Skip to main content
Log in

Interfacial heating during low-pressure cold-gas dynamic spraying of aluminum coatings

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Low-pressure cold spraying was used to deposit aluminum particles (~25 μm diameter) on to low carbon steel, and the particle–particle interactions of the aluminum coating were analyzed. A simplified energy conservation model was developed to estimate the temperature at the interface of the deformed particle during deposition of the powder. The Johnson–Cook model was used to calculate the particle flow stress, which was used to estimate the total energy dissipated via plastic deformation during impact and spreading of the particle. Microstructural analysis was conducted to show that plastic deformation occurred mainly at the interfacial regions of the deformed particles. By coupling microstructural observations of the cold-sprayed particles with the energy conservation model, it was found that the interface between the aluminum particles contained recrystallized ultra-fine and nanocrystalline grain structures that were likely formed at temperatures above 260 °C, but the majority of particles likely achieved interfacial temperatures which were lower than the melting point of aluminum (660 °C). This suggests that local melting is not likely to dominate the inter-particle bonding mechanism, and the resulting interfacial regions contain ultra-fine grain structures, which significantly contribute to the coating hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A :

Yield stress (MPa)

A p :

Projected area normal to gas flow (m2)

A s :

Surface area of particle (m2)

B :

Johnson–Cook strain hardening constant (Pa)

Bi :

Biot number

c p :

Specific heat capacity (J kg−1 K−1)

C :

Johnson–Cook strain rate constant

C D :

Drag coefficient

d p :

Particle diameter (m)

d splat :

Splat diameter, after spreading (m)

D nozzle :

Nozzle diameter (m)

E k :

Kinetic energy (J)

E p :

Plastic deformation energy (J)

h :

Heat transfer coefficient (W m−2 K−1)

k :

Thermal conductivity (W m−1 K−1)

k g :

Thermal conductivity of free stream carrier gas (W m−1 K−1)

L x :

Distance traveled by particle (m)

m p :

Particle mass (kg)

M :

Mach number

n :

Hardening exponent

Nu :

Nusselt number, Nu = hd p/k g

P g :

Absolute gas pressure (Pa)

Pr :

Prandtl number, Pr = c p μ/k g

r :

Recovery factor

R :

Gas constant (kJ kg−1 K−1)

\( Re_{{d_{\text{p}} }} \) :

Reynolds number based on particle diameter, \( Re_{{d_{\text{p}} }} = \rho_{\text{g}} (V_{\text{g}} - V_{\text{p}} )d_{\text{p}} /\mu_{\text{g}} \)

t c :

Contact time (s)

t i :

Time at iteration i

t x :

Time traveled by particle (s)

T aw :

Adiabatic-wall temperature (K)

T g :

Free stream carrier gas temperature (K)

T i :

Temperature at increment i (K)

T initial :

Initial particle temperature prior to impact (K)

T interface :

Particle–substrate interface temperature (°C)

T bulk :

Temperature in the interior of the particle during deformation (°C)

T m :

Melting temperature (K)

T o :

Ambient temperature (K)

T sub :

Temperature of substrate (K)

V g :

Carrier gas velocity (m/s)

V i :

Particle velocity at increment i

V p :

Particle velocity (m/s)

X :

Nozzle length (m)

α:

Thermal diffusivity (m2s−1)

γ:

Specific heat ratio

δ:

Lamellae thickness (m)

εf :

Final von Mises equivalent strain

εi :

Equivalent strain at increment i

ε i *:

Strain rate at increment i

θ:

Non-dimensional interface temperature

μg :

Viscosity of free stream carrier gas (kg m−1 s−1)

μs :

Viscosity of gas at particle surface (kg m−1 s−1)

μo :

Reference viscosity of gas (kg m−1 s−1)

ξ:

Non-dimensional particle diameter

ρ:

Particle/splat density (kg m−3)

ρg :

Gas density (kg m−3)

σ:

Von Mises equivalent flow stress (Pa)

Ω:

Particle volume (m3)

Ωsplat :

Volume of a particle after impact and deformation on the substrate (m3)

References

  1. Alkhimov A, Kosarev V, Papyrin A (1990) Dokl Akad Nauk SSSR 315:1062

    CAS  Google Scholar 

  2. Schmidt T, Gärtner F, Assadi H, Kreye H (2006) Acta Mater 54:729

    Article  CAS  Google Scholar 

  3. Klinkov S, Kosarev V, Rein M (2005) Aerosp Sci Technol 9:582

    Article  CAS  Google Scholar 

  4. Grujicic M (2007) In: Champagne V (ed) Fundamentals of cold-gas dynamic spray. Woodhead Publishing Limited, London

    Google Scholar 

  5. Assadi H, Gartner F, Stoltenhoff T, Kreye H (2003) Acta Mater 51:4379

    Article  CAS  Google Scholar 

  6. Papyrin A, Kosarev V, Klinkov S, Alkhimov A, Fomin V (2007) Cold spray technology. Elsevier, Amsterdam

    Google Scholar 

  7. Tokarev A (1996) Met Sci Heat Treat 38:136

    Article  Google Scholar 

  8. Vlcek J, Gimeno L, Huber H, Lugscheider E (2003) In: International thermal spray conference 2003: advancing the science and applying the technology, Orlando

  9. Zhang D, Shipway PH, McCartney DG (2003) In: International thermal spray conference 2003: advancing the science and applying the technology, Orlando

  10. Li C-J, Li W-Y, Xi’an PRC, Fukanuma H, Saitama J (2004) In: International thermal spray conference 2004: advances in technology and application, Osaka

  11. Vlcek J, Gimeno L, Huber H, Lugscheider E (2005) J Therm Spray Technol 14(1):125

    Article  Google Scholar 

  12. Hussain T, McCartney D, Shipway P, Zhang D (2009) J Therm Spray Technol 18:364

    Article  CAS  Google Scholar 

  13. Schmidt T, Assadi H, Gärtner F, Richter H, Stoltenhoff T, Kreye H, Klassen T (2009) J Therm Spray Technol 18:794

    Article  Google Scholar 

  14. Barradas S, Guipont V, Molins R, Jeandin M, Arrigoni M, Boustie M, Bolis C, Berthe L, Ducos M (2007) J Therm Spray Technol 16:548

    Article  CAS  Google Scholar 

  15. King P, Zahiri S, Jahedi M (2008) Acta Mater 56:5617

    Article  CAS  Google Scholar 

  16. Borchers C, Gartner F, Stoltenhoff T, Kreye H (2004) J Appl Phys 96:4288

    Article  CAS  Google Scholar 

  17. Zou Y, Qin W, Irissou E, Legoux J-G, Yue S, Szpunar J (2009) Scr Mater 61:899

    Article  CAS  Google Scholar 

  18. Li C, Li W, Wang Y (2005) Surf Coat Technol 198:469

    Article  CAS  Google Scholar 

  19. Hall A, Brewer L, Roemer T (2008) J Therm Spray Technol 17:352

    Article  CAS  Google Scholar 

  20. Koch C (2007) Structural nanocrystalline materials: fundamentals and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  21. Ajdelsztajn L, Jodoin B, Kim G, Schoenung J (2005) Metall Mater Trans A 36A:657

    Article  CAS  Google Scholar 

  22. Grujicic M, Zhao C, DeRosset W, Helfritch D (2004) Mater Des 25:681

    Article  CAS  Google Scholar 

  23. Goldbaum D, Chromik R, Yue S, Irissou E, Legoux J-G (2011) J Therm Spray Technol 20:486

    Article  CAS  Google Scholar 

  24. Borchers C, Gärtner F, Stoltenhoff T, Assadi H, Kreye H (2003) J Appl Phys 93:10064

    Article  CAS  Google Scholar 

  25. Kapoor R, Nemat-Nasser S (1998) Mech Mater 27:1

    Article  Google Scholar 

  26. Johnson G, Cook W (1983) In: 7th international symposium on ballistics, The Hague

  27. Raybould D (1981) J Mater Sci 16:589. doi:10.1007/BF02402774

    Article  CAS  Google Scholar 

  28. Jiji L (2009) Heat conduction, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  29. Shapiro A (1953) The dynamics and thermodynamics of compressible fluid flow, vol I. The Ronald Press Company, New York

    Google Scholar 

  30. Kaye J (1954) J Aeronaut Sci 21:117

    Google Scholar 

  31. Shapiro A (1954) The dynamics and thermodynamics of compressible fluid flow, vol II. The Ronald Press Company, New York

    Google Scholar 

  32. Dykhuizen R, Smith M (1998) J Therm Spray Technol 7:205

    Article  CAS  Google Scholar 

  33. Legoux J-G, Irissou E, Moreau C (2007) J Therm Spray Technol 16:619

    Article  CAS  Google Scholar 

  34. Akarca S, Song X, Altenhof W, Alpas A (2008) Proc Inst Mech Eng L 222:209

    CAS  Google Scholar 

  35. Boyer H, Gall T (1985) Metals Handbook, vol 2. ASM International, Materials Park

    Google Scholar 

  36. Gerlich A, Yue L, Mendez P, Zhang H (2010) Acta Mater 58:2176

    Article  CAS  Google Scholar 

  37. Gerlich A, Shibayanagi T (2009) Scr Mater 60:236

    Article  CAS  Google Scholar 

  38. Kaibyshev O (2000) Scientific bases, achievements and promises of superplastic deformation. Gilem, Ufa

    Google Scholar 

  39. Humphreys F, Hatherly M (2002) Recrystallization and related annealing phenomena. Pergamon Press, Oxford

    Google Scholar 

  40. Dimitrov O, Fromegeau R, Dimitrov C (1978) In: Haessner F (ed) Recrystallization of metallic materials. Dr. Riederer-verlag GmbH, Stuttgart

    Google Scholar 

  41. Lancaster J (1999) Metallurgy of welding. Abington Publishing, Cambridge

    Book  Google Scholar 

Download references

Acknowledgements

Funding for this project was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Government of Alberta Small Equipment Grants Program (SEGP), and the Canada Foundation for Innovation (CFI). The authors gratefully acknowledge the assistance of Dr. Eric Irissou with DPV-2000 measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. McDonald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dewar, M.P., McDonald, A.G. & Gerlich, A.P. Interfacial heating during low-pressure cold-gas dynamic spraying of aluminum coatings. J Mater Sci 47, 184–198 (2012). https://doi.org/10.1007/s10853-011-5786-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5786-z

Keywords

Navigation