hanna K, Tuorto F, Meusburger M, Helm M et al (2010) RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage. Genes Dev 24(15):1590–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bestor TH (2000) The DNA methyltransferases of mammals. Hum Mol Genet 9(16):2395–2402

    Article  CAS  PubMed  Google Scholar 

  37. Fujita N, Watanabe S, Ichimura T, Tsuruzoe S, Shinkai Y, Tachibana M et al (2003) Methyl-CpG binding domain 1 (MBD1) interacts with the Suv39h1-HP1 heterochromatic complex for DNA methylation-based transcriptional repression. J Biol Chem 278(26):24132–24138

    Article  CAS  PubMed  Google Scholar 

  38. Bogdanović O, Veenstra GJ (2009) DNA methylation and methyl-CpG binding proteins: developmental requirements and function. Chromosoma 118(5):549–565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Hendrich B, Hardeland U, Ng HH, Jiricny J, Bird A (1999) The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature 401(6750):301–304

    Article  CAS  PubMed  Google Scholar 

  40. Lewis JD, Meehan RR, Henzel WJ, Maurer-Fogy I, Jeppesen P, Klein F et al (1992) Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69(6):905–914

    Article  CAS  PubMed  Google Scholar 

  41. Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J et al (2008) MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 320(5880):1224–1229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN et al (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393(6683):386–389

    Article  CAS  PubMed  Google Scholar 

  43. Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184(4139):868–871

    Article  CAS  PubMed  Google Scholar 

  44. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45

    Article  CAS  PubMed  Google Scholar 

  45. Ito K, Adcock IM (2002) Histone acetylation and histone deacetylation. Mol Biotechnol 20(1):99–106

    Article  CAS  PubMed  Google Scholar 

  46. Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature 389(6649):349–352

    Article  CAS  PubMed  Google Scholar 

  47. Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13(5):343–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10(5):295–304

    Article  CAS  PubMed  Google Scholar 

  49. Turner BM (2000) Histone acetylation and an epigenetic code. BioEssays: News Rev Mol Cell Dev Biol 22(9):836–845

    Article  CAS  Google Scholar 

  50. Roth SY, Denu JM, Allis CD (2001) Histone acetyltransferases. Annu Rev Biochem 70:81–120

    Article  CAS  PubMed  Google Scholar 

  51. Bachman KE, Rountree MR, Baylin SB (2001) Dnmt3a and Dnmt3b are transcriptional repressors that exhibit unique localization properties to heterochromatin. J Biol Chem 276(34):32282–32287

    Article  CAS  PubMed  Google Scholar 

  52. Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7(1):21–33

    Article  CAS  PubMed  Google Scholar 

  53. Carr BI, Reilly JG, Smith SS, Winberg C, Riggs A (1984) The tumorigenicity of 5-azacytidine in the male Fischer rat. Carcinogenesis 5(12):1583–1590

    Article  CAS  PubMed  Google Scholar 

  54. Baylin SB, Herman JG (2000) DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genetics : TIG 16(4):168–174

    Article  CAS  PubMed  Google Scholar 

  55. Qin L, Chen X, Wu Y, Feng Z, He T, Wang L et al (2011) Steroid receptor Coactivator-1 upregulates integrin α5 expression to promote breast Cancer cell adhesion and migration. Cancer Res 71(5):1742–1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Dobrovolna J, Chinenov Y, Kennedy MA, Liu B, Rogatsky I (2012) Glucocorticoid-dependent phosphorylation of the transcriptional Coregulator GRIP1. Mol Cell Biol 32(4):730–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chakraborty M, Qiu SG, Vasudevan KM, Rangnekar VM (2001) Par-4 drives trafficking and activation of Fas and FasL to induce prostate Cancer cell apoptosis and tumor regression. Cancer Res 61(19):7255–7263

    CAS  PubMed  Google Scholar 

  58. Hebbar N, Wang C, Rangnekar VM (2012) Mechanisms of apoptosis by the tumor suppressor Par-4. J Cell Physiol 227(12):3715–3721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Alvarez JV, Pan TC, Ruth J, Feng Y, Zhou A, Pant D et al (2013) Par-4 downregulation promotes breast cancer recurrence by preventing multinucleation following targeted therapy. Cancer Cell 24(1):30–44

    Article  CAS  PubMed  Google Scholar 

  60. Rogatsky I, Luecke HF, Leitman DC, Yamamoto KR (2002) Alternate surfaces of transcriptional coregulator GRIP1 function in different glucocorticoid receptor activation and repression contexts. Proc Natl Acad Sci 99(26):16701–16706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rogatsky I, Zarember KA, Yamamoto KR (2001) Factor recruitment and TIF2/GRIP1 corepressor activity at a collagenase-3 response element that mediates regulation by phorbol esters and hormones. EMBO J 20(21):6071–6083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Uhlenhaut NH, Barish Grant D, Yu Ruth T, Downes M, Karunasiri M, Liddle C et al (2013) Insights into negative regulation by the glucocorticoid receptor from genome-wide profiling of inflammatory Cistromes. Mol Cell 49(1):158–171

    Article  CAS  PubMed  Google Scholar 

  63. Mittelstadt ML, Patel RC (2012) AP-1 mediated transcriptional repression of matrix metalloproteinase-9 by recruitment of histone deacetylase 1 in response to interferon β. PLoS One 7(8):e42152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lizcano F, Romero C, Vargas D (2011) Regulation of adipogenesis by nuclear receptor PPARγ is modulated by the histone demethylase JMJD2C. Genet Mol Biol 34(1):19–24

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Santos RVC, de Sena WLB, Dos Santos FA, da Silva Filho AF, da Rocha Pitta MG, da Rocha Pitta MG et al (2019) Potential therapeutic agents against Par-4 target for Cancer treatment: where are we going? Curr Drug Targets 20(6):635–654

    Article  PubMed  CAS  Google Scholar 

  66. Mabe NW, Fox DB, Lupo R, Decker AE, Phelps SN, Thompson JW et al (2018) Epigenetic silencing of tumor suppressor Par-4 promotes chemoresistance in recurrent breast cancer. J Clin Invest 128(10):4413–4428

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonie Young .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Varešlija, D., Young, L. (2022). PAWR as a Direct SRC-1/HOXC11 Suppression Target. In: Rangnekar, V.M. (eds) Tumor Suppressor Par-4. Springer, Cham. https://doi.org/10.1007/978-3-030-73572-2_11

Download citation

Publish with us

Policies and ethics