Skip to main content

In silico Studies of Biologically Active Molecules

  • Chapter
  • First Online:
Research in Computer Science in the Bulgarian Academy of Sciences

Abstract

Contemporary in silico (computer-aided) approaches to rational drug design and human health and environmental chemical risk assessment combine various ligand- and structure-based methods, including classical and three-dimensional (3D) quantitative structure–activity relationship (QSAR) models, pharmacophore and homology modelling, docking and virtual screening. These approaches are highly interdisciplinary and integrate knowledge from various disciplines in natural sciences. Their ultimate purpose is to quantitatively characterise the relationship between the compounds’ chemical structures and their effects, expressed by theoretical models, while the effect can be different—therapeutic, toxic, etc. In silico approaches effectively help in understanding and elucidation of the mechanisms by which chemical compounds interact with target biomacromolecules, thereby explaining fundamental processes in the living organisms. The chapter describes main methods in the computer-aided design and computational toxicology. The methods are classified according to the information available for modelling. Several case studies are described to illustrate the application of various in silico methods alone or in a combination. The case studies summarize the most recent results of the authors related to development of in silico models, algorithms and software applications to important biologically active molecules, both small drugs and drug-like compounds, and biomacromolecules, including nuclear receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term “in silico” has been introduced relatively recently as a synonym for “computer-aided”, the latter dates from 1980s with the massive introduction of personal computers in the research practice.

References

  1. Al Sharif, M., Tsakovska, I., Alov, P., Vitcheva, V., Diukendjieva, A., Pajeva, I.: Molecular modeling approach to study the PPARγ–ligand interactions. In: Badr, M.Z. (ed.) Nuclear Receptors: Methods and Experimental Protocols, pp. 261–289. Springer New York, New York, NY (2019)

    Chapter  Google Scholar 

  2. Al Sharif, M., Tsakovska, I., Pajeva, I., Alov, P., Fioravanzo, E., Bassan, A., Kovarich, S., Yang, C., Mostrag-Szlichtyng, A., Vitcheva, V., Worth, A.P., Richarz, A.-N., Cronin, M.T.D.: The application of molecular modelling in the safety assessment of chemicals: a case study on ligand-dependent PPARγ dysregulation. Toxicology 392, 140–154 (2017)

    Google Scholar 

  3. Alov, P., Tsakovska, I., Pajeva, I.: Computational studies of free radical-scavenging properties of phenolic compounds. CTMC. 15(2), 85–104 (2015)

    Article  Google Scholar 

  4. Alov, P., Tsakovska, I., Pajeva, I.: Hybrid classification/regression QSAR modelling of polyphenol antioxidant activity measured in stoichiometric assays. Presented at the ICNPU, Bansko, Bulgaria (2013)

    Google Scholar 

  5. Alov, P., Tsakovska, I., Pajeva, I.: Quantitative structure-property relationship modelling of antiradical properties of natural polyphenols using EVA vector descriptor approach. Comptes rendus de l’Académie bulgare des Sciences 69(9), 1145–1152 (2016)

    Google Scholar 

  6. Atanassov, K., Mavrov, D., Atanassova, V.: Intercriteria decision making: a new approach for multicriteria decision making, based on index matrices and intuitionistic fuzzy sets. Issues Intuition. Fuzzy Sets General. Nets 11, 1–8 (2014)

    Google Scholar 

  7. Avdeef, A.: Absorption and drug development: solubility, permeability, and charge state. Wiley, Hoboken, NJ (2012)

    Book  Google Scholar 

  8. Ban, F., Dalal, K., Li, H., LeBlanc, E., Rennie, P.S., Cherkasov, A.: Best practices of computer-aided drug discovery: lessons learned from the development of a preclinical candidate for prostate cancer with a new mechanism of action. J. Chem. Inf. Model. 57(5), 1018–1028 (2017)

    Article  Google Scholar 

  9. Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Meinl, T., Ohl, P., Sieb, C., Thiel, K.: KNIME: the Konstanz information miner. In: Preisach, C., Burkhardt, H., Schmidt-Thieme, L., and Decker, R. (eds.) Studies in Classification, Data Analysis, and Knowledge Organization (GfKL 2007), pp. 319–326. Springer (2007)

    Google Scholar 

  10. Cramer, R.D., III., DePriest, S., Patterson, D., Hecht, P.: The developing practice of comparative molecular field analysis. In: Kubinyi, H. (ed.) 3D QSAR in Drug Design: Volume 1: Theory Methods and Applications, pp. 443–486. Springer, Netherlands (1993)

    Google Scholar 

  11. Diukendjieva, A., Al Sharif, M., Alov, P., Pencheva, T., Tsakovska, I., Pajeva, I.: ADME/Tox properties and biochemical interactions of silybin congeners: In silico study. Nat. Prod. Commun. 12(2), 175–178 (2017)

    Google Scholar 

  12. Diukendjieva, A., Alov, P., Tsakovska, I., Pencheva, T., Richarz, A., Kren, V., Cronin, M.T.D., Pajeva, I.: In vitro and in silico studies of the membrane permeability of natural flavonoids from Silybum marianum (L.) Gaertn. and their derivatives. Phytomedicine 53, 79–85 (2019)

    Google Scholar 

  13. Ertl, P., Rohde, B., Selzer, P.: Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem. 43(20), 3714–3717 (2000)

    Article  Google Scholar 

  14. European Food Safety Authority: EFSA Strategy 2020 Trusted Science for Safe Food (2016)

    Google Scholar 

  15. Ferguson, A.M., Heritage, T., Jonathon, P., Pack, S.E., Phillips, L., Rogan, J., Snaith, P.J.: EVA: a new theoretically based molecular descriptor for use in QSAR/QSPR analysis 11, 143–152 (1997)

    Google Scholar 

  16. Finan, C., Gaulton, A., Kruger, F.A., Lumbers, R.T., Shah, T., Engmann, J., Galver, L., Kelley, R., Karlsson, A., Santos, R., Overington, J.P., Hingorani, A.D., Casas, J.P.: The druggable genome and support for target identification and validation in drug development. Sci. Trans. Medi. 9(383), eaag1166 (2017)

    Google Scholar 

  17. Fratev, F., Tsakovska, I., Al Sharif, M., Mihaylova, E., Pajeva, I.: Structural and dynamical insight into PPARγ antagonism: In silico study of the ligand-receptor interactions of non-covalent antagonists. Int. J. Mole. Sci. 16(7), 15405–15424 (2015)

    Google Scholar 

  18. Good, A.C., So, S.S., Richards, W.G.: Structure-activity relationships from molecular similarity matrices. J. Med. Chem. 36(4), 433–438 (1993)

    Article  Google Scholar 

  19. Hansch, C.: Quantitative approach to biochemical structure-activity relationships. Acc. Chem. Res. 2(8), 232–239 (1969)

    Article  Google Scholar 

  20. Hansch, C., Maloney, P.P., Fujita, T., Muir, R.M.: Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients. Nature 194(4824), 178–180 (1962)

    Article  Google Scholar 

  21. Ikonomov, N., Vassilev, P., Roeva, O.: ICrAData—software for InterCriteria analysis. Int. J. Bioautomat. 22(1), 1–10 (2018)

    Article  Google Scholar 

  22. Jereva, D., Fratev, F., Tsakovska, I., Alov, P., Pencheva, T., Pajeva, I.: Molecular dynamics simulation of the human estrogen receptor alpha: contribution to the pharmacophore of the agonists. Math. Comput. Simul. 133, 124–134 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kansy, M., Fischer, H., Kratzat, K., Senner, F., Wagner, B., Parrilla, I.: High-throughput artificial membrane permeability studies in early lead discovery and development. In: Testa, B., van de Waterbeemd, H., Folkers, G., Guy, R. (eds.) Pharmacokinetic Optimization in Drug Research, pp. 447–464. Verlag Helvetica Chimica Acta, Zürich (2001)

    Chapter  Google Scholar 

  24. Klebe, G.: Comparative molecular similarity indices analysis: CoMSIA. Perspect. Drug Discovery Des. 12, 87–104 (1998)

    Article  Google Scholar 

  25. Klebe, G.: Drug Design: Methodology, Concepts, and Mode-of-Action. Springer, Berlin Heidelberg (2013)

    Book  Google Scholar 

  26. Kubinyi, H.: Lock and key in the real world: concluding remarks. Pharm. Acta Helv. 69(4), 259–269 (1995)

    Article  Google Scholar 

  27. Kubinyi, H. (ed.): QSAR: Hansch analysis and related approaches. New York, VCH, Weinheim (1993)

    Google Scholar 

  28. Labbé, C.M., Pencheva, T., Jereva, D., Desvillechabrol, D., Becot, J., Villoutreix, B.O., Pajeva, I., Miteva, M.A.: AMMOS2: a web server for protein–ligand–water complexes refinement via molecular mechanics. Nucleic Acids Res. 45(W1), W350–W355 (2017)

    Article  Google Scholar 

  29. Lagorce, D., Pencheva, T., Villoutreix, B.O., Miteva, M.A.: DG-AMMOS: a New tool to generate 3D conformation of small molecules using distance geometry and automated molecular mechanics optimization for in silico screening. BMC Chem. Biol. 9, 6 (2009)

    Article  Google Scholar 

  30. Lauri, G., Bartlett, P.A.: CAVEAT: a program to facilitate the design of organic molecules. J. Comput.-Aided Mol. Des. 8(1), 51–66 (1994)

    Article  Google Scholar 

  31. Marchant, C.A., Briggs, K.A., Long, A.: In silico tools for sharing data and knowledge on toxicity and metabolism: Derek for Windows, Meteor, and Vitic. Toxicol. Mech. Methods 18(2–3), 177–187 (2008)

    Google Scholar 

  32. Martin, Y.C., Abagyan, R., Ferenczy, G.G., Gillet, V.J., Oprea, T.I., Ulander, J., Winkler, D., Zefirov, N.S.: Glossary of terms used in computational drug design, part II (IUPAC Recommendations 2015). Pure Appl. Chem. 88(3), 239–264 (2016)

    Article  Google Scholar 

  33. Melagraki, G., Afantitis, A., Sarimveis, H., Koutentis, P.A., Kollias, G., Igglessi-Markopoulou, O.: Predictive QSAR workflow for the in silico identification and screening of novel HDAC inhibitors. Mol. Divers. 13(3), 301–311 (2009)

    Article  Google Scholar 

  34. Moore, T.J., Zhang, H., Anderson, G., Alexander, G.C.: Estimated costs of pivotal trials for novel therapeutic agents approved by the US Food and Drug Administration, 2015–2016. JAMA Int. Med. 178(11), 1451–1457 (2018)

    Article  Google Scholar 

  35. Mysinger, M.M., Carchia, M., Irwin, J.J., Shoichet, B.K.: Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J. Med. Chem. 55(14), 6582–6594 (2012)

    Article  Google Scholar 

  36. Nettles, K.W., Bruning, J.B., Gil, G., O’Neill, E.E., Nowak, J., Hughs, A., Kim, Y., DeSombre, E.R., Dilis, R., Hanson, R.N., Joachimiak, A., Greene, G.L.: Structural plasticity in the oestrogen receptor ligand-binding domain. EMBO Rep. 8(6), 563–568 (2007)

    Article  Google Scholar 

  37. Netzeva, T.I., Worth, A.P., Aldenberg, T., Benigni, R., Cronin, M.T.D., Gramatica, P., Jaworska, J.S., Kahn, S., Klopman, G., Marchant, C.A., Myatt, G., Nikolova-Jeliazkova, N., Patlewicz, G.Y., Perkins, R., Roberts, D.W., Schultz, T.W., Stanton, D.T., van de Sandt, J.J.M., Tong, W., Veith, G., Yang, C.: Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships: the report and recommendations of ECVAM workshop 52. Altern. Lab. Anim. 33(2), 155–173 (2005)

    Article  Google Scholar 

  38. Pearlman, R.S.: 3D Molecular structures: generation and use in 3D searching. In: Kubinyi, H. (ed.) 3D QSAR in Drug Design: Volume 1: Theory Methods and Applications, pp. 41–79. Springer, Netherlands (1993)

    Google Scholar 

  39. Pencheva, T., Lagorce, D., Pajeva, I., B. O, V., Miteva, M.: AMMOS: a software platform to assist in silico screening. Int. J. Bioautomat. 13(4), 143–150 (2009)

    Google Scholar 

  40. Pencheva, T., Lagorce, D., Pajeva, I., Villoutreix, B.O., Miteva, M.A.: AMMOS: automated molecular mechanics optimization tool for in silico screening. BMC Bioinf. 9, 438 (2008)

    Article  Google Scholar 

  41. Pencheva, T., Lagorce, D., Pajeva, I., Villoutreix, B.O., Miteva, M.A.: AMMOS software: method and application. In: Baron, R. (ed.) Computational Drug Discovery and Design, pp. 127–141. Springer New York, New York, NY (2012)

    Chapter  Google Scholar 

  42. Pike, A.C.W.: Lessons learnt from structural studies of the oestrogen receptor. Best Pract. Res. Clin. Endocrinol. Metab. 20(1), 1–14 (2006)

    Article  Google Scholar 

  43. Schulz-Gasch, T., Stahl, M.: Scoring functions for protein–ligand interactions: a critical perspective. Drug Discov. Today Technol. 1(3), 231–239 (2004)

    Article  Google Scholar 

  44. Stewart, J.J.P.: Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J. Mol. Model. 13(12), 1173–1213 (2007)

    Article  Google Scholar 

  45. Tropsha, A., Gramatica, P., Gombar, V.K.: The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb. Sci. 22(1), 69–77 (2003)

    Article  Google Scholar 

  46. Tsakovska, I., Al Sharif, M., Alov, P., Diukendjieva, A., Fioravanzo, E., Cronin, M.T.D., Pajeva, I.: Molecular modelling study of the PPARγ receptor in relation to the mode of action/adverse outcome pathway framework for liver steatosis. Int. J. Mole. Sci. 15(5), 7651–7666 (2014)

    Google Scholar 

  47. Tsakovska, I., Pajeva, I., Alov, P., Worth, A.: Recent advances in the molecular modeling of estrogen receptor-mediated toxicity. In: Christov, C. (ed.) Advances in Protein Chemistry and Structural Biology, pp. 217–251. Academic Press (2011)

    Google Scholar 

  48. Wold, S.: PLS for multivariate linear modelling. In: van de Waterbeemd, H. (ed.) Chemometric Methods in Molecular Design, pp. 195–218. VCH Verlagsgesellschaft mbH (1995)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the National Scientific Fund of Bulgaria, grant DN 17/6 “A New Approach, Based on an Intercriteria Data Analysis, to Support Decision Making in in silico Studies of Complex Biomolecular Systems” and the Bulgarian Ministry of Education and Science under the National Research Programme “Healthy Foods for a Strong Bio-Economy and Quality of Life” approved by DCM # 577/17.08.2018.

The authors would like to acknowledge also the contributions to the above described achievements of the colleagues from a number of European research institutions (Faculty of Pharmacy, University Paris Descartes (France); Institute of Pharmacy, University of Bonn (Germany); Institute for Health and Consumer Protection, Joint Research Center of the European Commission Ispra (Italy), John Moores University, Liverpool (United Kingdom); Italian Institute of Technology, Rome (Italy); Institute of Microbiology, Czech Academy of Sciences, Prague (Czech Republic)) with whom the QSAR and Molecular Modelling Department is intensively collaborating in the recent years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilza Pajeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pajeva, I. et al. (2021). In silico Studies of Biologically Active Molecules. In: Atanassov, K.T. (eds) Research in Computer Science in the Bulgarian Academy of Sciences. Studies in Computational Intelligence, vol 934. Springer, Cham. https://doi.org/10.1007/978-3-030-72284-5_19

Download citation

Publish with us

Policies and ethics