Skip to main content

Gas Flow, Particle Acceleration and Heat Transfer in Cold Spray Additive Manufacturing

  • Chapter
  • First Online:
Cold Spray Additive Manufacturing

Abstract

In CSAM, successful particle deposition requires the particles to achieve a higher velocity than critical velocity. Therefore, a thorough understanding of particle acceleration and heating behavior inside and outside a cold spray nozzle is critical for developing high-performance cold sprayed deposits. Over the years, much effort has been devoted to investigate the supersonic gas flow and the consequent particle acceleration and heating behavior inside and outside the nozzle. Experimental investigation is the most direct way to clarify these physical phenomena involved in cold spray process. However, the relatively high money- and timing- cost, especially the infeasibility to capture all the flow features (e.g. flow velocity, temperature, density and turbulence properties) inside and outside the nozzle significantly limits the wide application of experimental approach. To deal with this problem, analytical and numerical modeling were developed and employed in many studies. In the early stage, various analytical models were developed to predict the gas flow properties and particle velocity. These analytical models, mainly one-dimensional (1D) model, normally introduced assumptions and simplifications to the real physical problems, thus the prediction accuracy may be not satisfactory. Thanks to the rapid growth of the computer power, computational fluid dynamics (CFD) technique has become a popular approach to predict the gas flow properties and particle velocity in cold spray. It is highly flexible to simulate the gas flow at different working conditions and costs less than experiment. This chapter provides a comprehensive introduction on the gas flow, particle acceleration, and heat transfer behavior in cold spray.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grujicic, M., Tong, C., DeRosset, W.S., Helfritch, D.: Flow analysis and nozzle-shape optimization for the cold-gas dynamic-spray process. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 217, 1603–1613 (2003). https://doi.org/10.1243/095440503771909980

    Article  Google Scholar 

  2. Grujicic, M., Zhao, C.L., Tong, C., DeRosset, W.S., Helfritch, D.: Analysis of the impact velocity of powder particles in the cold-gas dynamic-spray process. Mater. Sci. Eng. 368, 222–230 (2004). https://doi.org/10.1016/j.msea.2003.10.312

    Article  Google Scholar 

  3. Jodoin, B., Raletz, F., Vardelle, M.: Cold spray modeling and validation using an optical diagnostic method. Surf. Coatings Technol. 200, 4424–4432 (2006). https://doi.org/10.1016/j.surfcoat.2005.02.209

    Article  Google Scholar 

  4. Pardhasaradhi, S.P., Venkatachalapathy, V., Joshi, S.V., Govindan, S.: Optical diagnostics study of gas particle transport phenomena in cold gas dynamic spraying and comparison with model predictions. J. Therm. Spray Technol. 17, 551–563 (2008). https://doi.org/10.1007/s11666-008-9206-0

    Article  Google Scholar 

  5. Jodoin, B.: Cold spray nozzle mach number limitation. J. Therm. Spray Technol. 11, 496–507 (2002). https://doi.org/10.1361/105996302770348628

    Article  Google Scholar 

  6. Dykhuizen, R.C., Smith, M.F.: Gas dynamic principles of cold spray. J. Therm. Spray Technol. 7, 205–212 (1998). https://doi.org/10.1361/105996398770350945

    Article  Google Scholar 

  7. Stoltenhoff, T., Kreye, H., Richter, H.J.: An analysis of the cold spray process and its coatings. J. Therm. Spray Technol. 11, 542–550 (2002). https://doi.org/10.1361/105996302770348682

    Article  Google Scholar 

  8. Han, T., Zhao, Z., Gillispie, B.A., Smith, J.R.: Effects of spray conditions on coating formation by the kinetic spray process. J. Therm. Spray Technol. 14, 373–383 (2005). https://doi.org/10.1361/105996305X59369

    Article  Google Scholar 

  9. Lee, M.W., Park, J.J., Kim, D.Y., Yoon, S.S., Kim, H.Y., James, S.C., Chandra, S., Coyle, T.: Numerical studies on the effects of stagnation pressure and temperature on supersonic flow characteristics in cold spray applications. J. Therm. Spray Technol. 20, 1085–1097 (2011). https://doi.org/10.1007/s11666-011-9641-1

    Article  Google Scholar 

  10. Champagne, V.K., Helfritch, D.J., Dinavahi, S.P.G., Leyman, P.F.: Theoretical and experimental particle velocity in cold spray. J. Therm. Spray Technol. 20, 425–431 (2011). https://doi.org/10.1007/s11666-010-9530-z

    Article  Google Scholar 

  11. Klinkov, S.V., Kosarev, V.F., Sova, A.A., Smurov, I.: Calculation of particle parameters for cold spraying of metal-ceramic mixtures. J. Therm. Spray Technol. 18, 944–956 (2009). https://doi.org/10.1007/s11666-009-9346-x

    Article  Google Scholar 

  12. Winnicki, M., Małachowska, A., Dudzik, G., Rutkowska-Gorczyca, M., Marciniak, M., Abramski, K., Ambroziak, A., Pawłowski, L.: Numerical and experimental analysis of copper particles velocity in low-pressure cold spraying process. Surf. Coatings Technol. 268, 230–240 (2015). https://doi.org/10.1016/j.surfcoat.2014.11.059

    Article  Google Scholar 

  13. Raletz, F.F., Vardelle, M., Ezoo, G.: Critical particle velocity under cold spray conditions. Surf. Coatings Technol. 201, 1942–1947 (2006). https://doi.org/10.1016/j.surfcoat.2006.04.061

    Article  Google Scholar 

  14. Yin, S., Zhang, M., Guo, Z., Liao, H., Wang, X.: Numerical investigations on the effect of total pressure and nozzle divergent length on the flow character and particle impact velocity in cold spraying. Surf. Coatings Technol. 232, 290–297 (2013). https://doi.org/10.1016/j.surfcoat.2013.05.017

    Article  Google Scholar 

  15. Alhulaifi, A.S., Buck, G.A.: Characterization of the interacting gas-particle dynamic system in cold spray nozzles in dimensional and non-dimensional form. Powder Technol. 338, 325–332 (2018). https://doi.org/10.1016/j.powtec.2018.07.032

    Article  Google Scholar 

  16. Ozdemir, O.C., Widener, C.A., Carter, M.J., Johnson, K.W.: Predicting the effects of powder feeding rates on particle impact conditions and cold spray deposited coatings. J. Therm. Spray Technol. 26, 1598–1615 (2017). https://doi.org/10.1007/s11666-017-0611-0

    Article  Google Scholar 

  17. Alkhimov, A.P., Kosarev, V.F., Klinkov, S.V.: The features of cold spray nozzle dessign. J. Therm. Spray Technol. 10, 375–381 (2001). https://doi.org/10.1361/105996301770349466

    Article  Google Scholar 

  18. Kosarev, V.F., Klinkov, S.V., Alkhimov, A.P., Papyrin, A.N.: On some aspects of gas dynamics of the cold spray process. J. Therm. Spray Technol. 12, 265–281 (2003). https://doi.org/10.1361/105996303770348384

    Article  Google Scholar 

  19. Assadi, H., Schmidt, T., Richter, H., Kliemann, J.O., Binder, K., Gärtner, F., Klassen, T., Kreye, H.: On parameter selection in cold spraying. J. Therm. Spray Technol. 20, 1161–1176 (2011). https://doi.org/10.1007/s11666-011-9662-9

    Article  Google Scholar 

  20. Versteeg, H., Malalasekera, W.: An introduction to computational fluid dynamics: the finite volume method. Pearson Education Limited (2007)

    Google Scholar 

  21. Samareh, B., Stier, O., Lüthen, V., Dolatabadi, A.: Assessment of CFD modeling via Flow visualization in cold spray process. J. Therm. Spray Technol. 18, 934–943 (2009). https://doi.org/10.1007/s11666-009-9363-9

    Article  Google Scholar 

  22. Han, T., Gillispie, B.A., Zhao, Z.B.: An investigation on powder injection in the high-pressure cold spray process. J. Therm. Spray Technol. 18, 320–330 (2009). https://doi.org/10.1007/s11666-009-9329-y

    Article  Google Scholar 

  23. Farvardin, E., Stier, O., Lüthen, V., Dolatabadi, A.: Effect of using liquid feedstock in a high pressure cold spray nozzle. J. Therm. Spray Technol. 20, 307–316 (2011). https://doi.org/10.1007/s11666-010-9597-6

    Article  Google Scholar 

  24. Taylor, K., Jodoin, B., Karov, J.: Particle loading effect in cold spray. J. Therm. Spray Technol. 15, 273–279 (2006). https://doi.org/10.1361/105996306X108237

    Article  Google Scholar 

  25. Tabbara, H., Gu, S., McCartney, D.G., Price, T.S., Shipway, P.H.: Study on process optimization of cold gas spraying. J. Therm. Spray Technol. 20, 608–620 (2011). https://doi.org/10.1007/s11666-010-9564-2

    Article  Google Scholar 

  26. Huang, G., Gu, D., Li, X., Xing, L., Wang, H.: Numerical simulation on syphonage effect of laval nozzle for low pressure cold spray system. J. Mater. Process. Technol. 214, 2497–2504 (2014). https://doi.org/10.1016/j.jmatprotec.2014.05.014

    Article  Google Scholar 

  27. Caruso, F., Meyer, M.C., Lupoi, R.: Three-dimensional numerical simulations of the particle loading effect on gas flow features for low pressure cold spray applications. Surf. Coatings Technol. 339, 181–190 (2018). https://doi.org/10.1016/j.surfcoat.2018.02.016

    Article  Google Scholar 

  28. GHIAS, R.: Simulation of flow through supersonic cruise nozzle:a validaiton study. Presented at the (2011)

    Google Scholar 

  29. Pattison, J., Celotto, S., Khan, A., O’Neill, W.: Standoff distance and bow shock phenomena in the cold spray process. Surf. Coatings Technol. 202, 1443–1454 (2008). https://doi.org/10.1016/j.surfcoat.2007.06.065

    Article  Google Scholar 

  30. Karimi, M., Fartaj, A., Rankin, G., Vanderzwet, D., Birtch, W., Villafuerte, J.: Numerical simulation of the cold gas dynamic spray process. J. Therm. Spray Technol. 15, 518–523 (2006). https://doi.org/10.1361/105996306X146866

    Article  Google Scholar 

  31. Samareh, B., Dolatabadi, A.: A three-dimensional analysis of the cold spray process: The effects of substrate location and shape. J. Therm. Spray Technol. 16, 634–642 (2007). https://doi.org/10.1007/s11666-007-9082-z

    Article  Google Scholar 

  32. Sova, A., Doubenskaia, M., Grigoriev, S., Okunkova, A., Smurov, I.: Parameters of the gas-powder supersonic jet in cold spraying using a mask. J. Therm. Spray Technol. 22, 551–556 (2013). https://doi.org/10.1007/s11666-013-9891-1

    Article  Google Scholar 

  33. Breuninger, P., Krull, F., Huttenlochner, K., Müller-Reno, C., Ziegler, C., Merz, R., Kopnarski, M., Antonyuk, S.: Microstructuring of steel surfaces via cold spraying with 316L particles for studying the particle-wall collision behavior. Surf. Coatings Technol. 379, 125054 (2019). https://doi.org/10.1016/j.surfcoat.2019.125054

    Article  Google Scholar 

  34. Raoelison, R.N., Koithara, L.L., Costil, S., Langlade, C.: Turbulences of the supersonic gas flow during cold spraying and their negative effects: A DNS CFD analysis coupled with experimental observation and laser impulse high-speed shadowgraphs of the particles in-flight flow. Int. J. Heat Mass Transf. 147, 118894 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2019.118894

    Article  Google Scholar 

  35. Li, C., Singh, N., Andrews, A., Olson, B.A., Schwartzentruber, T.E., Hogan, C.J.: Mass, momentum, and energy transfer in supersonic aerosol deposition processes. Int. J. Heat Mass Transf. 129, 1161–1171 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.028

    Article  Google Scholar 

  36. Zahiri, S.H., Phan, T.D., Masood, S.H., Jahedi, M.: Development of holistic three-dimensional models for cold spray supersonic jet. J. Therm. Spray Technol. 23, 919–933 (2014). https://doi.org/10.1007/s11666-014-0113-2

    Article  Google Scholar 

  37. Faizan-Ur-Rab, M., Zahiri, S.H.H., Masood, S.H.H., Phan, T.D.D., Jahedi, M., Nagarajah, R.: Application of a holistic 3D model to estimate state of cold spray titanium particles. Mater. Des. 89, 1227–1241 (2015). https://doi.org/10.1016/j.matdes.2015.10.075

    Article  Google Scholar 

  38. Hadjadj, A., Perrot, Y., Verma, S.: Numerical study of shock/boundary layer interaction in supersonic overexpanded nozzles. Aerosp. Sci. Technol. 42, 158–168 (2015). https://doi.org/10.1016/j.ast.2015.01.010

    Article  Google Scholar 

  39. Balabel, A., Hegab, A.M., Nasr, M., El-Behery, S.M.: Assessment of turbulence modeling for gas flow in two-dimensional convergent-divergent rocket nozzle. Appl. Math. Model. 35, 3408–3422 (2011). https://doi.org/10.1016/j.apm.2011.01.013

    Article  MathSciNet  MATH  Google Scholar 

  40. Nasif, G., Barron, R.M., Balachandar, R., Villafuerte, J.: Numerical assessment of miniaturized cold spray nozzle for additive manufacturing. Int. J. Numer. Methods Heat Fluid Flow. 29, 2277–2296 (2019). https://doi.org/10.1108/HFF-10-2018-0553

    Article  Google Scholar 

  41. Liebersbach, P., Foelsche, A., Champagne, V.K., Siopis, M., Nardi, A., Schmidt, D.P.: CFD simulations of feeder tube pressure oscillations and prediction of clogging in cold spray nozzles. J. Therm. Spray Technol. 29, 400–412 (2020). https://doi.org/10.1007/s11666-020-00992-0

    Article  Google Scholar 

  42. Zapryagaev, V.I., Kudryavtsev, A.N., Lokotko, A.V., Solotchin, A.V., Pavlov, A.A., Hadjadj, A.: An experimental and numberical study of a supersonic-jet shock-wave structure. In: Proceedings of the XI International Conference on the Methods of Aerophysical Research. pp. 187–191, Russia (2002)

    Google Scholar 

  43. Alhulaifi, A.S., Buck, G.A.: A simplified approach for the determination of critical velocity for cold spray processes. J. Therm. Spray Technol. 23, 1259–1269 (2014). https://doi.org/10.1007/s11666-014-0128-8

    Article  Google Scholar 

  44. Katanoda, H., Fukuhara, M., Iino, N.: Numerical study of combination parameters for particle impact velocity and temperature in cold spray. J. Therm. Spray Technol. 16, 627–633 (2007). https://doi.org/10.1007/s11666-007-9087-7

    Article  Google Scholar 

  45. Yin, S., Wang, X.F., Li, W.Y., Xu, B.P.: Numerical study on the effect of substrate angle on particle impact velocity and normal velocity component in cold gas dynamic spraying based on CFD. J. Therm. Spray Technol. 19, 1155–1162 (2010). https://doi.org/10.1007/s11666-010-9510-3

    Article  Google Scholar 

  46. Sova, A., Grigoriev, S., Kochetkova, A., Smurov, I.: Influence of powder injection point position on efficiency of powder preheating in cold spray: Numerical study. Surf. Coatings Technol. 242, 226–231 (2014). https://doi.org/10.1016/j.surfcoat.2013.10.078

    Article  Google Scholar 

  47. Li, W.Y., Liao, H., Wang, H.T., Li, C.J., Zhang, G., Coddet, C.: Optimal design of a convergent-barrel cold spray nozzle by numerical method. Appl. Surf. Sci. 253, 708–713 (2006). https://doi.org/10.1016/j.apsusc.2005.12.157

    Article  Google Scholar 

  48. Li, W.Y., Li, C.J.: Optimal design of a novel cold spray gun nozzle at a limited space. J. Therm. Spray Technol. 14, 391–396 (2005). https://doi.org/10.1361/105996305X59404

    Article  Google Scholar 

  49. Li, W.-Y., Liao, H., Douchy, G., Coddet, C.: Optimal design of a cold spray nozzle by numerical analysis of particle velocity and experimental validation with 316L stainless steel powder. Mater. Des. 28, 2129–2137 (2007). https://doi.org/10.1016/j.matdes.2006.05.016

    Article  Google Scholar 

  50. Kwon, E.H., Cho, S.H., Han, J.W., Lee, C.H., Kim, H.J.: Particle Behavior in Supersonic Flow during the Cold Spray Process. Matals Mater. Int. 11, 377–381 (2005). https://doi.org/10.1007/BF03027508

    Article  Google Scholar 

  51. Yin, S., Wang, X.F., Li, W.Y.: Computational analysis of the effect of nozzle cross-section shape on gas flow and particle acceleration in cold spraying. Surf. Coatings Technol. 205, 2970–2977 (2011). https://doi.org/10.1016/j.surfcoat.2010.11.002

    Article  Google Scholar 

  52. Suo, X.K., Liu, T.K., Li, W.Y., Suo, Q.L., Planche, M.P., Liao, H.L.: Numerical study on the effect of nozzle dimension on particle distribution in cold spraying. Surf. Coatings Technol. 220, 107–111 (2013). https://doi.org/10.1016/j.surfcoat.2012.09.029

    Article  Google Scholar 

  53. Li, W.Y., Yin, S., Guo, X., Liao, H., Wang, X.F., Coddet, C.: An investigation on temperature distribution within the substrate and nozzle wall in cold spraying by numerical and experimental methods. J. Therm. Spray Technol. 21, 41–48 (2012). https://doi.org/10.1007/s11666-011-9685-2

    Article  Google Scholar 

  54. Yin, S., Wang, X.F., Li, W.Y., Li, Y.: Numerical study on the effect of substrate size on the supersonic jet flow and temperature distribution within the substrate in cold spraying (2012)

    Google Scholar 

  55. Alhulaifi, A.S., Buck, G.A., Arbegast, W.J.: Numerical and experimental investigation of cold spray gas dynamic effects for polymer coating. J. Therm. Spray Technol. 21, 852–862 (2012). https://doi.org/10.1007/s11666-012-9743-4

    Article  Google Scholar 

  56. Li, W.Y., Zhang, C., Guo, X.P., Zhang, G., Liao, H.L., Li, C.J., Coddet, C.: Effect of standoff distance on coating deposition characteristics in cold spraying. Mater. Des. 29, 297–304 (2008). https://doi.org/10.1016/j.matdes.2007.02.005

    Article  Google Scholar 

  57. Li, W.Y., Li, C.J.: Optimization of spray conditions in cold spraying based on numerical analysis of particle velocity. Trans. Nonferrous Met. Soc. China (English Ed.). 14, 43–48 (2004)

    Google Scholar 

  58. Faizan-Ur-Rab, M., Zahiri, S.H., Masood, S.H., Jahedi, M., Nagarajah, R.: PIV validation of 3D multicomponent model for cold spray within nitrogen and helium supersonic flow field. J. Therm. Spray Technol. 26, 941–957 (2017). https://doi.org/10.1007/s11666-017-0567-0

    Article  Google Scholar 

  59. Yin, S., Wang, X.F., Li, W.Y., Guo, X.P.: Examination on substrate preheating process in cold gas dynamic spraying. J. Therm. Spray Technol. 20, 852–859 (2011). https://doi.org/10.1007/s11666-011-9623-3

    Article  Google Scholar 

  60. Wang, X.-F., Yin, S., Xu, B.P.B.P.B.P.: Effect of cold spray particle conditions and optimal standoff distance on impact velocity. J. Dalian Univ. Technol. 51, 498–504 (2011)

    Google Scholar 

  61. Harihara Sudhan, K., Krishna Prasad, G., Kothurkar, N.K., Srikrishnan, A.R.: Studies on supersonic cold spray deposition of microparticles using a bell-type nozzle. Surf. Coatings Technol. 383, 125244 (2020). https://doi.org/10.1016/j.surfcoat.2019.125244

    Article  Google Scholar 

  62. Meyer, M., Lupoi, R.: An analysis of the particulate flow in cold spray nozzles. Mech. Sci. 6, 127–136 (2015). https://doi.org/10.5194/ms-6-127-2015

    Article  Google Scholar 

  63. Jung, H.B., Park, J.I., Park, S.H., Kim, H.J., Lee, C.H., Han, J.W.: Effect of the expansion ratio and length ratio on a gas-particle flow in a converging-diverging cold spray nozzle. Met. Mater. Int. 15, 967–970 (2009). https://doi.org/10.1007/s12540-009-0967-x

    Article  Google Scholar 

  64. Wang, X., Zhang, B., Lv, J., Yin, S.: Investigation on the clogging behavior and additional wall cooling for the axial-injection cold spray nozzle. J. Therm. Spray Technol. 24, 696–701 (2015). https://doi.org/10.1007/s11666-015-0227-1

    Article  Google Scholar 

  65. Tang, W., Liu, J., Chen, Q., Zhang, X., Chen, Z.: The effects of two gas flow streams with initial temperature and pressure differences in cold spraying nozzle. Surf. Coatings Technol. 240, 86–95 (2014). https://doi.org/10.1016/j.surfcoat.2013.12.019

    Article  Google Scholar 

  66. Jen, T.C., Li, L., Cui, W., Chen, Q., Zhang, X.: Numerical investigations on cold gas dynamic spray process with nano—and microsize particles. Int. J. Heat Mass Transf. 48, 4384–4396 (2005). https://doi.org/10.1016/j.ijheatmasstransfer.2005.05.008

    Article  MATH  Google Scholar 

  67. Ning, X.J., Wang, Q.S., Ma, Z., Kim, H.J.: Numerical study of in-flight particle parameters in low-pressure cold spray process. J. Therm. Spray Technol. 19, 1211–1217 (2010). https://doi.org/10.1007/s11666-010-9548-2

    Article  Google Scholar 

  68. Yin, S., Liu, Q., Liao, H., Wang, X.: Effect of injection pressure on particle acceleration, dispersion and deposition in cold spray. Comput. Mater. Sci. 90, 7–15 (2014). https://doi.org/10.1016/j.commatsci.2014.03.055

    Article  Google Scholar 

  69. Park, J.J., Lee, M.W., Yoon, S.S., Kim, H.Y., James, S.C., Heister, S.D., Chandra, S., Yoon, W.H., Park, D.S., Ryu, J.: Supersonic nozzle flow simulations for particle coating applications: effects of shockwaves, nozzle geometry, ambient pressure, and substrate location upon flow characteristics. J. Therm. Spray Technol. 20, 514–522 (2011). https://doi.org/10.1007/s11666-010-9542-8

    Article  Google Scholar 

  70. Yin, S., Suo, X., Liao, H., Guo, Z., Wang, X.: Significant influence of carrier gas temperature during the cold spray process. Surf. Eng. 30, 443–450 (2014). https://doi.org/10.1179/1743294414y.0000000276

    Article  Google Scholar 

  71. Suo, X., Yin, S., Planche, M.P., Liu, T., Liao, H.: Strong effect of carrier gas species on particle velocity during cold spray processes. Surf. Coatings Technol. 268, 90–93 (2015). https://doi.org/10.1016/j.surfcoat.2014.04.039

    Article  Google Scholar 

  72. Jen, T.C., Pan, L., Li, L., Chen, Q., Cui, W.: The acceleration of charged nano-particles in gas stream of supersonic De-Lavel-type nozzle coupled with static electric field. Appl. Therm. Eng. 27, 2877–2885 (2007). https://doi.org/10.1016/j.applthermaleng.2005.07.030

    Article  Google Scholar 

  73. Huang, G., Gu, D., Li, X., Xing, L.: Computational simulation on a coaxial substream powder feeding laval nozzle of cold spraying. Mater. Sci. 20 (2014)

    Google Scholar 

  74. Huang, R., Fukanuma, H.: Study of the influence of particle velocity on adhesive strength of cold spray deposits. J. Therm. Spray Technol. 21, 541–549 (2012). https://doi.org/10.1007/s11666-011-9707-0

    Article  Google Scholar 

  75. Lupoi, R., O’Neill, W.: Powder stream characteristics in cold spray nozzles. Surf. Coatings Technol. 206, 1069–1076 (2011). https://doi.org/10.1016/j.surfcoat.2011.07.061

    Article  Google Scholar 

  76. Zhu, W., Zhang, X., Zhang, M., Tian, X., Li, D.: Integral numerical modeling of the deposition profile of a cold spraying process as an additive manufacturing technology. Prog. Addit. Manuf. 4, 357–370 (2019). https://doi.org/10.1007/s40964-018-0071-1

    Article  Google Scholar 

  77. Garmeh, S., Jadidi, M., Dolatabadi, A.: Three-dimensional modeling of cold spray for additive manufacturing. J. Therm. Spray Technol. 29, 38–50 (2020). https://doi.org/10.1007/s11666-019-00928-3

    Article  Google Scholar 

  78. Chun, D.-M.M., Choi, J.-O.O., Lee, C.S., Ahn, S.-H.H.: Effect of stand-off distance for cold gas spraying of fine ceramic particles (<5μm) under low vacuum and room temperature using nano-particle deposition system (NPDS). Surf. Coatings Technol. 206, 2125–2132 (2012). https://doi.org/10.1016/j.surfcoat.2011.09.043

    Article  Google Scholar 

  79. Ozdemir, O.C., Chen, Q., Muftu, S., Champagne, V.K.: Modeling the continuous heat generation in the cold spray coating process. J. Therm. Spray Technol. 28, 108–123 (2019). https://doi.org/10.1007/s11666-018-0794-z

    Article  Google Scholar 

  80. Sova, A., Okunkova, A., Grigoriev, S., Smurov, I.: Velocity of the particles accelerated by a cold spray micronozzle: experimental measurements and numerical simulation. J. Therm. Spray Technol. 22, 75–80 (2013). https://doi.org/10.1007/s11666-012-9846-y

    Article  Google Scholar 

  81. Karimi, M., Rankin, G.W., Fartaj, A.: Parametric study of exhaust pattern in cold spray using CFD and particle-wall impact analysis. J. Appl. Fluid Mech. 7, 75–87 (2014)

    Google Scholar 

  82. Samareh, B., Dolatabadi, A.: Dense Particulate Flow in a Cold Gas Dynamic Spray System. J. Fluids Eng. 130, 081702 (2008). https://doi.org/10.1115/1.2957914

    Article  Google Scholar 

  83. Takana, H., Ogawa, K., Shoji, T., Nishiyama, H.: Computational simulation of cold spray process assisted by electrostatic force. Powder Technol. 185, 116–123 (2008). https://doi.org/10.1016/j.powtec.2007.10.005

    Article  Google Scholar 

  84. Li, S., Muddle, B., Jahedi, M., Soria, J.: A numerical investigation of the cold spray process using underexpanded and overexpanded jets. J. Therm. Spray Technol. 21, 108–120 (2012). https://doi.org/10.1007/s11666-011-9691-4

    Article  Google Scholar 

  85. Meyer, M., Yin, S., Lupoi, R.: Particle in-flight velocity and dispersion measurements at increasing particle feed rates in cold spray. J. Therm. Spray Technol. 26, 60–70 (2017). https://doi.org/10.1007/s11666-016-0496-3

    Article  Google Scholar 

  86. Meyer, M., Caruso, F., Lupoi, R.: Particle velocity and dispersion of high Stokes number particles by PTV measurements inside a transparent supersonic Cold Spray nozzle. Int. J. Multiph. Flow. 106, 296–310 (2018). https://doi.org/10.1016/j.ijmultiphaseflow.2018.05.018

    Article  Google Scholar 

  87. Clift, R., Grace, J.R., Weber, M.E.: Bubbles, Drops, and Particles. In: Press, A. (ed.) Technical Report (1978)

    Google Scholar 

  88. Crowe, C., Sommerfeld, M., Tsuji, Y.: Multiphase flows with droplets and particles. CRC Press, Boca Raton (1998)

    Google Scholar 

  89. Leitz, K.H., O’Sullivan, M., Plankensteiner, A., Kestler, H., Sigl, L.S.: OpenFOAM modeling of particle heating and acceleration in cold spraying. J. Therm. Spray Technol. 27, 135–144 (2018). https://doi.org/10.1007/s11666-017-0644-4

    Article  Google Scholar 

  90. Leitz, K.H., O’Sullivan, M., Plankensteiner, A., Lichtenegger, T., Pirker, S., Kestler, H., Sigl, L.S.: CFDEM modelling of particle heating and acceleration in cold spraying. Int. J. Refract. Met. Hard Mater. 73, 192–198 (2018). https://doi.org/10.1016/j.ijrmhm.2018.02.003

    Article  Google Scholar 

  91. Schiller, L., N.: A drag coefficient correlation. VDI Zeits. 77, 318–320 (1933)

    Google Scholar 

  92. Morsi, S.A., Alexander, A.J.: An investigation of particle trajectories in two-phase flow systems. J. Fluid Mech. 55, 193–208 (1972)

    Article  Google Scholar 

  93. Haider, A., Levenspiel, O.: Drag coefficient and terminal velocity of spherical and nonspherical particles. 58, 63–70 (1989)

    Google Scholar 

  94. Crowe, C.T.: Drag coefficient of particles in a rocket nozzle. AIAA J. 5, 1021–1022 (1967)

    Article  Google Scholar 

  95. Henderson, C.B.C.B.: Drag coefficients of spheres in continuum and rarefied flows. AIAA J. 14, 707–708 (1976). https://doi.org/10.2514/3.61409

    Article  Google Scholar 

  96. Katanoda, H.: Numerical simulation of temperature uniformity within solid particles in cold spray. J. Solid Mech. Mater. Eng. 2, 58–69 (2008). https://doi.org/10.1299/jmmp.2.58

    Article  Google Scholar 

  97. Dewar, M.P., McDonald, A.G., Gerlich, A.P.: Interfacial heating during low-pressure cold-gas dynamic spraying of aluminum coatings. J. Mater. Sci. 47, 184–198 (2012). https://doi.org/10.1007/s10853-011-5786-z

    Article  Google Scholar 

  98. Ranz, W.E., Jr, W.R.M.: Evaporation from drops Part I. Chem. Eng. Prog. 48, 141–146 (1952)

    Google Scholar 

  99. Hughmark, G.A.: Mass and heat transfer from rigid sphere. AlChE J. 13, 1219–1221 (1967)

    Article  Google Scholar 

  100. Carlson, D.J., Chambre, P.L.: Particle drag and heat transfer in rocket nozzles. AIAA J. 2, 1980–1984 (1964)

    Article  Google Scholar 

  101. Y., P.W., Prasad, V., Wang, G.-X., Sampath, S., Fincke, J.R.: Model and powder particle heating, melting, resolidification, and evaporation in plasma spraying processes. J. Heat Transfer. 121, 691–699 (1999)

    Google Scholar 

  102. K.W., T.: Time dependent boundary conditions for hyperbolic systems. J. Comput. Phys. 68, 1–24 (1987)

    Google Scholar 

  103. Gärtner, F., Stoltenhoff, T., Schmidt, T., Kreye, H.: The cold spray process and its potential for industrial applications. J. Therm. Spray Technol. 15, 223–232 (2006). https://doi.org/10.1361/105996306X108110

    Article  Google Scholar 

  104. Schmidt, T., Assadi, H., Gärtner, F., Richter, H., Stoltenhoff, T., Kreye, H., Klassen, T.: From particle acceleration to impact and bonding in cold spraying. J. Therm. Spray Technol. 18, 794–808 (2009). https://doi.org/10.1007/s11666-009-9357-7

    Article  Google Scholar 

  105. Schmidt, T., Gaertner, F., Kreye, H.: New developments in cold spray based on higher gas and particle temperatures. J. Therm. Spray Technol. 15, 488–494 (2006). https://doi.org/10.1361/105996306X147144

    Article  Google Scholar 

  106. Gilmore, D.L.L., Dykhuizen, R.C.C., Neiser, R.A.A., Roemer, T.J.J., Smith, M.F.F.: Particle velocity and deposition efficiency in the cold spray process. J. Therm. Spray Technol. 8, 576–582 (1999). https://doi.org/10.1361/105996399770350278

    Article  Google Scholar 

  107. Chavan, N.M., Vinod Kumar, M., Sudharshan Phani, P., Pant, P., Sundararajan, G.: Influence of nozzle throat cross section on microstructure and properties of cold sprayed coatings. J. Therm. Spray Technol. 28, 1718–1729 (2019). https://doi.org/10.1007/s11666-019-00913-w

    Article  Google Scholar 

  108. Kiselev, S.P., Kiselev, V.P., Klinkov, S.V., Kosarev, V.F., Zaikovskii, V.N.: Study of the gas-particle radial supersonic jet in the cold spraying. Surf. Coatings Technol. 313, 24–30 (2017). https://doi.org/10.1016/j.surfcoat.2017.01.046

    Article  Google Scholar 

  109. Nickel, R., Bobzin, K., Lugscheider, E., Parkot, D., Varava, W., Olivier, H., Luo, X.: Numerical studies of the application of shock tube technology for cold gas dynamic spray process. J. Therm. Spray Technol. 16, 729–735 (2007). https://doi.org/10.1007/s11666-007-9123-7

    Article  Google Scholar 

  110. Ozdemir, O.C., Widener, C.A.: Influence of powder injection parameters in high-pressure cold spray. J. Therm. Spray Technol. 26, 1411–1422 (2017). https://doi.org/10.1007/s11666-017-0606-x

    Article  Google Scholar 

  111. Schmidt, T., Gärtner, F., Assadi, H., Kreye, H.: Development of a generalized parameter window for cold spray deposition. Acta Mater. 54, 729–742 (2006). https://doi.org/10.1016/j.actamat.2005.10.005

    Article  Google Scholar 

  112. Yin, S., Suo, X., Guo, Z., Liao, H., Wang, X.: Deposition features of cold sprayed copper particles on preheated substrate. Surf. Coatings Technol. 268, 252–256 (2015). https://doi.org/10.1016/j.surfcoat.2014.11.009

    Article  Google Scholar 

  113. Fukumoto, M., Wada, H., Tanabe, K., Yamada, M., Yamaguchi, E., Niwa, A., Sugimoto, M., Izawa, M.: Effect of substrate temperature on deposition behavior of copper particles on substrate surfaces in the cold spray process. J. Therm. Spray Technol. 16, 643–650 (2007). https://doi.org/10.1007/s11666-007-9121-9

    Article  Google Scholar 

  114. Yin, S., Suo, X., Xie, Y., Li, W., Lupoi, R., Liao, H.: Effect of substrate temperature on interfacial bonding for cold spray of Ni onto Cu. J. Mater. Sci. 50, 7448–7457 (2015). https://doi.org/10.1007/s10853-015-9304-6

    Article  Google Scholar 

  115. Yin, S., Sun, Y., Wang, X., Guo, Z., Liao, H.: Effect of spray angle on temperature distribution within the metallic substrate in cold spraying. J. Therm. Spray Technol. 22, 983–991 (2013). https://doi.org/10.1007/s11666-013-9931-x

    Article  Google Scholar 

  116. McDonald, A.G., Ryabinin, A.N.N., Irissou, E., Legoux, J.-G.G., McDonald, A.G., Legoux, J.-G.G.: Simulation of gas-substrate heat exchange during cold-gas dynamic spraying. Int. J. Therm. Sci. 56, 12–18 (2012). https://doi.org/10.1016/j.ijthermalsci.2012.01.007

    Article  Google Scholar 

  117. Chen, C., Xie, Y., Verdy, C., Huang, R., Liao, H., Ren, Z., Deng, S.: Numerical investigation of transient coating build-up and heat transfer in cold spray. Surf. Coatings Technol. 326, 355–365 (2017). https://doi.org/10.1016/j.surfcoat.2017.07.069

    Article  Google Scholar 

  118. Klinkov, S.V., Kosarev, V.F., Zaikovskii, V.N.: Influence of flow swirling and exit shape of barrel nozzle on cold spraying. J. Therm. Spray Technol. 20, 837–844 (2011). https://doi.org/10.1007/s11666-011-9621-5

    Article  Google Scholar 

  119. Wong, W., Irissou, E., Ryabinin, A.N., Legoux, J.G., Yue, S.: Influence of helium and nitrogen gases on the properties of cold gas dynamic sprayed pure titanium coatings. J. Therm. Spray Technol. 20, 213–226 (2011). https://doi.org/10.1007/s11666-010-9568-y

    Article  Google Scholar 

  120. Katanoda, H., Matsuoka, T., Matsuo, K.: Experimental study on shock wave structures in constant-area passage of cold spray nozzle. J. Therm. Sci. 16, 40–45 (2007). https://doi.org/10.1007/s11630-007-0040-3

    Article  Google Scholar 

  121. Smith, M.F., O ’hern, T.J., Brockmann, J.E., Neiser, R.A., Roemer, T.J.: A comparison of two laser-based diagnostics for analysis of particles in thermal spray streams. Proc. 1995 Natl. Therm. Spray Conf. 1–15 (1995)

    Google Scholar 

  122. Zahiri, S.H., Yang, W., Jahedi, M.: Characterization of cold spray titanium supersonic jet. J. Therm. Spray Technol. 18, 110–117 (2009). https://doi.org/10.1007/s11666-008-9278-x

    Article  Google Scholar 

  123. Koivuluoto, H., Matikainen, V., Larjo, J., Vuoristo, P.: Novel online diagnostic analysis for in-flight particle properties in cold spraying. J. Therm. Spray Technol. 27, 423–432 (2018). https://doi.org/10.1007/s11666-018-0685-3

    Article  Google Scholar 

  124. Sova, A., Doubenskaia, M., Petrovskiy, P., Smurov, I.: Visualization of particle jet in cold spray by infrared camera: feasibility tests. Int. J. Adv. Manuf. Technol. 95, 3057–3063 (2018). https://doi.org/10.1007/s00170-017-1435-2

    Article  Google Scholar 

  125. Koithara, L.L., Raoelison, R.N., Costil, S.: Flow phenomenon of micron-sized particles during cold spray additive manufacturing: High-speed optic observation and characterization. Adv. Powder Technol. 31, 1060–1079 (2020). https://doi.org/10.1016/j.apt.2019.12.037

    Article  Google Scholar 

  126. Zahiri, S.H., Antonio, C.I., Jahedi, M.: Elimination of porosity in directly fabricated titanium via cold gas dynamic spraying. J. Mater. Process. Technol. 209, 922–929 (2009). https://doi.org/10.1016/j.jmatprotec.2008.03.005

    Article  Google Scholar 

  127. List, A., Gärtner, F., Schmidt, T., Klassen, T.: Impact conditions for cold spraying of hard metallic glasses. J. Therm. Spray Technol. 21, 531–540 (2012). https://doi.org/10.1007/s11666-012-9750-5

    Article  Google Scholar 

  128. Bray, M., Cockburn, A., O’Neill, W.: The Laser-assisted cold spray process and deposit characterisation. Surf. Coatings Technol. 203, 2851–2857 (2009). https://doi.org/10.1016/j.surfcoat.2009.02.135

    Article  Google Scholar 

  129. Champagne, V.K., Helfritch, D., Leyman, P., Grendahl, S., Klotz, B.: Interface material mixing formed by the deposition of copper on aluminum by means of the cold spray process. J. Therm. Spray Technol. 14, 330–334 (2005). https://doi.org/10.1361/105996305X59332

    Article  Google Scholar 

  130. Fukanuma, H., Ohno, N., Sun, B., Huang, R.: In-flight particle velocity measurements with DPV-2000 in cold spray. Surf. Coatings Technol. 201, 1935–1941 (2006). https://doi.org/10.1016/j.surfcoat.2006.04.035

    Article  Google Scholar 

  131. Legoux, J.G., Irissou, E., Moreau, C.: Effect of substrate temperature on the formation mechanism of cold-sprayed aluminum, zinc and tin coatings. J. Therm. Spray Technol. 16, 619–626 (2007). https://doi.org/10.1007/s11666-007-9091-y

    Article  Google Scholar 

  132. Ajdelsztajn, L., Jodoin, B., Richer, P., Sansoucy, E., Lavernia, E.J.: Cold gas dynamic spraying of iron-base amorphous alloy. J. Therm. Spray Technol. 15, 495–500 (2006). https://doi.org/10.1361/105996306X146857

    Article  Google Scholar 

  133. Jodoin, B., Ajdelsztajn, L., Sansoucy, E., Zúñiga, A., Richer, P., Lavernia, E.J.: Effect of particle size, morphology, and hardness on cold gas dynamic sprayed aluminum alloy coatings. Surf. Coatings Technol. 201, 3422–3429 (2006). https://doi.org/10.1016/j.surfcoat.2006.07.232

    Article  Google Scholar 

  134. Mauer, G., Singh, R., Rauwald, K.H., Schrüfer, S., Wilson, S., Vaßen, R.: Diagnostics of cold-sprayed particle velocities approaching critical deposition conditions. J. Therm. Spray Technol. 26, 1423–1433 (2017). https://doi.org/10.1007/s11666-017-0596-8

    Article  Google Scholar 

  135. Wu, J., Fang, H., Yoon, S., Kim, H., Lee, C.: Measurement of particle velocity and characterization of deposition in aluminum alloy kinetic spraying process. Appl. Surf. Sci. 252, 1368–1377 (2005). https://doi.org/10.1016/j.apsusc.2005.02.108

    Article  Google Scholar 

  136. Meyer, M.C., Yin, S., Mcdonnell, K.A., Stier, O., Lupoi, R.: Feed rate effect on particulate acceleration in Cold Spray under low stagnation pressure conditions. Surf. Coatings Technol. in review, 237–245 (2016). https://doi.org/https://doi.org/10.1016/j.surfcoat.2016.07.017

  137. Koivuluoto, H., Larjo, J., Marini, D., Pulci, G., Marra, F.: Cold-sprayed Al6061 coatings: online spray. Coatings. 10, 348 (2020)

    Article  Google Scholar 

  138. Mahdavi, A., McDonald, A.: Effect of substrate and process parameters on the gas-substrate convective heat transfer coefficient during cold spraying. J. Therm. Spray Technol. 27, 433–445 (2018). https://doi.org/10.1007/s11666-017-0660-4

    Article  Google Scholar 

  139. Yin, S., Wang, X., Suo, X., Liao, H., Guo, Z., Li, W., Coddet, C.: Deposition behavior of thermally softened copper particles in cold spraying. Acta Mater. 61, 5105–5118 (2013). https://doi.org/10.1016/j.actamat.2013.04.041

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yin, S., Lupoi, R. (2021). Gas Flow, Particle Acceleration and Heat Transfer in Cold Spray Additive Manufacturing. In: Cold Spray Additive Manufacturing. Springer Tracts in Additive Manufacturing. Springer, Cham. https://doi.org/10.1007/978-3-030-73367-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73367-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73366-7

  • Online ISBN: 978-3-030-73367-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics