Skip to main content

Molecular Modeling Approach to Study the PPARγ–Ligand Interactions

  • Protocol
  • First Online:
Nuclear Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1966))

Abstract

The chapter is focused on methods relevant for predictive toxicology and computer-aided drug design (adverse outcome pathway development, pharmacophore modeling, docking, and 3D QSAR analysis) and applied to study interactions between peroxisome proliferator-activated receptor γ (PPARγ) and its ligands. The methods have been combined to develop an integrated in silico approach allowing both to predict potential PPARγ-mediated hepatotoxicity of receptor’s full agonists, thus supporting hazard characterization, and to identify naturally derived antidiabetic triterpenoids potentially acting through PPARγ partial agonism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Only in the in vitro systems achieving of a real equilibrium is suggested, since all other experimental settings involve time-dependent changes, due to cross-relation with other biochemical events (e.g., membrane permeation) and dependence of diffusion gradients and transport phenomena.

References

  1. Nuclear Receptors Nomenclature Committee (1999) A unified nomenclature system for the nuclear receptor superfamily. Cell 97:161–163

    Article  Google Scholar 

  2. Kojetin DJ, Matta-Camacho E, Hughes TS, Srinivasan S, Nwachukwu JC, Cavett V, Nowak J, Chalmers MJ, Marciano DP, Kamenecka TM, Shulman AI, Rance M, Griffin PR, Bruning JB, Nettles KW (2015) Structural mechanism for signal transduction in RXR nuclear receptor heterodimers. Nat Commun 6. https://doi.org/10.1038/ncomms9013

  3. Costa V, Gallo MA, Letizia F, Aprile M, Casamassimi A, Ciccodicola A (2010) PPARG: gene expression regulation and next-generation sequencing for unsolved issues. PPAR Res 2010:1–17. https://doi.org/10.1155/2010/409168

    Article  CAS  Google Scholar 

  4. Luconi M, Cantini G, Serio M (2010) Peroxisome proliferator-activated receptor gamma (PPARγ): is the genomic activity the only answer? Steroids 75:585–594. https://doi.org/10.1016/j.steroids.2009.10.012

    Article  CAS  PubMed  Google Scholar 

  5. Gampe RT, Montana VG, Lambert MH, Miller AB, Bledsoe RK, Milburn MV, Kliewer SA, Willson TM, Xu HE (2000) Asymmetry in the PPARgamma/RXRalpha crystal structure reveals the molecular basis of heterodimerization among nuclear receptors. Mol Cell 5:545–555

    Article  CAS  PubMed  Google Scholar 

  6. Chandra V, Huang P, Hamuro Y, Raghuram S, Wang Y, Burris TP, Rastinejad F (2008) Structure of the intact PPAR-γ–RXR-α nuclear receptor complex on DNA. Nature 456:350–356. https://doi.org/10.1038/nature07413

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nolte RT, Wisely GB, Westin S, Cobb JE, Lambert MH, Kurokawa R, Rosenfeld MG, Willson TM, Glass CK, Milburn MV (1998) Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-γ. Nature 395:137

    Article  CAS  PubMed  Google Scholar 

  8. Brown JD, Plutzky J (2007) Peroxisome proliferator activated receptors as transcriptional nodal points and therapeutic targets. Circulation 115:518–533. https://doi.org/10.1161/CIRCULATIONAHA.104.475673

    Article  CAS  PubMed  Google Scholar 

  9. Batista MRB, Martínez L (2015) Conformational diversity of the helix 12 of the ligand binding domain of PPARγ and functional implications. J Phys Chem B 119:15418–15429. https://doi.org/10.1021/acs.jpcb.5b09824

    Article  CAS  PubMed  Google Scholar 

  10. Virtue S, Vidal-Puig A (2010) Adipose tissue expandability, lipotoxicity and the metabolic syndrome – an allostatic perspective. Biochim Biophys Acta 1801:338–349. https://doi.org/10.1016/j.bbalip.2009.12.006

    Article  CAS  PubMed  Google Scholar 

  11. Azhar S (2010) Peroxisome proliferator-activated receptors, metabolic syndrome and cardiovascular disease. Futur Cardiol 6:657–691. https://doi.org/10.2217/fca.10.86

    Article  CAS  Google Scholar 

  12. Fournier T, Tsatsaris V, Handschuh K, Evain-Brion D (2007) PPARs and the placenta. Placenta 28:65–76. https://doi.org/10.1016/j.placenta.2006.04.009

    Article  CAS  PubMed  Google Scholar 

  13. Grygiel-Górniak B (2014) Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications-a review. Nutr J 13:17

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M, Evans RM (2013) PPARγ signaling and metabolism: the good, the bad and the future. Nat Med 99:557–566. https://doi.org/10.1038/nm.3159

    Article  CAS  Google Scholar 

  15. Lamers C, Schubert-Zsilavecz M, Merk D (2012) Therapeutic modulators of peroxisome proliferator-activated receptors (PPAR): a patent review (2008–present). Expert Opin Ther Pat 22:803–841. https://doi.org/10.1517/13543776.2012.699042

    Article  CAS  PubMed  Google Scholar 

  16. Kliewer SA, Sundseth SS, Jones SA, Brown PJ, Wisely GB, Koble CS, Devchand P, Wahli W, Willson TM, Lenhard JM, Lehmann JM (1997) Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors α and γ. Proc Natl Acad Sci 94:4318–4323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Berger J, Moller DE (2002) The mechanisms of action of PPARs. Annu Rev Med 53:409–435

    Article  CAS  PubMed  Google Scholar 

  18. Berger JP, Akiyama TE, Meinke PT (2005) PPARs: therapeutic targets for metabolic disease. Trends Pharmacol Sci 26:244–251. https://doi.org/10.1016/j.tips.2005.03.003

    Article  CAS  PubMed  Google Scholar 

  19. Wang L, Waltenberger B, Pferschy-Wenzig E-M, Blunder M, Liu X, Malainer C, Blazevic T, Schwaiger S, Rollinger JM, Heiss EH, Schuster D, Kopp B, Bauer R, Stuppner H, Dirsch VM, Atanasov AG (2014) Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review. Biochem Pharmacol 92:73–89. https://doi.org/10.1016/j.bcp.2014.07.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Day C (1999) Thiazolidinediones: a new class of antidiabetic drugs. Diabet Med J Br Diabet Assoc 16:179–192

    Article  CAS  Google Scholar 

  21. Grossman SL, Lessem J (1997) Mechanisms and clinical effects of thiazolidinediones. Expert Opin Investig Drugs 6:1025–1040

    Article  CAS  PubMed  Google Scholar 

  22. Kouskoumvekaki I, Petersen RK, Fratev F, Taboureau O, Nielsen TE, Oprea TI, Sonne SB, Flindt EN, Jónsdóttir SÓ, Kristiansen K (2013) Discovery of a novel selective PPARγ ligand with partial agonist binding properties by integrated in silico/in vitro work flow. J Chem Inf Model 53:923–937. https://doi.org/10.1021/ci3006148

    Article  CAS  PubMed  Google Scholar 

  23. Hauner H (2002) The mode of action of thiazolidinediones. Diabetes Metab Res Rev 18(Suppl 2):S10–S15

    Article  CAS  PubMed  Google Scholar 

  24. Villacorta L, Schopfer FJ, Zhang J, Freeman BA, Chen YE (2009) PPARγ and its ligands: therapeutic implications in cardiovascular disease. Clin Sci 116:205–218. https://doi.org/10.1042/CS20080195

    Article  CAS  Google Scholar 

  25. Pan H-J, Lin Y, Chen YE, Vance DE, Leiter EH (2006) Adverse hepatic and cardiac responses to rosiglitazone in a new mouse model of type 2 diabetes: relation to dysregulated phosphatidylcholine metabolism. Vasc Pharmacol 45:65–71. https://doi.org/10.1016/j.vph.2005.11.011

    Article  CAS  Google Scholar 

  26. Moya M, José Gómez-Lechón M, Castell JV, Jover R (2010) Enhanced steatosis by nuclear receptor ligands: a study in cultured human hepatocytes and hepatoma cells with a characterized nuclear receptor expression profile. Chem Biol Interact 184:376–387. https://doi.org/10.1016/j.cbi.2010.01.008

    Article  CAS  PubMed  Google Scholar 

  27. Chigurupati S, Dhanaraj SA, Balakumar P (2015) A step ahead of PPARγ full agonists to PPARγ partial agonists: therapeutic perspectives in the management of diabetic insulin resistance. Eur J Pharmacol 755:50–57. https://doi.org/10.1016/j.ejphar.2015.02.043

    Article  CAS  PubMed  Google Scholar 

  28. Viccica G, Francucci CM, Marcocci C (2010) The role of PPARγ for the osteoblastic differentiation. J Endocrinol Investig 33:9–12

    CAS  Google Scholar 

  29. Graham DJ, Ouellet-Hellstrom R, MaCurdy TE, Ali F, Sholley C, Worrall C, Kelman JA (2010) Risk of acute myocardial infarction, stroke, heart failure, and death in elderly medicare patients treated with rosiglitazone or pioglitazone. JAMA 304:411–418

    Article  CAS  PubMed  Google Scholar 

  30. Nissen SE, Wolski K (2010) Rosiglitazone revisited: an updated meta-analysis of risk for myocardial infarction and cardiovascular mortality. Arch Intern Med 170. https://doi.org/10.1001/archinternmed.2010.207

  31. Shen C, Meng Q, Zhang G (2012) Species-specific toxicity of troglitazone on rats and human by gel entrapped hepatocytes. Toxicol Appl Pharmacol 258:19–25. https://doi.org/10.1016/j.taap.2011.10.020

    Article  CAS  PubMed  Google Scholar 

  32. Rachek LI, Yuzefovych LV, LeDoux SP, Julie NL, Wilson GL (2009) Troglitazone, but not rosiglitazone, damages mitochondrial DNA and induces mitochondrial dysfunction and cell death in human hepatocytes. Toxicol Appl Pharmacol 240:348–354. https://doi.org/10.1016/j.taap.2009.07.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rull A, Geeraert B, Aragonès G, Beltrán-Debón R, Rodríguez-Gallego E, García-Heredia A, Pedro-Botet J, Joven J, Holvoet P, Camps J (2014) Rosiglitazone and fenofibrate exacerbate liver steatosis in a mouse model of obesity and hyperlipidemia. A transcriptomic and metabolomic study. J Proteome Res 13:1731–1743. https://doi.org/10.1021/pr401230s

    Article  CAS  PubMed  Google Scholar 

  34. Kus V, Flachs P, Kuda O, Bardova K, Janovska P, Svobodova M, Jilkova ZM, Rossmeisl M, Wang-Sattler R, Yu Z, Illig T, Kopecky J (2011) Unmasking differential effects of rosiglitazone and pioglitazone in the combination treatment with n-3 fatty acids in mice fed a high-fat diet. PLoS One 6:e27126. https://doi.org/10.1371/journal.pone.0027126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hemmeryckx B, Gaekens M, Gallacher DJ, Lu HR, Lijnen HR (2013) Effect of rosiglitazone on liver structure and function in genetically diabetic Akita mice. Basic Clin Pharmacol Toxicol. https://doi.org/10.1111/bcpt.12104

  36. Le T-A, Loomba R (2012) Management of non-alcoholic fatty liver disease and steatohepatitis. J Clin Exp Hepatol 2:156–173. https://doi.org/10.1016/S0973-6883(12)60104-2

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rogue A, Anthérieu S, Vluggens A, Umbdenstock T, Claude N, de la Moureyre-Spire C, Weaver RJ, Guillouzo A (2014) PPAR agonists reduce steatosis in oleic acid-overloaded HepaRG cells. Toxicol Appl Pharmacol 276:73–81. doi: https://doi.org/10.1016/j.taap.2014.02.001

    Article  CAS  PubMed  Google Scholar 

  38. Al Sharif M, Alov P, Vitcheva V, Diukendjieva A, Mori M, Botta B, Tsakovska I, Pajeva I (2017) Natural modulators of nonalcoholic fatty liver disease: mode of action analysis and in silico ADME-Tox prediction. Toxicol Appl Pharmacol 337:45–66. https://doi.org/10.1016/j.taap.2017.10.013

    Article  CAS  PubMed  Google Scholar 

  39. Tailleux A, Wouters K, Staels B (2012) Roles of PPARs in NAFLD: potential therapeutic targets. Biochim Biophys Acta 1821:809–818. https://doi.org/10.1016/j.bbalip.2011.10.016

    Article  CAS  PubMed  Google Scholar 

  40. Ables GP (2012) Update on Ppar and nonalcoholic fatty liver disease. PPAR Res 2012:1–5. https://doi.org/10.1155/2012/912351

    Article  CAS  Google Scholar 

  41. Merk D, Schubert-Zsilavecz M (2012) Nuclear receptors as pharmaceutical targets: rise of FXR and rebirth of PPAR? Future Med Chem 4:587–588. https://doi.org/10.4155/fmc.12.8

    Article  CAS  PubMed  Google Scholar 

  42. Choi S-S, Kim ES, Koh M, Lee S-J, Lim D, Yang YR, Jang H-J, Seo K, Min S-H, Lee IH, Park SB, Suh P-G, Choi JH (2014) A novel non-agonist peroxisome proliferator-activated receptor γ (PPARγ) ligand UHC1 blocks PPARγ phosphorylation by cyclin-dependent kinase 5 (CDK5) and improves insulin sensitivity. J Biol Chem 289:26618–26629. https://doi.org/10.1074/jbc.M114.566794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kamenecka TM, Busby SA, Kumar N, Choi JH, Banks AS, Vidovic D, Cameron MD, Schurer SC, Mercer BA, Hodder P, Spiegelman BM, Griffin PR (2010) Potent anti-diabetic actions of a novel non-agonist PPARγ ligand that blocks Cdk5-mediated phosphorylation. In: Probe reports from the NIH molecular libraries program. National Center for Biotechnology Information (US), Bethesda, MD

    Google Scholar 

  44. Marciano DP, Kuruvilla DS, Boregowda SV, Asteian A, Hughes TS, Garcia-Ordonez R, Corzo CA, Khan TM, Novick SJ, Park H, Kojetin DJ, Phinney DG, Bruning JB, Kamenecka TM, Griffin PR (2015) Pharmacological repression of PPARγ promotes osteogenesis. Nat Commun 6. https://doi.org/10.1038/ncomms8443

  45. Wang X-J, Zhang J-J, Wang S-Q, Xu S-W-R, Cheng X-C, Wang R-L (2014) Identification of novel multitargeted PPARα/γ/δ pan agonists by core hopping of rosiglitazone. Drug Des Devel Ther 8:2255–2262. https://doi.org/10.2147/DDDT.S70383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fievet C, Fruchart J, Staels B (2006) PPARα and PPARγ dual agonists for the treatment of type 2 diabetes and the metabolic syndrome. Curr Opin Pharmacol 6:606–614. https://doi.org/10.1016/j.coph.2006.06.009

    Article  CAS  PubMed  Google Scholar 

  47. Gonzalez IC, Lamar J, Iradier F, Xu Y, Winneroski LL, York J, Yumibe N, Zink R, Montrose-Rafizadeh C, Etgen GJ, Broderick CL, Oldham BA, Mantlo N (2007) Design and synthesis of a novel class of dual PPARγ/δ agonists. Bioorg Med Chem Lett 17:1052–1055. https://doi.org/10.1016/j.bmcl.2006.11.029

    Article  CAS  PubMed  Google Scholar 

  48. Al Sharif M, Alov P, Diukendjieva A, Vitcheva V, Simeonova R, Krasteva I, Shkondrov A, Tsakovska I, Pajeva I (2018) Molecular determinants of PPARγ partial agonism and related in silico/in vivo studies of natural saponins as potential type 2 diabetes modulators. Food Chem Toxicol 112:47–59. https://doi.org/10.1016/j.fct.2017.12.009

    Article  CAS  PubMed  Google Scholar 

  49. Al-Najjar BO, Wahab HA, Tengku Muhammad TS, Shu-Chien AC, Ahmad Noruddin NA, Taha MO (2011) Discovery of new nanomolar peroxisome proliferator-activated receptor γ activators via elaborate ligand-based modeling. Eur J Med Chem 46:2513–2529. https://doi.org/10.1016/j.ejmech.2011.03.040

    Article  CAS  PubMed  Google Scholar 

  50. Carrieri A, Giudici M, Parente M, De Rosas M, Piemontese L, Fracchiolla G, Laghezza A, Tortorella P, Carbonara G, Lavecchia A, Gilardi F, Crestani M, Loiodice F (2013) Molecular determinants for nuclear receptors selectivity: chemometric analysis, dockings and site-directed mutagenesis of dual peroxisome proliferator-activated receptors α/γ agonists. Eur J Med Chem 63:321–332. https://doi.org/10.1016/j.ejmech.2013.02.015

    Article  CAS  PubMed  Google Scholar 

  51. Lu I-L, Huang C-F, Peng Y-H, Lin Y-T, Hsieh H-P, Chen C-T, Lien T-W, Lee H-J, Mahindroo N, Prakash E, Yueh A, Chen H-Y, Goparaju CMV, Chen X, Liao C-C, Chao Y-S, Hsu JT-A, Wu S-Y (2006) Structure-based drug design of a novel family of PPARγ partial agonists: virtual screening, X-ray crystallography, and in vitro/in vivo biological activities. J Med Chem 49:2703–2712. https://doi.org/10.1021/jm051129s

    Article  CAS  PubMed  Google Scholar 

  52. Guasch L, Sala E, Valls C, Blay M, Mulero M, Arola L, Pujadas G, Garcia-Vallvé S (2011) Structural insights for the design of new PPARgamma partial agonists with high binding affinity and low transactivation activity. J Comput Aided Mol Des 25:717–728. https://doi.org/10.1007/s10822-011-9446-9

    Article  CAS  PubMed  Google Scholar 

  53. Guasch L, Sala E, Castell-Auví A, Cedó L, Liedl KR, Wolber G, Muehlbacher M, Mulero M, Pinent M, Ardévol A, Valls C, Pujadas G, Garcia-Vallvé S (2012) Identification of PPARgamma partial agonists of natural origin (I): development of a virtual screening procedure and in vitro validation. PLoS One 7:e50816. https://doi.org/10.1371/journal.pone.0050816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Guasch L, Sala E, Mulero M, Valls C, Salvadó MJ, Pujadas G, Garcia-Vallvé S (2013) Identification of PPARgamma partial agonists of natural origin (II): in silico prediction in natural extracts with known antidiabetic activity. PLoS One 8:e55889. https://doi.org/10.1371/journal.pone.0055889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sohn Y, Park C, Lee Y, Kim S, Thangapandian S, Kim Y, Kim H-H, Suh J-K, Lee KW (2013) Multi-conformation dynamic pharmacophore modeling of the peroxisome proliferator-activated receptor γ for the discovery of novel agonists. J Mol Graph Model 46:1–9. https://doi.org/10.1016/j.jmgm.2013.08.012

    Article  CAS  PubMed  Google Scholar 

  56. Sharma MC (2015) Prospective QSAR-based prediction models with pharmacophore studies of oxadiazole-substituted α-isopropoxy phenylpropanoic acids with dual activators of PPAR α and PPAR γ. Interdiscip Sci Comput Life Sci 7:335–345. https://doi.org/10.1007/s12539-015-0009-y

    Article  CAS  Google Scholar 

  57. Lewis SN, Garcia Z, Hontecillas R, Bassaganya-Riera J, Bevan DR (2015) Pharmacophore modeling improves virtual screening for novel peroxisome proliferator-activated receptor-gamma ligands. J Comput Aided Mol Des 29:421–439. https://doi.org/10.1007/s10822-015-9831-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tsakovska I, Al Sharif M, Alov P, Diukendjieva A, Fioravanzo E, Cronin M, Pajeva I (2014) Molecular modelling study of the PPARγ receptor in relation to the mode of action/adverse outcome pathway framework for liver steatosis. Int J Mol Sci 15:7651–7666. https://doi.org/10.3390/ijms15057651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Al Sharif M, Tsakovska I, Pajeva I, Alov P, Fioravanzo E, Bassan A, Kovarich S, Yang C, Mostrag-Szlichtyng A, Vitcheva V, Worth AP, Richarz A-N, Cronin MTD (2017) The application of molecular modelling in the safety assessment of chemicals: a case study on ligand-dependent PPARγ dysregulation. Toxicology 392:140–154. https://doi.org/10.1016/j.tox.2016.01.009

    Article  CAS  PubMed  Google Scholar 

  60. Guasch L, Sala E, Valls C, Mulero M, Pujadas G, Garcia-Vallvé S (2012) Development of docking-based 3D-QSAR models for PPARgamma full agonists. J Mol Graph Model 36:1–9. https://doi.org/10.1016/j.jmgm.2012.03.001

    Article  CAS  PubMed  Google Scholar 

  61. Rücker C, Scarsi M, Meringer M (2006) 2D QSAR of PPARγ agonist binding and transactivation. Bioorg Med Chem 14:5178–5195. https://doi.org/10.1016/j.bmc.2006.04.005

    Article  CAS  PubMed  Google Scholar 

  62. Shah P, Mittal A, Bharatam PV (2008) CoMFA analysis of dual/multiple PPAR activators. Eur J Med Chem 43:2784–2791. https://doi.org/10.1016/j.ejmech.2008.01.017

    Article  CAS  PubMed  Google Scholar 

  63. Sundriyal S, Bharatam PV (2009) ‘Sum of activities’ as dependent parameter: a new CoMFA-based approach for the design of pan PPAR agonists. Eur J Med Chem 44:42–53. https://doi.org/10.1016/j.ejmech.2008.03.014

    Article  CAS  PubMed  Google Scholar 

  64. Liao C, Zhou J, Shi L, Li Z, Lu X-P, Xie A (2004) 3D QSAR studies on peroxisome proliferator-activated receptor ? agonists using CoMFA and CoMSIA. J Mol Model 10:165–177. https://doi.org/10.1007/s00894-003-0175-4

    Article  CAS  PubMed  Google Scholar 

  65. Vedani A, Descloux A-V, Spreafico M, Ernst B (2007) Predicting the toxic potential of drugs and chemicals in silico: a model for the peroxisome proliferator-activated receptor γ (PPAR γ). Toxicol Lett 173:17–23. https://doi.org/10.1016/j.toxlet.2007.06.011

    Article  CAS  PubMed  Google Scholar 

  66. Home-PubMed-NCBI. https://www.ncbi.nlm.nih.gov/pubmed/. Accessed 26 Apr 2018.

  67. RCSB PDB – search results. http://www.rcsb.org/pdb/results/results.do?tabtoshow=Current&qrid=E4335BE1. Accessed 8 Feb 2018.

  68. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. ChEMBL. https://www.ebi.ac.uk/chembl/. Accessed 26 Apr 2018.

  70. Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J, Davies M, Krüger FA, Light Y, Mak L, McGlinchey S, Nowotka M, Papadatos G, Santos R, Overington JP (2014) The ChEMBL bioactivity database: an update. Nucleic Acids Res 42:D1083–D1090. https://doi.org/10.1093/nar/gkt1031

    Article  CAS  PubMed  Google Scholar 

  71. The PubChem Project. https://pubchem.ncbi.nlm.nih.gov/. Accessed 26 Apr 2018.

  72. DUD-E: a database of useful (docking) decoys – enhanced. http://dude.docking.org/. Accessed 26 Apr 2018.

  73. Mysinger MM, Carchia M, Irwin JJ, Shoichet BK (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55:6582–6594. https://doi.org/10.1021/jm300687e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Al Sharif M, Alov P, Vitcheva V, Pajeva I, Tsakovska I (2014) Modes-of-action related to repeated dose toxicity: tissue-specific biological roles of PPAR γ ligand-dependent dysregulation in nonalcoholic fatty liver disease. PPAR Res 2014:1–13. https://doi.org/10.1155/2014/432647

    Article  CAS  Google Scholar 

  75. Chemical Computing Group Inc. (2016) Molecular operating environment v. 2016.0802. Chemical Computing Group Inc, Montreal, QC

    Google Scholar 

  76. Labute P (2009) Protonate3D: assignment of ionization states and hydrogen coordinates to macromolecular structures. Proteins Struct Funct Bioinformatics 75:187–205. https://doi.org/10.1002/prot.22234

    Article  CAS  Google Scholar 

  77. Environment Directorate Organisation for Economic Co-operation and Development (2013) Guidance document on the validation of (quantitative) structure-activity relationship [(Q)SAR] models no. 6. OECD, Paris

    Google Scholar 

  78. Advanced Chemistry Development, Inc. (2015) ACD/Percepta platform. Advanced Chemistry Development, Inc., Toronto, ON

    Google Scholar 

  79. Sonich-Mullin C, Fielder R, Wiltse J, Baetcke K, Dempsey J, Fenner-Crisp P, Grant D, Hartley M, Knaap A, Kroese D, Mangelsdorf I, Meek E, Rice JM, Younes M (2001) IPCS conceptual framework for evaluating a mode of action for chemical carcinogenesis. Regul Toxicol Pharmacol 34:146–152. https://doi.org/10.1006/rtph.2001.1493

    Article  CAS  PubMed  Google Scholar 

  80. Environment Directorate Organisation for Economic Co-operation and Development (2017) Guidance document on developing and assessing adverse outcome pathways, series on testing and assessment no. 184. OECD, Paris

    Google Scholar 

  81. Labute P. Probabilistic receptor potentials. https://www.chemcomp.com/journal/cstat.htm. Accessed 25 Apr 2018.

  82. Hughes TS, Giri PK, de Vera IMS, Marciano DP, Kuruvilla DS, Shin Y, Blayo A-L, Kamenecka TM, Burris TP, Griffin PR, Kojetin DJ (2014) An alternate binding site for PPARγ ligands. Nat Commun 5. https://doi.org/10.1038/ncomms4571

  83. Ballante F, Marshall GR (2016) An automated strategy for binding-pose selection and docking assessment in structure-based drug design. J Chem Inf Model 56:54–72. https://doi.org/10.1021/acs.jcim.5b00603

    Article  CAS  PubMed  Google Scholar 

  84. Casimiro-Garcia A, Bigge CF, Davis JA, Padalino T, Pulaski J, Ohren JF, McConnell P, Kane CD, Royer LJ, Stevens KA, Auerbach B, Collard W, McGregor C, Song K (2009) Synthesis and evaluation of novel α-heteroaryl-phenylpropanoic acid derivatives as PPARα/γ dual agonists. Bioorg Med Chem 17:7113–7125. https://doi.org/10.1016/j.bmc.2009.09.001

    Article  CAS  PubMed  Google Scholar 

  85. Mahindroo N, Huang C-F, Peng Y-H, Wang C-C, Liao C-C, Lien T-W, Chittimalla SK, Huang W-J, Chai C-H, Prakash E, Chen C-P, Hsu T-A, Peng C-H, Lu I-L, Lee L-H, Chang Y-W, Chen W-C, Chou Y-C, Chen C-T, Goparaju CMV, Chen Y-S, Lan S-J, Yu M-C, Chen X, Chao Y-S, Wu S-Y, Hsieh H-P (2005) Novel indole-based peroxisome proliferator-activated receptor agonists: design, SAR, structural biology, and biological activities. J Med Chem 48:8194–8208. https://doi.org/10.1021/jm0506930

    Article  CAS  PubMed  Google Scholar 

  86. Tripos International, Inc. (2013) SYBYL-X, v. 2.1. Tripos International Certara USA, Inc., St. Louis, MO. https://www.certara.com/

    Google Scholar 

  87. Tropsha A, Gramatica P, Gombar VK (2003) The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. Mol Inform 22:69–77

    CAS  Google Scholar 

  88. Netzeva TI, Worth A, Aldenberg T, Benigni R, Cronin MTD, Gramatica P, Jaworska JS, Kahn S, Klopman G, Marchant CA, Myatt G, Nikolova-Jeliazkova N, Patlewicz GY, Perkins R, Roberts D, Schultz T, Stanton DW, van de Sandt JJM, Tong W, Veith G, Yang C (2005) Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships. The report and recommendations of ECVAM Workshop 52. Altern Lab Anim 33:155–173

    CAS  PubMed  Google Scholar 

  89. Melagraki G, Afantitis A, Sarimveis H, Koutentis PA, Kollias G, Igglessi-Markopoulou O (2009) Predictive QSAR workflow for the in silico identification and screening of novel HDAC inhibitors. Mol Divers 13:301–311. https://doi.org/10.1007/s11030-009-9115-2

    Article  CAS  PubMed  Google Scholar 

  90. Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl T, Ohl P, Sieb C, Thiel K, Wiswedel B (2008) KNIME: the Konstanz Information Miner. In: Preisach C, Burkhardt H, Schmidt-Thieme L, Decker R (eds) Data analysis, machine learning and applications. Springer, Berlin, pp 319–326

    Chapter  Google Scholar 

  91. Acton JJ, Black RM, Jones AB, Moller DE, Colwell L, Doebber TW, MacNaul KL, Berger J, Wood HB (2005) Benzoyl 2-methyl indoles as selective PPARγ modulators. Bioorg Med Chem Lett 15:357–362. https://doi.org/10.1016/j.bmcl.2004.10.068

    Article  CAS  PubMed  Google Scholar 

  92. Henke BR, Blanchard SG, Brackeen MF, Brown KK, Cobb JE, Collins JL, Harrington WW, Hashim MA, Hull-Ryde EA, Kaldor I, Kliewer SA, Lake DH, Leesnitzer LM, Lehmann JM, Lenhard JM, Orband-Miller LA, Miller JF, Mook RA, Noble SA, Oliver W, Parks DJ, Plunket KD, Szewczyk JR, Willson TM (1998) N-(2-Benzoylphenyl)-l-tyrosine PPARγ agonists. 1. Discovery of a novel series of potent antihyperglycemic and antihyperlipidemic agents. J Med Chem 41:5020–5036. https://doi.org/10.1021/jm9804127

    Article  CAS  PubMed  Google Scholar 

  93. Bruning JB, Chalmers MJ, Prasad S, Busby SA, Kamenecka TM, He Y, Nettles KW, Griffin PR (2007) Partial agonists activate PPARγ using a helix 12 independent mechanism. Structure 15:1258–1271. https://doi.org/10.1016/j.str.2007.07.014

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of the European Community’s seventh Framework Program (FP7/2007–2013) COSMOS Project under grant agreement no. 266835, the Cosmetics Europe, and the National Science Fund of Bulgaria grant agreement no. DM 01/1/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilza Pajeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Al Sharif, M., Tsakovska, I., Alov, P., Vitcheva, V., Diukendjieva, A., Pajeva, I. (2019). Molecular Modeling Approach to Study the PPARγ–Ligand Interactions. In: Badr, M. (eds) Nuclear Receptors. Methods in Molecular Biology, vol 1966. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9195-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9195-2_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9194-5

  • Online ISBN: 978-1-4939-9195-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics