Skip to main content
Log in

Hox Genes and Limb Musculoskeletal Development

  • Skeletal Development (E Schipani and E Zelzer, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

In the musculoskeletal system, muscle, tendon, and bone tissues develop in a spatially and temporally coordinated manner, and integrate into a cohesive functional unit by forming specific connections unique to each region of the musculoskeletal system. The mechanisms of these patterning and integration events are an area of great interest in musculoskeletal biology. Hox genes are a family of important developmental regulators and play critical roles in skeletal patterning throughout the axial and appendicular skeleton. Unexpectedly, Hox genes are not expressed in the differentiated cartilage or other skeletal cells, but rather are highly expressed in the tightly associated stromal connective tissues as well as regionally expressed in tendons and muscle connective tissue. Recent work has revealed a previously unappreciated role for Hox in patterning all the musculoskeletal tissues of the limb. These observations suggest that integration of the musculoskeletal system is regulated, at least in part, by Hox function in the stromal connective tissue. This review will outline our current understanding of Hox function in patterning and integrating the musculoskeletal tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance•• Of major importance

  1. Duboule D. Patterning in the vertebrate limb. Curr Opin Genet Dev. 1991;1(2):211–6. doi:10.1016/S0959-437X(05)80072-3.

    Article  PubMed  CAS  Google Scholar 

  2. Krumlauf R. Hox genes in vertebrate development. Cell. 1994;78(2):191–201.

    Article  PubMed  CAS  Google Scholar 

  3. Lewis EB. Genes and Developmental Pathways. Am Zool. 1963;3(1):33–56. doi:10.2307/3881152.

    Google Scholar 

  4. Lewis EB. A gene complex controlling segmentation in Drosophila. Nature. 1978;276(5688):565–70.

    Article  PubMed  CAS  Google Scholar 

  5. Lewis EB. Regulation of the genes of the bithorax complex in Drosophila. Cold Spring Harb Symp Quant Biol. 1985;50:155–64.

    Article  PubMed  CAS  Google Scholar 

  6. Wellik DM, Capecchi MR. Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science. 2003;301(5631):363–7. doi:10.1126/science.1085672.

    Article  PubMed  CAS  Google Scholar 

  7. Scott MP. Vertebrate homeobox gene nomenclature. Cell. 1992;71(4):551–3.

    Article  PubMed  CAS  Google Scholar 

  8. Pearson JC, Lemons D, McGinnis W. Modulating Hox gene functions during animal body patterning. Nature Rev Genet. 2005;6(12):893–904. doi:10.1038/nrg1726.

    Article  PubMed  CAS  Google Scholar 

  9. Condie BG, Capecchi MR. Mice with targeted disruptions in the paralogous genes hoxa-3 and hoxd-3 reveal synergistic interactions. Nature. 1994;370(6487):304–7. doi:10.1038/370304a0.

    Article  PubMed  CAS  Google Scholar 

  10. Davis AP, Witte DP, Hsieh-Li HM, Potter SS, Capecchi MR. Absence of radius and ulna in mice lacking hoxa-11 and hoxd-11. Nature. 1995;375(6534):791–5. doi:10.1038/375791a0.

    Article  PubMed  CAS  Google Scholar 

  11. Fromental-Ramain C, Warot X, Lakkaraju S, Favier B, Haack H, Birling C, et al. Specific and redundant functions of the paralogous Hoxa-9 and Hoxd-9 genes in forelimb and axial skeleton patterning. Development. 1996;122(2):461–72.

    PubMed  CAS  Google Scholar 

  12. Fromental-Ramain C, Warot X, Messadecq N, LeMeur M, Dolle P, Chambon P. Hoxa-13 and Hoxd-13 play a crucial role in the patterning of the limb autopod. Development. 1996;122(10):2997–3011.

    PubMed  CAS  Google Scholar 

  13. Horan GS, Ramirez-Solis R, Featherstone MS, Wolgemuth DJ, Bradley A, Behringer RR. Compound mutants for the paralogous hoxa-4, hoxb-4, and hoxd-4 genes show more complete homeotic transformations and a dose-dependent increase in the number of vertebrae transformed. Genes Dev. 1995;9(13):1667–77.

    Article  PubMed  CAS  Google Scholar 

  14. McIntyre DC, Rakshit S, Yallowitz AR, Loken L, Jeannotte L, Capecchi MR, et al. Hox patterning of the vertebrate rib cage. Development. 2007;134(16):2981–9. doi:10.1242/dev.007567.

    Article  PubMed  CAS  Google Scholar 

  15. van den Akker E, Fromental-Ramain C, de Graaff W, Le Mouellic H, Brulet P, Chambon P, et al. Axial skeletal patterning in mice lacking all paralogous group 8 Hox genes. Development. 2001;128(10):1911–21.

    PubMed  Google Scholar 

  16. Wellik DM, Hawkes PJ, Capecchi MR. Hox11 paralogous genes are essential for metanephric kidney induction. Genes Dev. 2002;16(11):1423–32. doi:10.1101/gad.993302.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Chen F, Capecchi MR. Targeted mutations in hoxa-9 and hoxb-9 reveal synergistic interactions. Dev Biol. 1997;181(2):186–96. doi:10.1006/dbio.1996.8440.

    Article  PubMed  CAS  Google Scholar 

  18. Chen F, Capecchi MR. Paralogous mouse Hox genes, Hoxa9, Hoxb9, and Hoxd9, function together to control development of the mammary gland in response to pregnancy. Proc Natl Acad Sci U S A. 1999;96(2):541–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Chen F, Greer J, Capecchi MR. Analysis of Hoxa7/Hoxb7 mutants suggests periodicity in the generation of the different sets of vertebrae. Mech Dev. 1998;77(1):49–57.

    Article  PubMed  CAS  Google Scholar 

  20. Gavalas A, Trainor P, Ariza-McNaughton L, Krumlauf R. Synergy between Hoxa1 and Hoxb1: the relationship between arch patterning and the generation of cranial neural crest. Development. 2001;128(15):3017–27.

    PubMed  CAS  Google Scholar 

  21. Manley NR, Capecchi MR. Hox group 3 paralogs regulate the development and migration of the thymus, thyroid, and parathyroid glands. Dev Biol. 1998;195(1):1–15. doi:10.1006/dbio.1997.8827.

    Article  PubMed  CAS  Google Scholar 

  22. Studer M, Gavalas A, Marshall H, Ariza-McNaughton L, Rijli FM, Chambon P, et al. Genetic interactions between Hoxa1 and Hoxb1 reveal new roles in regulation of early hindbrain patterning. Development. 1998;125(6):1025–36.

    PubMed  CAS  Google Scholar 

  23. Wahba GM, Hostikka SL, Carpenter EM. The paralogous Hox genes Hoxa10 and Hoxd10 interact to pattern the mouse hindlimb peripheral nervous system and skeleton. Dev Biol. 2001;231(1):87–102. doi:10.1006/dbio.2000.0130.

    Article  PubMed  CAS  Google Scholar 

  24. Wellik DM. Hox patterning of the vertebrate axial skeleton. Dev Dynam. 2007;236(9):2454–63. doi:10.1002/dvdy.21286.

    Article  CAS  Google Scholar 

  25. Wellik DM. Hox genes and vertebrate axial pattern. Curr Top Dev Biol. 2009;88:257–78. doi:10.1016/s0070-2153(09)88009-5.

    Article  PubMed  CAS  Google Scholar 

  26. Boulet AM, Capecchi MR. Multiple roles of Hoxa11 and Hoxd11 in the formation of the mammalian forelimb zeugopod. Development. 2004;131(2):299–309. doi:10.1242/dev.00936.

    Article  PubMed  CAS  Google Scholar 

  27. Hostikka SL, Capecchi MR. The mouse Hoxc11 gene: genomic structure and expression pattern. Mech Dev. 1998;70(1–2):133–45.

    Article  PubMed  CAS  Google Scholar 

  28. Kmita M, Tarchini B, Zakany J, Logan M, Tabin CJ, Duboule D. Early developmental arrest of mammalian limbs lacking HoxA/HoxD gene function. Nature. 2005;435(7045):1113–6. doi:10.1038/nature03648.

    Article  PubMed  CAS  Google Scholar 

  29. Xu B, Wellik DM. Axial Hox9 activity establishes the posterior field in the developing forelimb. Proc Natl Acad Sci U S A. 2011;108(12):4888–91. doi:10.1073/pnas.1018161108.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Xu B, Hrycaj SM, McIntyre DC, Baker NC, Takeuchi JK, Jeannotte L, et al. Hox5 interacts with Plzf to restrict Shh expression in the developing forelimb. Proc Natl Acad Sci U S A. 2013;110(48):19438–43. doi:10.1073/pnas.1315075110.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Karsenty G, Kronenberg HM, Settembre C. Genetic control of bone formation. Ann Rev Cell Dev Biol. 2009;25:629–48. doi:10.1146/annurev.cellbio.042308.113308.

    Article  CAS  Google Scholar 

  32. Schweitzer R, Zelzer E, Volk T. Connecting muscles to tendons: tendons and musculoskeletal development in flies and vertebrates. Development. 2010;137(17):2807–17. doi:10.1242/dev.047498.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Murphy M, Kardon G. Origin of vertebrate limb muscle: the role of progenitor and myoblast populations. Curr Top Dev Biol. 2011;96:1–32. doi:10.1016/B978-0-12-385940-2.00001-2.

    Article  PubMed  CAS  Google Scholar 

  34. Kieny M, Chevallier A. Autonomy of tendon development in the embryonic chick wing. J Embryol Exp Morphol. 1979;49:153–65.

    PubMed  CAS  Google Scholar 

  35. Shellswell G, Wolpert L. The pattern of muscle and tendon development in the chick wing. Vert Limb Somite Morphogen. 1977:71–86.

  36. Chevallier A, Kieny M, Mauger A. Limb-somite relationship: origin of the limb musculature. J Embryol Exp Morphol. 1977;41(1):245–58.

    PubMed  CAS  Google Scholar 

  37. Christ B, Jacob HJ, Jacob M. Experimental analysis of the origin of the wing musculature in avian embryos. Anatomy Embryol. 1977;150(2):171–86.

    Article  CAS  Google Scholar 

  38. Ordahl CP, Le Douarin NM. Two myogenic lineages within the developing somite. Development. 1992;114(2):339–53.

    PubMed  CAS  Google Scholar 

  39. Wachtler F, Christ B, Jacob HJ. On the determination of mesodermal tissues in the avian embryonic wing bud. Anatomy Embryol. 1981;161(3):283–9.

    Article  CAS  Google Scholar 

  40. Thorogood PV, Hinchliffe JR. An analysis of the condensation process during chondrogenesis in the embryonic chick hind limb. J Embryol Exp Morphol. 1975;33(3):581–606.

    PubMed  CAS  Google Scholar 

  41. Kardon G. Muscle and tendon morphogenesis in the avian hind limb. Development. 1998;125(20):4019–32.

    PubMed  CAS  Google Scholar 

  42. Schweitzer R, Chyung JH, Murtaugh LC, Brent AE, Rosen V, Olson EN, et al. Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development. 2001;128(19):3855–66.

    PubMed  CAS  Google Scholar 

  43. Schroeter S, Tosney KW. Spatial and temporal patterns of muscle cleavage in the chick thigh and their value as criteria for homology. Am J Anat. 1991;191(4):325–50. doi:10.1002/aja.1001910402.

    Article  PubMed  CAS  Google Scholar 

  44. Schroeter S, Tosney KW. Ultrastructural and morphometric analysis of the separation of two thigh muscles in the chick. Am J Anat. 1991;191(4):351–68. doi:10.1002/aja.1001910403.

    Article  PubMed  CAS  Google Scholar 

  45. Kardon G, Campbell JK, Tabin CJ. Local extrinsic signals determine muscle and endothelial cell fate and patterning in the vertebrate limb. Dev Cell. 2002;3(4):533–45.

    Article  PubMed  CAS  Google Scholar 

  46. Brent AE, Braun T, Tabin CJ. Genetic analysis of interactions between the somitic muscle, cartilage and tendon cell lineages during mouse development. Development. 2005;132(3):515–28. doi:10.1242/dev.01605.

    Article  PubMed  CAS  Google Scholar 

  47. Edom-Vovard F, Schuler B, Bonnin M-A, Teillet M-A, Duprez D. Fgf4 positively regulates scleraxis and tenascin expression in chick limb tendons. Dev Biol. 2002;247(2):351–66. doi:10.1006/dbio.2002.0707.

    Article  PubMed  CAS  Google Scholar 

  48. Hasson P, DeLaurier A, Bennett M, Grigorieva E, Naiche LA, Papaioannou VE, et al. Tbx4 and tbx5 acting in connective tissue are required for limb muscle and tendon patterning. Dev Cell. 2010;18(1):148–56. doi:10.1016/j.devcel.2009.11.013.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Kardon G, Harfe BD, Tabin CJ. A Tcf4-positive mesodermal population provides a pre-pattern for vertebrate limb muscle patterning. Dev Cell. 2003;5(6):937–44.

    Article  PubMed  CAS  Google Scholar 

  50. Mathew SJ, Hansen JM, Merrell AJ, Murphy MM, Lawson JA, Hutcheson DA, et al. Connective tissue fibroblasts and Tcf4 regulate myogenesis. Development. 2011;138(2):371–84. doi:10.1242/dev.057463. The authors show that muscle connective tissue fibroblasts express Tcf4. Generation of Tcf4GFPCre mice provides the first genetic tool for manipulating these fibroblasts. This work presents definitive evidence that muscle connective tissue regulates muscle development in addition to muscle structure and function.

  51. Hall BK, Herring SW. Paralysis and growth of the musculoskeletal system in the embryonic chick. J Morphol. 1990;206(1):45–56. doi:10.1002/jmor.1052060105.

    Article  PubMed  CAS  Google Scholar 

  52. Hosseini A, Hogg DA. The effects of paralysis on skeletal development in the chick embryo. II. Effects on histogenesis of the tibia. J Anatomy. 1991;177:169–78.

    CAS  Google Scholar 

  53. Sharir A, Stern T, Rot C, Shahar R, Zelzer E. Muscle force regulates bone shaping for optimal load-bearing capacity during embryogenesis. Development. 2011;138(15):3247–59. doi:10.1242/dev.063768.

    Article  PubMed  CAS  Google Scholar 

  54. Murchison ND, Price BA, Conner DA, Keene DR, Olson EN, Tabin CJ, et al. Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons. Development. 2007;134(14):2697–708. doi:10.1242/dev.001933.

    Article  PubMed  CAS  Google Scholar 

  55. Akiyama H, Kim JE, Nakashima K, Balmes G, Iwai N, Deng JM, et al. Osteo-chondroprogenitor cells are derived from Sox9 expressing precursors. Proc Natl Acad Sci U S A. 2005;102(41):14665–70. doi:10.1073/pnas.0504750102.

    Article  PubMed  CAS  Google Scholar 

  56. Blitz E, Sharir A, Akiyama H, Zelzer E. Tendon-bone attachment unit is formed modularly by a distinct pool of Scx- and Sox9-positive progenitors. Development. 2013;140(13):2680–90. doi:10.1242/dev.093906.

    Article  PubMed  CAS  Google Scholar 

  57. Sugimoto Y, Takimoto A, Akiyama H, Kist R, Scherer G, Nakamura T, et al. Scx+/Sox9+ progenitors contribute to the establishment of the junction between cartilage and tendon/ligament. Development. 2013;140(11):2280–8. doi:10.1242/dev.096354.

    Article  PubMed  CAS  Google Scholar 

  58. Blitz E, Viukov S, Sharir A, Shwartz Y, Galloway JL, Pryce BA, et al. Bone ridge patterning during musculoskeletal assembly is mediated through SCX regulation of Bmp4 at the tendon-skeleton junction. Dev Cell. 2009;17(6):861–73. doi:10.1016/j.devcel.2009.10.010. This work highlights the critical interaction between bone and tendon during the integration of these two tissues during development as well as key regulators of these processes.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ralphs JR, Benjamin M, Waggett AD, Russell DC, Messner K, Gao J. Regional differences in cell shape and gap junction expression in rat Achilles tendon: relation to fibrocartilage differentiation. J Anatomy. 1998;193(Pt 2):215–22.

    Article  CAS  Google Scholar 

  60. Thomopoulos S, Williams GR, Gimbel JA, Favata M, Soslowsky LJ. Variation of biomechanical, structural, and compositional properties along the tendon to bone insertion site. J Orthopaed Res. 2003;21(3):413–9. doi:10.1016/S0736-0266(03)00057-3.

    Article  Google Scholar 

  61. Swinehart IT, Schlientz AJ, Quintanilla CA, Mortlock DP, Wellik DM. Hox11 genes are required for regional patterning and integration of muscle, tendon and bone. Development. 2013;140(22):4574–82. doi:10.1242/dev.096693. This paper shows that loss of Hox11 results in mis-patterning of the muscles and tendons of the zeugopod in addition to the well described skeletal phenotypes. Hoxa11eGFP is expressed in connective tissue stromal cells, suggesting that Hox function in these cells is required for proper patterning of the musculoskeletal system.

  62. Stadler HS, Higgins KM, Capecchi MR. Loss of Eph-receptor expression correlates with loss of cell adhesion and chondrogenic capacity in Hoxa13 mutant limbs. Development. 2001;128(21):4177–88.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Holly Fischer for creating the illustrations.

Compliance with Ethics Guidelines

Conflict of Interest

K. M. Pineault and D. M. Wellik declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

All studies by K. M. Pineault and D. M. Wellik involving animal research were performed after approval by the appropriate institutional review boards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deneen M. Wellik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pineault, K.M., Wellik, D.M. Hox Genes and Limb Musculoskeletal Development. Curr Osteoporos Rep 12, 420–427 (2014). https://doi.org/10.1007/s11914-014-0241-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-014-0241-0

Keywords

Navigation