Skip to main content

Advertisement

Log in

Machine learning for diagnostic ultrasound of triple-negative breast cancer

  • Clinical trial
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Early diagnosis of triple-negative (TN) breast cancer is important due to its aggressive biological characteristics, poor clinical outcomes, and limited options for therapy. The goal of this study is to evaluate the potential of machine learning with quantitative ultrasound image features for the diagnosis of TN breast cancer.

Methods

Ultrasonic and clinical data of 140 surgically confirmed breast cancer cases were analyzed retrospectively for the diagnosis of TN and non-TN (NTN) subtypes. The subtypes were classified based on the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Ultrasound image features were measured from the grayscale and color Doppler images and used with logistic regression for classification by machine learning. Leave-one-out cross validation was used to train and test the differentiation. Diagnostic performance was measured by the area under receiver operating characteristic (ROC) curve, and sensitivity and specificity determined at the Youdons index.

Results

Of the twelve grayscale and Doppler features measured, eight were found to be statistically different for the TN and NTN subtypes (p < 0.05). The area under the ROC curve (AUC) of the statistically significant grayscale (GS) and color Doppler (CD) features was 0.85 and 0.65, respectively. The AUC increased to 0.88 when the GS and CD features were used together, with sensitivity of 86.96% and specificity of 82.91%. Consideration of patient age in the analysis did not improve discrimination of TN and NTN.

Conclusions

The analysis of breast ultrasound images by machine learning achieves high level of differentiation between the TN and NTN subtypes, exceeding the diagnostic performance by standard visual assessments of the images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL et al (2015) Global cancer statistics, 2012. CA Cancer J Clin 65:87–108. https://doi.org/10.3322/caac.21262

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68:7–30. https://doi.org/10.3322/caac.21442

    Article  Google Scholar 

  3. Lin NU, Vanderplas A, Hughes ME et al (2012) Clinicopathologic features, patterns of recurrence, and survival among women with triple-negative breast cancer in the National Comprehensive Cancer Network. Cancer 118:5463–5472. https://doi.org/10.1002/cncr.27581

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sasaki Y, Tsuda H (2009) Clinicopathological characteristics of triple-negative breast cancers. Breast Cancer 16:254–259. https://doi.org/10.1007/s12282-009-0153-5

    Article  PubMed  Google Scholar 

  5. Stavros AT, Thickman D, Rapp CL et al (1995) Solid breast nodules: use of sonography to distinguish between benign and malignant lesions. Radiology 196:123–134. https://doi.org/10.1148/radiology.196.1.7784555

    Article  PubMed  CAS  Google Scholar 

  6. Sehgal CM, Weinstein SP, Arger PH, Conant EF (2006) A Review of Breast Ultrasound. J Mammary Gland Biol Neoplasia 11:113–123. https://doi.org/10.1007/s10911-006-9018-0

    Article  PubMed  Google Scholar 

  7. Ko ES, Lee BH, Kim H-A et al (2010) Triple-negative breast cancer: correlation between imaging and pathological findings. Eur Radiol 20:1111–1117. https://doi.org/10.1007/s00330-009-1656-3

    Article  PubMed  Google Scholar 

  8. Krizmanich-Conniff KM, Paramagul C, Patterson SK et al (2012) Triple receptor–negative breast cancer: imaging and clinical characteristics. Am J Roentgenol 199:458–464

    Article  Google Scholar 

  9. Boisserie-Lacroix M, Macgrogan G, Debled M et al (2013) Triple-negative breast cancers: associations between imaging and pathological findings for triple-negative tumors compared with hormone receptor-positive/human epidermal growth factor receptor-2-negative breast cancers. Oncologist 18:802–811. https://doi.org/10.1634/theoncologist.2013-0380

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yassin NIR, Omran S, El Houby EMF, Allam H (2018) Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: a systematic review. Comput Methods Programs Biomed 156:25–45. https://doi.org/10.1016/j.cmpb.2017.12.012

    Article  PubMed  Google Scholar 

  11. Sehgal CM, Cary TW, Kangas SA et al (2004) Computer-based margin analysis of breast sonography for differentiating malignant and benign masses. J Ultrasound Med 23:1201–1209

    Article  PubMed  Google Scholar 

  12. Huang Y-S, Takada E, Konno S et al (2018) Computer-Aided tumor diagnosis in 3-D breast elastography. Comput Methods Progr Biomed 153:201–209. https://doi.org/10.1016/j.cmpb.2017.10.021

    Article  Google Scholar 

  13. Bouzghar G, Levenback BJ, Sultan LR et al (2014) Bayesian probability of malignancy with BI-RADS sonographic features. J Ultrasound Med 33:641–648. https://doi.org/10.7863/ultra.33.4.641

    Article  PubMed  Google Scholar 

  14. Breast Imaging Reporting Data System | American College of Radiology. https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/Bi-Rads#Ultrasound. Accessed 23 Jul 2018

  15. Goldhirsch A, Winer EP, Coates AS et al (2013) Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol 24:2206–2223. https://doi.org/10.1093/annonc/mdt303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Sehgal CM, Cary TW, Cwanger A et al (2012) Combined Naïve Bayes and logistic regression for quantitative breast sonography. In: 2012 IEEE International Ultrasonics Symposium. IEEE, pp 1686–1689

  17. Sultan LR, Xiong H, Zafar HM et al (2015) Vascularity assessment of thyroid nodules by quantitative color Doppler ultrasound. Ultrasound Med Biol 41:1287–1293. https://doi.org/10.1016/j.ultrasmedbio.2015.01.001

    Article  PubMed  Google Scholar 

  18. Prat A, Perou CM (2011) Deconstructing the molecular portraits of breast cancer. Mol Oncol 5:5–23. https://doi.org/10.1016/j.molonc.2010.11.003

    Article  PubMed  CAS  Google Scholar 

  19. Dairkee SH, Ljung BM, Smith H, Hackett A (1987) Immunolocalization of a human basal epithelium specific keratin in benign and malignant breast disease. Breast Cancer Res Treat 10:11–20

    Article  PubMed  CAS  Google Scholar 

  20. Carey LA, Dees EC, Sawyer L et al (2007) The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 13:2329–2334. https://doi.org/10.1158/1078-0432.CCR-06-1109

    Article  PubMed  CAS  Google Scholar 

  21. Wojcinski S, Soliman AA, Schmidt J et al (2012) Sonographic features of triple-negative and non-triple-negative breast cancer. J Ultrasound Med 31(10):1531–1541

    Article  PubMed  Google Scholar 

  22. Tang J, Rangayyan RM, Xu J et al (2009) Computer-aided detection and diagnosis of breast cancer with mammography: recent advances. IEEE Trans Inf Technol Biomed 13:236–251. https://doi.org/10.1109/TITB.2008.2009441

    Article  PubMed  Google Scholar 

  23. Dromain C, Boyer B, Ferré R et al (2013) Computed-aided diagnosis (CAD) in the detection of breast cancer. Eur J Radiol 82:417–423. https://doi.org/10.1016/j.ejrad.2012.03.005

    Article  PubMed  CAS  Google Scholar 

  24. Xiong H, Sultan LR, Cary TW et al (2017) The diagnostic performance of leak-plugging automated segmentation versus manual tracing of breast lesions on ultrasound images. Ultrasound 25:98–106. https://doi.org/10.1177/1742271X17690425

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dogan BE, Turnbull LW (2012) Imaging of triple-negative breast cancer. Ann Oncol 23(Suppl 6):vi23–29. https://doi.org/10.1093/annonc/mds191

    Article  PubMed  Google Scholar 

  26. Shin HJ, Kim HH, Huh MO et al (2011) Correlation between mammographic and sonographic findings and prognostic factors in patients with node-negative invasive breast cancer. Br J Radiol 84:19–30. https://doi.org/10.1259/bjr/92960562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Yang W-T, Dryden M, Broglio K et al (2008) Mammographic features of triple receptor-negative primary breast cancers in young premenopausal women. Breast Cancer Res Treat 111:405–410. https://doi.org/10.1007/s10549-007-9810-6

    Article  PubMed  Google Scholar 

  28. Elkabets M, Gifford AM, Scheel C et al (2011) Human tumors instigate granulin-expressing hematopoietic cells that promote malignancy by activating stromal fibroblasts in mice. J Clin Invest 121:784–799. https://doi.org/10.1172/JCI43757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Li J-W, Zhang K, Shi Z-T et al (2018) Triple-negative invasive breast carcinoma: the association between the sonographic appearances with clinicopathological feature. Sci Rep 8:9040. https://doi.org/10.1038/s41598-018-27222-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Yoon GY, Cha JH, Kim HH et al (2018) Sonographic features that can be used to differentiate between small triple-negative breast cancer and fibroadenoma. Ultrasonography 37:149–156. https://doi.org/10.14366/usg.17036

    Article  PubMed  Google Scholar 

  31. Costantini M, Belli P, Bufi E et al (2016) Association between sonographic appearances of breast cancers and their histopathologic features and biomarkers. J Clin Ultrasound 44:26–33. https://doi.org/10.1002/jcu.22312

    Article  PubMed  Google Scholar 

  32. Schrading S, Kuhl CK (2008) Mammographic, US, and MR imaging phenotypes of familial breast cancer. Radiology 246:58–70. https://doi.org/10.1148/radiol.2461062173

    Article  PubMed  Google Scholar 

  33. Verheul HMW, Voest EE, Schlingemann RO (2004) Are tumours angiogenesis-dependent? J Pathol 202:5–13. https://doi.org/10.1002/path.1473

    Article  PubMed  CAS  Google Scholar 

  34. Sehgal CM, Arger PH, Rowling SE et al (2000) Quantitative vascularity of breast masses by Doppler imaging: regional variations and diagnostic implications. J Ultrasound Med 19:427 – 40; quiz 441–2

  35. Zhang L, Li J, Xiao Y et al (2015) Identifying ultrasound and clinical features of breast cancer molecular subtypes by ensemble decision. Sci Rep 5:11085. https://doi.org/10.1038/srep11085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Kumar R, Yarmand-Bagheri R (2001) The role of HER2 in angiogenesis. Semin Oncol 28:27–32

    Article  PubMed  CAS  Google Scholar 

  37. Dogan BE, Gonzalez-Angulo AM, Gilcrease M et al (2010) Multimodality imaging of triple receptor-negative tumors with mammography, ultrasound, and MRI. AJR Am J Roentgenol 194:1160–1166. https://doi.org/10.2214/AJR.09.2355

    Article  PubMed  Google Scholar 

  38. Kojima Y, Tsunoda H (2011) Mammography and ultrasound features of triple-negative breast cancer. Breast Cancer 18:146–151. https://doi.org/10.1007/s12282-010-0223-8

    Article  PubMed  Google Scholar 

  39. Lerma E, Peiro G, Ramón T et al (2007) Immunohistochemical heterogeneity of breast carcinomas negative for estrogen receptors, progesterone receptors and Her2/neu (basal-like breast carcinomas). Mod Pathol 20:1200–1207. https://doi.org/10.1038/modpathol.3800961

    Article  PubMed  CAS  Google Scholar 

  40. Yeo SH, Kim GR, Lee SH, Moon WK (2018) Comparison of ultrasound elastography and color Doppler ultrasonography for distinguishing small triple-negative breast cancer from fibroadenoma. J Ultrasound Med. https://doi.org/10.1002/jum.14564

    Article  PubMed Central  PubMed  Google Scholar 

  41. Yang Q, Liu H-Y, Liu D, Song Y-Q (2015) Ultrasonographic features of triple-negative breast cancer: a comparison with other breast cancer subtypes. Asian Pac J Cancer Prev 16:3229–3232

    Article  PubMed  Google Scholar 

  42. Du H-Y, Lin B-R, Huang D-P (2015) Ultrasonographic findings of triple-negative breast cancer. Int J Clin Exp Med 8:10040–10043

    PubMed  PubMed Central  Google Scholar 

  43. Bauer KR, Brown M, Cress RD et al (2007) Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype. Cancer 109:1721–1728. https://doi.org/10.1002/cncr.22618

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by NIH grant RO1 CA130946 and by the National Natural Science Foundation of China grant 81630048, 81271647.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiawei Tian or Chandra M. Sehgal.

Ethics declarations

Conflict of interest

All authors declare they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Sultan, L.R., Tian, J. et al. Machine learning for diagnostic ultrasound of triple-negative breast cancer. Breast Cancer Res Treat 173, 365–373 (2019). https://doi.org/10.1007/s10549-018-4984-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-018-4984-7

Keywords

Navigation