Skip to main content

Artificial Intelligence for Healthcare: Roles, Challenges, and Applications

  • Chapter
  • First Online:
Intelligent Systems in Big Data, Semantic Web and Machine Learning

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1344))

Abstract

With the use of an intelligent technology-based healthcare technique, there may be a real opportunity to improve medical care quality and effectiveness, thereby increasing patient wellness. Around the world, with rising healthcare costs and the onset of many illnesses, it has become necessary to focus on the people-centered environment, not just the hospital. The future of healthcare may change completely using artificial intelligence (AI) that change how we prevent, diagnose, and cure health conditions. However, the potential of AI is hard to ignore. It is a decision-making machine that can exponentially increase the efficiency of the healthcare organization. Recently, many published papers use the AI technology to monitor and controls the spread of COVID-19 (Coronavirus) pandemic. There are not only the right set of circumstances by using AI in healthcare but also many obstacles and barriers. Data integration is complex, trust issues, time, and energy limitations are some of the barriers to implementing AI in healthcare. Hence, this chapter provides a survey of AI-driven healthcare and identifies proposed models, which health staff is using to bring AI solutions for health applications. It identifies existing approaches to designing models for AI healthcare. The readers can benefit from the chapter by understanding the roles, challenges, applications, and future opportunities of AI for healthcare.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garbuio, M., Lin, N.: Artificial intelligence as a growth engine for health care startups: emerging business models. Calif. Manage. Rev. 61(2), 59–83 (2019)

    Article  Google Scholar 

  2. Rong, G., Mendez, A., Assi, E.B., Zhao, B., Sawan, M.: Artificial intelligence in healthcare: review and prediction case studies. Engineering 6(3), 291–301 (2020)

    Article  Google Scholar 

  3. Chang, Z., Du, Z., Zhang, F., Huang, F., Chen, J., Li, W., Guo, Z.: Landslide susceptibility prediction based on remote sensing images and GIS: comparisons of supervised and unsupervised machine learning models. Remote Sensing 12(3), 502 (2020)

    Article  Google Scholar 

  4. Ravì, D., Wong, C., Deligianni, F., Berthelot, M., Andreu-Perez, J., Lo, B., Yang, G.Z.: Deep learning for health informatics. IEEE J. Biomed. Health Inform. 21(1), 4–21 (2016)

    Article  Google Scholar 

  5. Yu, K.H., Beam, A.L., Kohane, I.S.: Artificial intelligence in healthcare. Nat. Biomed. Eng. 2(10), 719–731 (2018)

    Article  Google Scholar 

  6. Lysaght, T., Lim, H.Y., Xafis, V., Ngiam, K.Y.: AI-assisted decision-making in healthcare. Asian Bioethics Rev. 11(3), 299–314 (2019)

    Article  Google Scholar 

  7. Reddy, S., Allan, S., Coghlan, S., Cooper, P.: A governance model for the application of AI in health care. J. Am. Med. Inform. Assoc. 27(3), 491–497 (2020)

    Article  Google Scholar 

  8. Magrabi, F., Ammenwerth, E., McNair, J.B., De Keizer, N.F., Hyppönen, H., Nykönen, P., Rigby, M., Scott, P.J., Vehko, T., Wong, Z.S.Y., Georgiou, A.: Artificial Intelligence in clinical decision support: challenges for evaluating AI and practical implications. Yearbook Med. Informa. 28(01), 128–134 (2019)

    Google Scholar 

  9. Persson, A., Kavathatzopoulos, I.: How to make decisions with algorithms: ethical decision-making using algorithms within predictive analytics. ACM SIGCAS Comput. Soc. 47(4), 122–133 (2018)

    Article  Google Scholar 

  10. Wu, T., Sultan, L.R., Tian, J., Cary, T.W., Sehgal, C.M.: Machine learning for diagnostic ultrasound of triple-negative breast cancer. Breast Cancer Res. Treat. 173(2), 365–373 (2019)

    Article  Google Scholar 

  11. Subasi, A., Kevric, J., Canbaz, M.A.: Epileptic seizure detection using hybrid machine learning methods. Neural Comput. Appl. 31(1), 317–325 (2019)

    Article  Google Scholar 

  12. Li, X.: Artificial intelligence neural network based on intelligent diagnosis. J. Ambient Intell. Hum. Comput. (2020). https://doi.org/10.1007/s12652-020-02108-6

  13. Alfaras, M., Soriano, M.C., Ortín, S.: A fast machine learning model for ECG-based heartbeat classification and arrhythmia detection. Front. Phys. 7, 103 (2019)

    Article  Google Scholar 

  14. Patro, K.K., Reddi, S.P.R., Khalelulla, S.E., Kumar, P.R., Shankar, K.: ECG data optimization for biometric human recognition using statistical distributed machine learning algorithm. J. Supercomput. 76(2), 858–875 (2020)

    Article  Google Scholar 

  15. Abdeldayem, S.S., Bourlai, T.: ECG-based human authentication using high-level spectro-temporal signal features. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 4984–4993. IEEE Press (2018)

    Google Scholar 

  16. Prashanth, R., Roy, S.D., Mandal, P.K., Ghosh, S.: High-accuracy detection of early Parkinson’s disease through multimodal features and machine learning. Int. J. Med. Inform. 90, 13–21 (2016)

    Article  Google Scholar 

  17. Shrivastava, P., Shukla, A., Vepakomma, P., Bhansali, N., Verma, K.: A survey of nature-inspired algorithms for feature selection to identify Parkinson’s disease. Comput. Methods Prog. Biomed. 139, 171–179 (2017)

    Article  Google Scholar 

  18. Uthoff, J., Stephens, M.J., Newell Jr., J.D., Hoffman, E.A., Larson, J., Koehn, N., De Stefano, F.A., Lusk, C.M., Wenzlaff, A.S., Watza, D., Neslund-Dudas, C.: Machine learning approach for distinguishing malignant and benign lung nodules utilizing standardized perinodular parenchymal features from CT. Med. Phys. 46(7), 3207–3216 (2019)

    Google Scholar 

  19. Cui, G., Jeong, J.J., Lei, Y., Wang, T., Liu, T., Curran, W.J., Mao, H., Yang, X.: Machine-learning-based classification of Glioblastoma using MRI-based radiomic features. In: Proceedings of SPIE 10950, Medical Imaging 2019: Computer-Aided Diagnosis, 1095048, March 2019. https://doi.org/10.1117/12.2513110

  20. Gunčar, G., Kukar, M., Notar, M., Brvar, M., Černelč, P., Notar, M., Notar, M.: An application of machine learning to haematological diagnosis. Sci. Rep. 8(1), 1–12 (2018)

    Article  Google Scholar 

  21. Erkaymaz, O., Ozer, M., Perc, M.: Performance of small-world feedforward neural networks for the diagnosis of diabetes. Appl. Math. Comput. 311, 22–28 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Ma, F., Sun, T., Liu, L., Jing, H.: Detection and diagnosis of chronic kidney disease using deep learning-based heterogeneous modified artificial neural network. Fut. Gener. Comput. Syst. 111, 17–26 (2020)

    Article  Google Scholar 

  23. Liu, Z., Yang, C., Huang, J., Liu, S., Zhuo, Y., Lu, X.: Deep learning framework based on integration of S-Mask R-CNN and Inception-v3 for ultrasound image-aided diagnosis of prostate cancer. Fut. Gener. Comput. Syst. 114, 358–367 (2020)

    Article  Google Scholar 

  24. Orphanou, K., Dagliati, A., Sacchi, L., Stassopoulou, A., Keravnou, E., Bellazzi, R.: Incorporating repeating temporal association rules in Naïve Bayes classifiers for coronary heart disease diagnosis. J. Biomed. Inform. 81, 74–82 (2018)

    Article  Google Scholar 

  25. Kang, S.: Personalized prediction of drug efficacy for diabetes treatment via patient-level sequential modeling with neural networks. Artif. Intell. Med. 85, 1–6 (2018)

    Article  Google Scholar 

  26. Wan, P., Li, Q., Larsen, J.E.P., Eklund, A.C., Parlesak, A., Rigina, O., Nielsen, S.J., Bjöorkling, F., Jónsdóttir, S.Ó.: Prediction of drug efficacy for cancer treatment based on comparative analysis of chemosensitivity and gene expression data. Bioorg. Med. Chem. 20(1), 167–176 (2012)

    Google Scholar 

  27. Kowalewski, J., Ray, A.: Predicting novel drugs for SARS-CoV-2 using machine learning from a 10 million chemical space. Heliyon 6(8), e04639 (2020)

    Google Scholar 

  28. Lebois, E.P., et al.: Towards the treatment of Alzheimer’s disease: discovery and development of novel subtype-specific M1 allosteric agonists. Alzheimers Dement. 5(4), P335 (2009)

    Google Scholar 

  29. Yin, L., Chau, C.K., Sham, P.C., So, H.C.: Integrating clinical data and imputed transcriptome from GWAS to uncover complex disease subtypes: applications in psychiatry and cardiology. Am. J. Hum. Genet. 105(6), 1193–1212 (2019)

    Article  Google Scholar 

  30. Caie, P.D., Dimitriou, N., Arandjelović, O.: Precision medicine in digital pathology via image analysis and machine learning. In: Artificial Intelligence and Deep Learning in Pathology, pp. 149–173. Elsevier (2021)

    Google Scholar 

  31. Shah, S.M.S., Shah, F.A., Hussain, S.A., Batool, S.: Support vector machines-based heart disease diagnosis using feature subset, wrapping selection and extraction methods. Comput. Electr. Eng. 84, 106628 (2020)

    Article  Google Scholar 

  32. D’Souza, S., Prema, K.V., Balaji, S.: Machine learning models for drug-target interactions: current knowledge and future directions. Drug Disc. Today 25(4), 748–756 (2020)

    Article  Google Scholar 

  33. Ietswaart, R., Arat, S., Chen, A.X., Farahmand, S., Kim, B., DuMouchel, W., Armstrong, D., Fekete, A., Sutherland, J.J., Urban, L.: Machine learning guided association of adverse drug reactions with in vitro target-based pharmacology 57, 102837 (2020)

    Google Scholar 

  34. Daina, A., Röhrig, U.F., Zoete, V.: Computer-aided drug design for cancer therapy. In: Wolkenhauer, O. (ed.) Systems Medicine, pp. 386–401. Academic Press, Oxford (2021)

    Google Scholar 

  35. Padmanabhan, R., Meskin, N., Haddad, W.M.: Optimal adaptive control of drug dosing using integral reinforcement learning. Math. Biosci. 309, 131–142 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Houssein, E.H., Hosney, M.E., Oliva, D., Mohamed, W.M., Hassaballah, M.: A novel hybrid Harris hawks optimization and support vector machines for drug design and discovery. Comput. Chem. Eng. 133, 106656 (2020)

    Article  Google Scholar 

  37. Hsu, G.C.: Using math-physical medicine and artificial intelligence technology to manage lifestyle and control metabolic conditions of T2D. Int. J. Diab. Complications 2(3), 1–7 (2018)

    Article  Google Scholar 

  38. El Kafhali, S., Salah, K.: Performance modelling and analysis of Internet of Things enabled healthcare monitoring systems. IET Netw. 8(1), 48–58 (2018)

    Article  Google Scholar 

  39. El Kafhali, S., Salah, K., Alla, S.B.: Performance evaluation of IoT-fog-cloud deployment for healthcare services. In: 2018 4th International Conference on Cloud Computing Technologies and Applications (Cloudtech), pp. 1–6. IEEE, November 2018

    Google Scholar 

  40. Zhang, Q.: Artificial intelligence-enabled ECG big data mining for pervasive heart health monitoring. In: Biomedical Signal Processing, pp. 273–290. Springer, Singapore (2020)

    Google Scholar 

  41. Hashimoto, D.A., Rosman, G., Rus, D., Meireles, O.R.: Artificial intelligence in surgery: promises and perils. Ann. surg. 268(1), 70 (2018)

    Article  Google Scholar 

  42. Liang, X., Yang, X., Yin, S., Malay, S., Chung, K.C., Ma, J., Wang, K.: Artificial intelligence in plastic surgery: applications and challenges. Aesth. Plast Surg. 1–7 (2020)

    Google Scholar 

  43. Loftus, T.J., Tighe, P.J., Filiberto, A.C., Efron, P.A., Brakenridge, S.C., Mohr, A.M., Rashidi, P., Upchurch, G.R., Bihorac, A.: Artificial intelligence and surgical decision-making. JAMA Surg. 155(2), 148–158 (2020)

    Google Scholar 

  44. Graham, S., Depp, C., Lee, E.E., Nebeker, C., Tu, X., Kim, H.C., Jeste, D.V.: Artificial intelligence for mental health and mental illnesses: an overview. Curr. Psychiatry Rep. 21(11), 116 (2019)

    Article  Google Scholar 

  45. Anis, K., Zakia, H., Mohamed, D., Jeffrey, C.: Detecting depression severity by interpretable representations of motion dynamics. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 739–745. IEEE (2018)

    Google Scholar 

  46. Kalmady, S.V., Greiner, R., Agrawal, R., Shivakumar, V., Narayanaswamy, J.C., Brown, M.R., Greenshaw, A.J., Dursun, S.M., Venkatasubramanian, G.: Towards artificial intelligence in mental health by improving schizophrenia prediction with multiple brain parcellation ensemble-learning. npj Schizophrenia 5(1), 1–11 (2019)

    Google Scholar 

  47. Thakur, A., Alam, M.S., Abir, M.R.H., Kushal, M.A.A., Rahman, R.M.: A fuzzy approach for the diagnosis of depression. In: Modern Approaches for Intelligent Information and Database Systems, pp. 199–211. Springer, Cham (2018)

    Google Scholar 

  48. Cook, B.L., Progovac, A.M., Chen, P., Mullin, B., Hou, S., Baca-Garcia, E.: Novel use of natural language processing (NLP) to predict suicidal ideation and psychiatric symptoms in a text-based mental health intervention in Madrid. Comput. Math. Methods Med. (2016)

    Google Scholar 

  49. Balsa, J., Neves, P., Félix, I., Guerreiro, M.P., Alves, P., Carmo, M.B., Marques, D., Dias, A., Henriques, A., Cláudio, A.P.: Intelligent virtual assistant for promoting behaviour change in older people with T2D. In: EPIA Conference on Artificial Intelligence, pp. 372–383. Springer, Cham (2019)

    Google Scholar 

  50. Tian, S., Yang, W., Le Grange, J.M., Wang, P., Huang, W., Ye, Z.: Smart healthcare: making medical care more intelligent. Global Health J. 3(3), 62–65 (2019)

    Article  Google Scholar 

  51. Gu, D., Li, J., Bichindaritz, I., Deng, S., Liang, C.: The mechanism of influence of a case-based health knowledge system on hospital management systems. In: International Conference on Case-Based Reasoning, pp. 139–153. Springer, Cham (2017)

    Google Scholar 

  52. Vaishya, R., Javaid, M., Khan, I.H., Haleem, A.: Artificial Intelligence (AI) applications for COVID-19 pandemic. Diabet. Metab. Syndr.: Clin. Res. Revi. 14(4), 337–339 (2020)

    Article  Google Scholar 

  53. Wang, F., Preininger, A.: AI in health: state of the art, challenges, and future directions. Yearbook Med. Inform. 28(1), 16–26 (2019)

    Article  Google Scholar 

  54. Dunn, J., Runge, R., Snyder, M.: Wearables and the medical revolution. Personalized Med. 15(5), 429–448 (2018)

    Article  Google Scholar 

  55. Yetisen, A.K., Martinez-Hurtado, J.L., Ünal, B., Khademhosseini, A., Butt, H.: Wearables in medicine. Adv. Mater. 30(33), 1706910 (2018)

    Article  Google Scholar 

  56. Díaz, Ó., Dalton, J.A., Giraldo, J.: Artificial intelligence: a novel approach for drug discovery. Trends Pharmacol. Sci. 40(8), 550–551 (2019)

    Article  Google Scholar 

  57. Correia, J., Resende, T., Baptista, D., Rocha, M.: Artificial intelligence in biological activity prediction. In: International Conference on Practical Applications of Computational Biology & Bioinformatics, pp. 164–172. Springer, Cham (2019)

    Google Scholar 

  58. Mak, K.K., Pichika, M.R.: Artificial intelligence in drug development: present status and future prospects. Drug Disc. Today 24(3), 773–780 (2019)

    Article  Google Scholar 

  59. Klopman, G., Chakravarti, S.K., Zhu, H., Ivanov, J.M., Saiakhov, R.D.: ESP: a method to predict toxicity and pharmacological properties of chemicals using multiple MCASE databases. J. Chem. Inf. Comput. Sci. 44(2), 704–715 (2004)

    Article  Google Scholar 

  60. Merk, D., Friedrich, L., Grisoni, F., Schneider, G.: De novo design of bioactive small molecules by artificial intelligence. Mol. Inform. 37(1–2), 1700153 (2018)

    Article  Google Scholar 

  61. Lind, A.P., Anderson, P.C.: Predicting drug activity against cancer cells by random forest models based on minimal genomic information and chemical properties. PloS One 14(7), e0219774 (2019)

    Article  Google Scholar 

  62. Klausen, M.S., Jespersen, M.C., Nielsen, H., Jensen, K.K., Jurtz, V.I., Sønderby, C.K., Sommer, M.O.A., Winther, O., Nielsen, M., Petersen, B., Marcatili, P.: NetSurfP-2.0: improved prediction of protein structural features by integrated deep learning. Proteins: Struct. Funct. Bioinform. 87(6), 520–527 (2019)

    Google Scholar 

  63. Tsigelny, I.F.: Artificial intelligence in drug combination therapy. Briefings Bioinform. 20(4), 1434–1448 (2019)

    Article  Google Scholar 

  64. Tu, H., Lin, Z., Lee, K.: Automation with intelligence in drug research. Clin. Ther. 41(11), 2436–2444 (2019)

    Article  Google Scholar 

  65. Hui, T.K., Mohammed, B., Donyai, P., McCrindle, R., Sherratt, R.S.: Enhancing pharmaceutical packaging through a technology ecosystem to facilitate the reuse of medicines and reduce medicinal waste. Pharmacy 8(2), 58 (2020)

    Article  Google Scholar 

  66. Chan, H.S., Shan, H., Dahoun, T., Vogel, H., Yuan, S.: Advancing drug discovery via artificial intelligence. Trends Pharmacol. Sci. 40(8), 592–604 (2019)

    Article  Google Scholar 

  67. Villalta, F., Rachakonda, G.: Advances in preclinical approaches to Chagas disease drug discovery. Exp. Opinion Drug Disc. 14(11), 1161–1174 (2019)

    Article  Google Scholar 

  68. Lee, S., Mohr, N.M., Street, W.N., Nadkarni, P.: Machine learning in relation to emergency medicine clinical and operational scenarios: an overview. West. J. Emerg. Med. 20(2), 219–227 (2019)

    Article  Google Scholar 

  69. Hawkins, D.M.: The problem of overfitting. J. Chem. Inf. Comput. Sci. 44(1), 1–12 (2004)

    Article  Google Scholar 

  70. Craven, D.E., Steger, K.A., Barber, T.W.: Preventing nosocomial pneumonia: state of the art and perspectives for the 1990s. Am. J. Med. 91(3), S44–S53 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Said El Kafhali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El Kafhali, S., Lazaar, M. (2021). Artificial Intelligence for Healthcare: Roles, Challenges, and Applications. In: Gherabi, N., Kacprzyk, J. (eds) Intelligent Systems in Big Data, Semantic Web and Machine Learning. Advances in Intelligent Systems and Computing, vol 1344. Springer, Cham. https://doi.org/10.1007/978-3-030-72588-4_10

Download citation

Publish with us

Policies and ethics