Skip to main content

AMMOS Software: Method and Application

  • Protocol
  • First Online:
Computational Drug Discovery and Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 819))

Abstract

Recent advances in computational sciences enabled extensive use of in silico methods in projects at the interface between chemistry and biology. Among them virtual ligand screening, a modern set of approaches, facilitates hit identification and lead optimization in drug discovery programs. Most of these approaches require the preparation of the libraries containing small organic molecules to be screened or a refinement of the virtual screening results. Here we present an overview of the open source AMMOS software, which is a platform performing an automatic procedure that allows for a structural generation and optimization of drug-like molecules in compound collections, as well as a structural refinement of protein-ligand complexes to assist in silico screening exercises.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shoichet BK (2004) Virtual screening of chemical libraries. Nature 432:862–86.

    Article  PubMed  CAS  Google Scholar 

  2. Villoutreix BO, Bastard K, et al (2008) In silico-in vitro screening of protein-protein interactions: towards the next generation of therapeutics. Curr Pharm Biotechnol 9:103–12.

    Article  PubMed  CAS  Google Scholar 

  3. Clark D (2008) What has virtual screening ever done for drug discovery? Expert Opin Drug Discov 3:841–85.

    Article  CAS  Google Scholar 

  4. Vistoli G, Pedretti A and Testa B (2008) Assessing drug-likeness--what are we missing? Drug Discov Today 13:285–29.

    Article  PubMed  CAS  Google Scholar 

  5. Lagorce D, Sperandio O, et al (2008) FAF-Drugs2: free ADME/tox filtering tool to assist drug discovery and chemical biology projects. BMC Bioinformatics 9:396

    Article  PubMed  Google Scholar 

  6. Downs GM and Willett P (1995) Similarity searching in databases of chemical structures, In Reviews in Computational Chemistry (Lipkowitz KB, and Boyd DB, Eds.), pp 67–117, VCH Publishers NY

    Google Scholar 

  7. [http://www.eyesopen.com] ROCS software

  8. Sperandio O, Andrieu O, et al (2007) MED-SuMoLig: A New Ligand-Based Screening Tool for Efficient Scaffold Hopping. J Chem Inf Model 47:1097–111.

    Article  PubMed  CAS  Google Scholar 

  9. Schwab CH (2010) Conformations and 3D pharmacophore searching. Drug Discovery Today: Technologies 7:e245–53.

    Google Scholar 

  10. Kuntz ID (1992) Structure-based strategies for drug design and discovery. Science 257:1078–108.

    Article  PubMed  CAS  Google Scholar 

  11. Leach AR, Shoichet BK and Peishoff CE (2006) Prediction of protein-ligand interactions. Docking and scoring: successes and gaps. J Med Chem 49:5851–585.

    Article  PubMed  CAS  Google Scholar 

  12. Bottegoni G, Kufareva I, et al (2009) Four-dimensional docking: a fast and accurate account of discrete receptor flexibility in ligand docking. J Med Chem 52:397–40.

    Article  PubMed  CAS  Google Scholar 

  13. Sperandio O, Villoutreix BO and Miteva MA (2010) Structure-Based Virtual Screening, In In silico lead discovery (Miteva MA, Ed.), Bentham Science Publishers

    Google Scholar 

  14. Pencheva T, Soumana OS, et al (2010) Post-docking virtual screening of diverse binding pockets: comparative study using DOCK, AMMOS, X-Score and FRED scoring functions. Eur J Med Chem 45:2622–262.

    Article  PubMed  CAS  Google Scholar 

  15. Bologa CG, Olah MM and Oprea TI (2006) Chemical database preparation for compound acquisition or virtual screening. Methods Mol Biol 316:375–38.

    PubMed  Google Scholar 

  16. Lagorce D, Sperandio O, et al (2010) Chemical libraries for virtual screening, In In silico lead discovery (Miteva MA, Ed.), Bentham Science Publishers

    Google Scholar 

  17. Huang N, Kalyanaraman C, et al (2006) Molecular mechanics methods for predicting protein-ligand binding. Phys Chem Chem Phys 8:5166–517.

    Article  PubMed  CAS  Google Scholar 

  18. Pencheva T, Lagorce D, et al (2008) AMMOS: Automated Molecular Mechanics Optimization tool for in silico Screening. BMC Bioinformatics 9:438

    Article  PubMed  Google Scholar 

  19. Lagorce D, Pencheva T, et al (2009) DG-AMMOS: A New tool to generate 3D conformation of small molecules using Distance Geometry and Automated Molecular Mechanics Optimization for in silico Screening. BMC Chem Biol 9:6

    Article  PubMed  Google Scholar 

  20. Weber IT and Harrison RW (1997) Molecular mechanics calculations on Rous sarcoma virus protease with peptide substrates. Protein Sci 6:2365–237.

    Article  PubMed  CAS  Google Scholar 

  21. Crippen GM and Havel TF (1988) Distance geometry and molecular conformations, Wiley, New York

    Google Scholar 

  22. Rappé AK, Casewit CJ, et al (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114: 10024–1003.

    Article  Google Scholar 

  23. Bagossi P, Zahuczky G, et al (1999) Improved parameters for generating partial charges: correlation with observed dipole moments. J Mol Model 5:143–15.

    Article  CAS  Google Scholar 

  24. Berman HM, Westbrook J, et al (2000) The Protein Data Bank. Nucleic Acids Res 28:235–24.

    Article  PubMed  CAS  Google Scholar 

  25. Sauton N, Lagorce D, et al (2008) MS-DOCK: Accurate multiple conformation generator and rigid docking protocol for multi-step virtual ligand screening. BMC Bioinformatics 9:184

    Article  PubMed  Google Scholar 

  26. Moustakas DT, Lang PT, et al (2006) Development and validation of a modular, extensible docking program: DOCK 5. J Comput Aided Mol Des 20:601–61.

    Article  PubMed  CAS  Google Scholar 

  27. Lagorce D, Villoutreix BO and Miteva MA (2011) Three-dimensional structure generators of drug-like compounds: DG-AMMOS, an open-source package. Expert Opinion on Drug Discovery 6:339–51

    Google Scholar 

  28. Miteva MA, Guyon F and Tuffery P (2010) Frog2: Efficient 3D conformation ensemble generator for small compounds. Nucleic Acids Res 38 Suppl:W622–62.

    Article  PubMed  CAS  Google Scholar 

  29. Leite TB, Gomes D, et al (2007) Frog: a FRee Online druG 3D conformation generator. Nucleic Acids Res 35:W568–57.

    Article  PubMed  Google Scholar 

  30. Vainio MJ and Johnson MS (2007) Generating conformer ensembles using a multiobjective genetic algorithm. J Chem Inf Model 47:2462–247.

    Article  PubMed  CAS  Google Scholar 

  31. Watts KS, Dalal P, et al (2010) ConfGen: a conformational search method for efficient generation of bioactive conformers. J Chem Inf Model 50:534–54.

    Article  PubMed  CAS  Google Scholar 

  32. Sperandio O, Souaille M, et al (2009) MED-3DMC: a new tool to generate 3D conformation ensembles of small molecules with a Monte Carlo sampling of the conformational space. Eur J Med Chem 44: 1405–140.

    Article  PubMed  CAS  Google Scholar 

  33. Verma J, Khedkar VM and Coutinho EC (2010) 3D-QSAR in drug design--a review. Curr Top Med Chem 10:95–11.

    Article  PubMed  CAS  Google Scholar 

  34. Renner S and Schneider G (2006) Scaffold-hopping potential of ligand-based similarity concepts. ChemMedChem 1:181–18.

    Article  PubMed  CAS  Google Scholar 

  35. Osterberg F, Morris GM, et al (2002) Automated docking to multiple target structures: incorporation of protein mobility and structural water heterogeneity in AutoDock. Proteins 46:34–4.

    Article  PubMed  CAS  Google Scholar 

  36. Trott O and Olson AJ (2010) AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–46.

    PubMed  CAS  Google Scholar 

  37. Verdonk ML, Chessari G, et al (2005) Modeling water molecules in protein-ligand docking using GOLD. J Med Chem 48: 6504–651.

    Article  PubMed  CAS  Google Scholar 

  38. Venkatachalam CM, Jiang X, et al (2003) LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J Mol Graph Model 21:289–30.

    Article  PubMed  CAS  Google Scholar 

  39. Montes M, Miteva MA and Villoutreix BO (2007) Structure-based virtual ligand screening with LigandFit: pose prediction and enrichment of compound collections. Proteins 68:712–72.

    Article  PubMed  CAS  Google Scholar 

  40. Cavasotto CN and Abagyan RA (2004) Protein flexibility in ligand docking and virtual screening to protein kinases. J Mol Biol 337:209–22.

    Article  PubMed  CAS  Google Scholar 

  41. Amaro RE, Minh DD, et al (2007) Remarkable loop flexibility in avian influenza N1 and its implications for antiviral drug design. J Am Chem Soc 129:7764–776.

    Article  PubMed  CAS  Google Scholar 

  42. Miteva MA, Robert CH, et al (2010) Receptor flexibility in ligand docking and virtual screening, In In silico lead discovery (Miteva MA, Ed.), Bentham Science Publishers

    Google Scholar 

  43. Cavasotto CN, Kovacs JA and Abagyan RA (2005) Representing receptor flexibility in ligand docking through relevant normal modes. J Am Chem Soc 127:9632–964.

    Article  PubMed  CAS  Google Scholar 

  44. Sperandio O, Mouawad L, et al (2010) How to choose relevant multiple receptor conformations for virtual screening: a test case of Cdk2 and normal mode analysis. Eur Biophys J 39:1365–137.

    Article  PubMed  CAS  Google Scholar 

  45. Segers K, Sperandio O, et al (2007) Design of protein-membrane interaction inhibitors by virtual ligand screening, proof of concept with the C2 domain of factor V. Proc Natl Acad Sci USA 104:12697–1270.

    Article  PubMed  CAS  Google Scholar 

  46. Montes M, Braud E, et al (2008) Receptor-based virtual ligand screening for the identification of novel CDC25 phosphatase inhibitors. J Chem Inf Model 48:157–16.

    Article  PubMed  CAS  Google Scholar 

  47. Wells JA and McClendon CL (2007) Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450:1001–100.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank the financial supports from the INSERM and University Paris Diderot. TP, MM and IP acknowledge the support of the Bulgarian National Science Fund (grants No. DTK02/58 and No. DO02/52).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Miteva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pencheva, T., Lagorce, D., Pajeva, I., Villoutreix, B.O., Miteva, M.A. (2012). AMMOS Software: Method and Application. In: Baron, R. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 819. Springer, New York, NY. https://doi.org/10.1007/978-1-61779-465-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-465-0_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-61779-464-3

  • Online ISBN: 978-1-61779-465-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics