Skip to main content

Advertisement

Log in

Epileptic seizure detection using hybrid machine learning methods

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

The aim of this study is to establish a hybrid model for epileptic seizure detection with genetic algorithm (GA) and particle swarm optimization (PSO) to determine the optimum parameters of support vector machines (SVMs) for classification of EEG data. SVMs are one of the robust machine learning techniques and have been extensively used in many application areas. The kernel parameter’s setting for SVMs in training process effects the classification accuracy. We used GA- and PSO-based approach to optimize the SVM parameters. Compared to the GA algorithm, the PSO-based approach significantly improves the classification accuracy. It is shown that the proposed Hybrid SVM can reach a classification accuracy of up to 99.38% for the EEG datasets. Hence, the proposed Hybrid SVM is an efficient tool for neuroscientists to detect epileptic seizure in EEG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. EEG time series are available under (http://www.meb.unibonn.de/epileptologie/science/physik/eegdata.html).

References

  1. Geva AB, Kerem DH (1999) Brain state identification and forecasting of acute pathology using unsupervised fuzzy clustering of EEG temporal patterns. In: Teodorescu HN, Kandel A, Jain LC (eds) Fuzzy and neuro-fuzzy Systems in Medicine. CRC Press, Boca Raton, FL

    Google Scholar 

  2. Bylsma FW, Peyser CE, Folstein SE, Ross C, Brandt J (1994) EEG power spectra in Huntington’s disease: clinical and neuropsychological correlates. Neuropsychologia 32:137–150

    Article  Google Scholar 

  3. D'Alessandro M, Esteller R, Vachtsevanos G, Hinson A, Echauz J, Litt B (2003) Epileptic seizure prediction using hybrid feature selection over multiple intracranial EEG electrode contacts: a report of four patients. IEEE Trans Biomed Eng 50:603–615

    Article  Google Scholar 

  4. Geva AB, Kerem DH (1998) Forecasting generalized epileptic seizures from the EEG signal by wavelet analysis and dynamic unsupervised fuzzy clustering. IEEE Trans Biomed Eng 45:1205–1216

    Article  Google Scholar 

  5. Preda RO, Vizireanu DN (2011) Robust wavelet-based video watermarking scheme for copyright protection using the human visual system. Journal of Electronic Imaging 20(1):013022–013022

    Article  Google Scholar 

  6. Preda RO, Vizireanu DN (Dec. 2010) A robust digital watermarking scheme for video copyright protection in the wavelet domain. Measurement 43(10):1720–1726

    Article  Google Scholar 

  7. Preda RO, Vizireanu DN (2011) Quantisation-based video watermarking in the wavelet domain with spatial and temporal redundancy. Int J Electron 98(3):393–405

    Article  Google Scholar 

  8. Bigan C (1998) A recursive time-frequency processing method for neural networks recognition of EEG seizures. In: Ifeachor EC, Sperduti A, Starita A (eds) Neural networks and expert systems in medicine and healthcare. World Scientific, Singapore

    Google Scholar 

  9. Bronzino JD (2000) Principles of electroencephalography, The biomedical engineering handbook, Second edn. CRC Press LLC, Boca Raton

    Google Scholar 

  10. Adeli H, Zhou Z, Dadmehr N (2003) Analysis of EEG records in an epileptic patient using wavelet transform. J Neurosci Methods 123:69–87

    Article  Google Scholar 

  11. Subasi A (2007) EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst Appl 32:1084–1093

    Article  Google Scholar 

  12. Subasi A, Gürsoy MI (2010) Comparison of PCA, ICA and LDA in EEG signal classification using DWT and SVM. Expert Syst Appl 37:8659–8666

    Article  Google Scholar 

  13. Harikumar, H., Narayanan, B. S (2003) Fuzzy techniques for classification of epilepsy risk level from EEG signals. Conference on Convergent Technologies for Asia-Pacific Region TENCON, p 209–213

  14. Peker M, Sen B, Delen D (2016) A novel method for automated diagnosis of epilepsy using complex-valued classifiers. IEEE Journal of Biomedical and Health Informatics 20(1):108–118

    Article  Google Scholar 

  15. Islam MK, Rastegarnia A, Yang Z (2016) A wavelet-based artifact reduction from scalp eeg for epileptic seizure detection. IEEE Journal of Biomedical and Health Informatics 20(5):1321–1332

    Article  Google Scholar 

  16. Sharmila A, Geethanjali P (2016) DWT based detection of epileptic seizure from EEG signals using naive Bayes and k-NN classifiers. IEEE Access 4:7716–7727

    Article  Google Scholar 

  17. Wang G, Sun Z, Tao R, Li K, Bao G, Yan X (2016) Epileptic seizure detection based on partial directed coherence analysis. IEEE J Biomed Health Inform 20(3):873–879

    Article  Google Scholar 

  18. Hassan AR, Siuly S, Zhang Y (2016) Epileptic seizure detection in EEG signals using tunable-Q factor wavelet transform and bootstrap aggregating. Comput Methods Prog Biomed 137:247–259

    Article  Google Scholar 

  19. Zhang T, Chen W, Li M (2017) AR based quadratic feature extraction in the VMD domain for the automated seizure detection of EEG using random forest classifier. Biomed. Signal Process. Control 31:550–559

    Article  Google Scholar 

  20. Mursalin M, Zhang Y, Chen Y, Chawla NV (2017) Automated epileptic seizure detection using improved correlation-based feature selection with random forest classifier. Neurocomputing 241:204–214

    Article  Google Scholar 

  21. Dhiman R, Saini J (2017) Biogeography based hybrid scheme for automatic detection of epileptic seizures from EEG signatures. Appl Soft Comput 51:116–129

    Article  Google Scholar 

  22. Li M, Chen W, Zhang T (2017) Automatic epileptic EEG detection using DT-CWT-based non-linear features. Biomed Signal Process Control 34:114–125

    Article  Google Scholar 

  23. Andrzejak, R.G., Lehnertz, K., Mormann, F., Rieke, C., David, P., Elger, C.E. (2001) Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Physical Review E 64

  24. Marchant BP (2003) Time–frequency analysis for biosystem engineering. Biosyst Eng 85:261–281

    Article  Google Scholar 

  25. Semmlow JL (2004) Biosignal and biomedical image processing: MATLAB-based applications. Marcel Dekker, Inc., New York

    Book  Google Scholar 

  26. Kandaswamy A, Kumar CS, Ramanathan RP, Jayaraman S, Malmurugan N (2004) Neural classification of lung sounds using wavelet coefficients. Comput Biol Med 34:523–537

    Article  Google Scholar 

  27. Vapnik VN (2000) Nature of statistical learning theory, Second edn. Springer, New York

    Book  MATH  Google Scholar 

  28. Joachims, T (1998) Text categorization with support vector machines. Proceedings of European conference on machine learning (ECML). Chemintz, DE, p 137–142

  29. Pontil M, Verri A (1998) Support vector machines for 3D object recognition. IEEE Trans Pattern Anal Mach Intell 20:637–646

    Article  Google Scholar 

  30. Yu, G. X., Ostrouchov, G., Geist, A., Samatova, N. F (2003) An SVM-based algorithm for identification of photosynthesis-specific genome features. Second IEEE computer society bioinformatics conference, CA, USA, pp. 235–243

  31. Schlkopf B, Burges C, Smola A (1999) Advances in kernel methods: support vector learning. MIT Press, Cambridge, MA

    Google Scholar 

  32. Schlkopf B, Smola A (2002) Learning with kernels: support vector machines, regularization, optimization and beyond (adaptive computation and machine learning). MIT Press, Cambridge, MA

    Google Scholar 

  33. Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines: and other kernel-based learning methods. Cambridge University Press, New York

    Book  MATH  Google Scholar 

  34. Davis L (ed) (1991) Handbook of genetic algotithms. Van Nostrand Reinhold, New York

    Google Scholar 

  35. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, New York

    MATH  Google Scholar 

  36. Michalewicz Z (1992) Genetic algorithms + data structures = evolution programs. Springer, Berlin Heideberg New York

    Book  MATH  Google Scholar 

  37. Bandyopadhyay, S., Pal, S. K (2007) Classification and learning using genetic algorithms. Springer

  38. Guo XC, Yang JH, Wu CG, Wang CY, Liang YC (2008) A novel LS-SVMs hyper-parameter selection based on particle swarm optimization. Neurocomputing 71:3211–3215

    Article  Google Scholar 

  39. Engelbrecht, A. P. (2007) Computational Intelligence. Wiley

  40. Huang C-L, Dun J-F (2008) A distributed PSO–SVM hybrid system with feature selection and parameter optimization. Appl Soft Comput 8:1381–1391

    Article  Google Scholar 

  41. Ardjani, F., Sadouni, K (2010) Optimization of SVM multiclass by particle swarm (PSO-SVM). I J Modern Education and Computer Science, p 32–38

  42. Hsu, C.-W., Chang, C.-C., Lin, C.-J. (2003) A practical guide to support vector classification

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulhamit Subasi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subasi, A., Kevric, J. & Abdullah Canbaz, M. Epileptic seizure detection using hybrid machine learning methods. Neural Comput & Applic 31, 317–325 (2019). https://doi.org/10.1007/s00521-017-3003-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3003-y

Keywords

Navigation