Skip to main content

Pathologic Basis and Classification of Biliary Epithelial Neoplasms

  • Chapter
  • First Online:
Diagnosis and Management of Cholangiocarcinoma

Abstract

Bile duct epithelial neoplasms comprise a heterogeneous group with inconsistencies in classification and nomenclature. These neoplasms may arise anywhere in the biliary system, from canals of Hering to the ampulla of Vater, periductal glands, or gallbladder. Advancements in genetic, epigenetic, and molecular studies have explored and identified individual characteristics of this heterogeneous group and contributed to the current World Health Organization histological classification. Intraluminal malignant neoplastic precursors are generally divided into mass-forming “papillary neoplasms” and non-mass-forming “intraepithelial neoplasia.” Pathological classification of invasive epithelial neoplasms is based on location, histologic features, and genetic characteristics. In this chapter, we outline the spectrum and pathologic basis of biliary epithelial malignancies, malignant precursor lesions, and benign mimics of intrahepatic cholangiocarcinoma, including a brief review of neuroendocrine neoplasms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

Adenocarcinoma

AJCC:

American Joint Committee on Cancer

ASC:

Adenosquamous carcinoma

BAF:

Biliary adenofibroma

BilIN:

Biliary intraepithelial neoplasm

C:

Combined

CA 19-9:

Carbohydrate antigen 19-9

CA:

Carcinoma

CC:

Clear cell

CD:

Cluster of differentiation

CEA:

Carcinoembryonic antigen

c-HCC-CCA:

Combined hepatocellular-cholangiocarcinoma

CK:

Cytokeratin

D:

Distal

DPM:

Ductal plate malformation

EHBD:

Extrahepatic bile duct

EMA:

Epithelial membrane antigen

FISH:

Fluorescent in situ hybridization

GB:

Gallbladder

HCC:

Hepatocellular carcinoma

HCV:

Hepatitis C virus

IC:

Infiltrative class

iCAA:

Intrahepatic cholangiocarcinoma

ICD-O:

International Classification of Diseases for Oncology

ICPN:

Intracholecystic papillary neoplasm

IHC:

Immunohistochemical staining

IPNB:

Intraductal papillary neoplasm of the bile duct

ISH:

In situ hybridization

ITPNB:

Intraductal tubulopapillary neoplasm of the bile duct

LD:

Large duct

MANEC:

Mixed adenoneuroendocrine carcinoma

MCN:

Mucinous cystic neoplasm

MEN:

Multiple neuroendocrine neoplasia

MiNEN:

Mixed neuroendocrine-non-neuroendocrine neoplasm

MUC:

Mucin

NEC:

Neuroendocrine carcinoma

NEN:

Neuroendocrine neoplasm

NES:

Neuron-specific enolase

NET:

Neuroendocrine tumor

P:

Peripheral

PanIn:

Pancreatic intraepithelial neoplasm

PC:

Proliferative class

PGA-GB:

Pyloric gland adenoma of the gallbladder

PSC:

Primary sclerosing cholangitis

SCC:

Squamous cell carcinoma

SC-GB:

Sarcomatoid carcinoma of the gallbladder

SD:

Small duct

VHL:

Von Hippel-Lindau

VMC:

von Meyenburg complex

WHO:

World Health Organization

ZE:

Zollinger-Ellison

References

  1. Roy S, Glaser S, Chakraborty S. Inflammation and progression of cholangiocarcinoma: role of angiogenic and lymphangiogenic mechanisms. Front Med (Lausanne). 2019;6:293.

    Article  Google Scholar 

  2. Braconi C, Patel T. Cholangiocarcinoma: new insights into disease pathogenesis and biology. Infect Dis Clin N Am. 2010;24(4):871–84, vii.

    Article  Google Scholar 

  3. Leyva-Illades D, McMillin M, Quinn M, Demorrow S. Cholangiocarcinoma pathogenesis: role of the tumor microenvironment. Transl Gastrointest Cancer. 2012;1(1):71–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Rizvi S, Gores GJ. Molecular pathogenesis of cholangiocarcinoma. Dig Dis. 2014;32(5):564–9.

    Article  PubMed  Google Scholar 

  5. Balitzer D, Joseph NM, Ferrell L, Shafizadeh N, Jain D, Zhang X, et al. Immunohistochemical and molecular features of cholangiolocellular carcinoma are similar to well-differentiated intrahepatic cholangiocarcinoma. Mod Pathol. 2019;32(10):1486–94.

    Article  CAS  PubMed  Google Scholar 

  6. Bragazzi MC, Ridola L, Safarikia S, Matteo SD, Costantini D, Nevi L, et al. New insights into cholangiocarcinoma: multiple stems and related cell lineages of origin. Ann Gastroenterol. 2018;31(1):42–55.

    PubMed  Google Scholar 

  7. Roskams T. Liver stem cells and their implication in hepatocellular and cholangiocarcinoma. Oncogene. 2006;25(27):3818–22.

    Article  CAS  PubMed  Google Scholar 

  8. IARC. WHO Classification of tumours. Digestive system tumours. 5th ed. In: Board TWCoTE, editor. Maestro Gestion D’Edition, Villeurbanne, France: International Agency for Research of Cencer (IARC); 2019 June 2019. 635 p.

    Google Scholar 

  9. Zen Y, Adsay NV, Bardadin K, Colombari R, Ferrell L, Haga H, et al. Biliary intraepithelial neoplasia: an international interobserver agreement study and proposal for diagnostic criteria. Mod Pathol. 2007;20(6):701–9.

    Article  PubMed  Google Scholar 

  10. Ainechi S, Lee H. Updates on precancerous lesions of the biliary tract: biliary precancerous lesion. Arch Pathol Lab Med. 2016;140(11):1285–9.

    Article  PubMed  Google Scholar 

  11. Chan KW. Review of 253 cases of significant pathology in 7,910 cholecystectomies in Hong Kong. Pathology. 1988;20(1):20–3.

    Article  CAS  PubMed  Google Scholar 

  12. Roa I, Araya JC, Villaseca M, De Aretxabala X, Riedemann P, Endoh K, et al. Preneoplastic lesions and gallbladder cancer: an estimate of the period required for progression. Gastroenterology. 1996;111(1):232–6.

    Article  CAS  PubMed  Google Scholar 

  13. Lewis JT, Talwalkar JA, Rosen CB, Smyrk TC, Abraham SC. Precancerous bile duct pathology in end-stage primary sclerosing cholangitis, with and without cholangiocarcinoma. Am J Surg Pathol. 2010;34(1):27–34.

    Article  PubMed  Google Scholar 

  14. Wu TT, Levy M, Correa AM, Rosen CB, Abraham SC. Biliary intraepithelial neoplasia in patients without chronic biliary disease: analysis of liver explants with alcoholic cirrhosis, hepatitis C infection, and noncirrhotic liver diseases. Cancer. 2009;115(19):4564–75.

    Article  PubMed  Google Scholar 

  15. Kim KH, Dhupar R, Ueki S, Cardinal J, Pan P, Cao Z, et al. Donor graft interferon regulatory factor-1 gene transfer worsens liver transplant ischemia/reperfusion injury. Surgery. 2009;146(2):181–9.

    Article  PubMed  Google Scholar 

  16. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2012;56(4):908–43.

    Google Scholar 

  17. Adsay NV, Basturk O, Cheng JD, Andea AA. Ductal neoplasia of the pancreas: nosologic, clinicopathologic, and biologic aspects. Semin Radiat Oncol. 2005;15(4):254–64.

    Article  PubMed  Google Scholar 

  18. Avadhani V, Hacihasanoglu E, Memis B, Pehlivanoglu B, Hanley KZ, Krishnamurti U, et al. Cytologic predictors of malignancy in bile duct brushings: a multi-reviewer analysis of 60 cases. Mod Pathol. 2017;30(9):1273–86.

    Article  CAS  PubMed  Google Scholar 

  19. Bergquist A, Glaumann H, Stal P, Wang GS, Broome U. Biliary dysplasia, cell proliferation and nuclear DNA-fragmentation in primary sclerosing cholangitis with and without cholangiocarcinoma. J Intern Med. 2001;249(1):69–75.

    Article  CAS  PubMed  Google Scholar 

  20. Nakanuma Y, Uchida T, Sato Y, Uesaka K. An S100P-positive biliary epithelial field is a preinvasive intraepithelial neoplasm in nodular-sclerosing cholangiocarcinoma. Hum Pathol. 2017;60:46–57.

    Article  CAS  PubMed  Google Scholar 

  21. Tsokos CG, Krings G, Yilmaz F, Ferrell LD, Gill RM. Proliferative index facilitates distinction between benign biliary lesions and intrahepatic cholangiocarcinoma. Hum Pathol. 2016;57:61–7.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Walter D, Herrmann E, Winkelmann R, Albert JG, Liese J, Schnitzbauer A, et al. Role of CD15 expression in dysplastic and neoplastic tissue of the bile duct – a potential novel tool for differential diagnosis of indeterminate biliary stricture. Histopathology. 2016;69(6):962–70.

    Article  PubMed  Google Scholar 

  23. Hruban RH, Maitra A, Kern SE, Goggins M. Precursors to pancreatic cancer. Gastroenterol Clin N Am. 2007;36(4):831–49, vi.

    Article  Google Scholar 

  24. Hsu M, Sasaki M, Igarashi S, Sato Y, Nakanuma Y. KRAS and GNAS mutations and p53 overexpression in biliary intraepithelial neoplasia and intrahepatic cholangiocarcinomas. Cancer. 2013;119(9):1669–74.

    Article  CAS  PubMed  Google Scholar 

  25. Hucl T. Precursors to cholangiocarcinoma. Gastroenterol Res Pract. 2019;2019:1389289.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Serra S. Precursor neoplastic lesions of the biliary tract. J Clin Pathol. 2014;67(10):875–82.

    Article  PubMed  Google Scholar 

  27. Zen Y, Quaglia A, Heaton N, Rela M, Portmann B. Two distinct pathways of carcinogenesis in primary sclerosing cholangitis. Histopathology. 2011;59(6):1100–10.

    Article  PubMed  Google Scholar 

  28. Zen Y, Sasaki M, Fujii T, Chen TC, Chen MF, Yeh TS, et al. Different expression patterns of mucin core proteins and cytokeratins during intrahepatic cholangiocarcinogenesis from biliary intraepithelial neoplasia and intraductal papillary neoplasm of the bile duct--an immunohistochemical study of 110 cases of hepatolithiasis. J Hepatol. 2006;44(2):350–8.

    Article  CAS  PubMed  Google Scholar 

  29. Kim KM, Lee JK, Shin JU, Lee KH, Lee KT, Sung JY, et al. Clinicopathologic features of intraductal papillary neoplasm of the bile duct according to histologic subtype. Am J Gastroenterol. 2012;107(1):118–25.

    Article  CAS  PubMed  Google Scholar 

  30. Rocha FG, Lee H, Katabi N, DeMatteo RP, Fong Y, D’Angelica MI, et al. Intraductal papillary neoplasm of the bile duct: a biliary equivalent to intraductal papillary mucinous neoplasm of the pancreas? Hepatology. 2012;56(4):1352–60.

    Article  CAS  PubMed  Google Scholar 

  31. Park HJ, Kim SY, Kim HJ, Lee SS, Hong GS, Byun JH, et al. Intraductal papillary neoplasm of the bile duct: clinical, imaging, and pathologic features. AJR Am J Roentgenol. 2018;211(1):67–75.

    Article  PubMed  Google Scholar 

  32. Hachiya H, Kita J, Shiraki T, Iso Y, Shimoda M, Kubota K. Intraductal papillary neoplasm of the bile duct developing in a patient with primary sclerosing cholangitis: a case report. World J Gastroenterol. 2014;20(42):15925–30.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jung G, Park KM, Lee SS, Yu E, Hong SM, Kim J. Long-term clinical outcome of the surgically resected intraductal papillary neoplasm of the bile duct. J Hepatol. 2012;57(4):787–93.

    Article  PubMed  Google Scholar 

  34. Nakanuma Y, Kakuda Y, Uesaka K, Miyata T, Yamamoto Y, Fukumura Y, et al. Characterization of intraductal papillary neoplasm of bile duct with respect to histopathologic similarities to pancreatic intraductal papillary mucinous neoplasm. Hum Pathol. 2016;51:103–13.

    Article  PubMed  Google Scholar 

  35. Wu X, Li B, Zheng C, Chang X, Zhang T, He X, et al. Intraductal papillary neoplasm of the bile duct: a single-center retrospective study. J Int Med Res. 2018;46(10):4258–68.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Luvira V, Somsap K, Pugkhem A, Eurboonyanun C, Luvira V, Bhudhisawasdi V, et al. Morphological classification of intraductal papillary neoplasm of the bile duct with survival correlation. Asian Pac J Cancer Prev. 2017;18(1):207–13.

    PubMed  PubMed Central  Google Scholar 

  37. Nakanuma Y, Sudo Y. Biliary tumors with pancreatic counterparts. Semin Diagn Pathol. 2017;34(2):167–75.

    Article  PubMed  Google Scholar 

  38. Schlitter AM, Born D, Bettstetter M, Specht K, Kim-Fuchs C, Riener MO, et al. Intraductal papillary neoplasms of the bile duct: stepwise progression to carcinoma involves common molecular pathways. Mod Pathol. 2014;27(1):73–86.

    Article  CAS  PubMed  Google Scholar 

  39. Nakanuma Y, Sato Y. Cystic and papillary neoplasm involving peribiliary glands: a biliary counterpart of branch-type intraductal papillary mucinous [corrected] neoplasm? Hepatology. 2012;55(6):2040–1.

    Article  PubMed  Google Scholar 

  40. Lim JH, Zen Y, Jang KT, Kim YK, Nakanuma Y. Cyst-forming intraductal papillary neoplasm of the bile ducts: description of imaging and pathologic aspects. AJR Am J Roentgenol. 2011;197(5):1111–20.

    Article  PubMed  Google Scholar 

  41. Lee SS, Kim MH, Lee SK, Jang SJ, Song MH, Kim KP, et al. Clinicopathologic review of 58 patients with biliary papillomatosis. Cancer. 2004;100(4):783–93.

    Article  PubMed  Google Scholar 

  42. Nakanuma Y, Kakuda Y, Uesaka K. Characterization of intraductal papillary neoplasm of the bile duct with respect to the histopathologic similarities to pancreatic intraductal papillary mucinous neoplasm. Gut Liver. 2019;13(6):617–27.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Schlitter AM, Jang KT, Kloppel G, Saka B, Hong SM, Choi H, et al. Intraductal tubulopapillary neoplasms of the bile ducts: clinicopathologic, immunohistochemical, and molecular analysis of 20 cases. Mod Pathol. 2015;28(9):1249–64.

    Article  CAS  PubMed  Google Scholar 

  44. Chan KM, Tsai CY, Yeh CN, Yeh TS, Lee WC, Jan YY, et al. Characterization of intrahepatic cholangiocarcinoma after curative resection: outcome, prognostic factor, and recurrence. BMC Gastroenterol. 2018;18(1):180.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cardinale V, Wang Y, Carpino G, Reid LM, Gaudio E, Alvaro D. Mucin-producing cholangiocarcinoma might derive from biliary tree stem/progenitor cells located in peribiliary glands. Hepatology. 2012;55(6):2041–2.

    Article  PubMed  Google Scholar 

  46. Wan XS, Xu YY, Qian JY, Yang XB, Wang AQ, He L, et al. Intraductal papillary neoplasm of the bile duct. World J Gastroenterol. 2013;19(46):8595–604.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kendall T, Verheij J, Gaudio E, Evert M, Guido M, Goeppert B, et al. Anatomical, histomorphological and molecular classification of cholangiocarcinoma. Liver Int. 2019;39(Suppl 1):7–18.

    Article  CAS  PubMed  Google Scholar 

  48. Sasaki M, Matsubara T, Yoneda N, Nomoto K, Tsuneyama K, Sato Y, et al. Overexpression of enhancer of zeste homolog 2 and MUC1 may be related to malignant behaviour in intraductal papillary neoplasm of the bile duct. Histopathology. 2013;62(3):446–57.

    Article  PubMed  Google Scholar 

  49. Tsai JH, Yuan RH, Chen YL, Liau JY, Jeng YM. GNAS is frequently mutated in a specific subgroup of intraductal papillary neoplasms of the bile duct. Am J Surg Pathol. 2013;37(12):1862–70.

    Article  PubMed  Google Scholar 

  50. Muraki T, Memis B, Reid MD, Uehara T, Ito T, Hasebe O, et al. Reflux-associated cholecystopathy: analysis of 76 gallbladders from patients with supra-oddi union of the pancreatic duct and common bile duct (pancreatobiliary maljunction) elucidates a specific diagnostic pattern of mucosal hyperplasia as a prelude to carcinoma. Am J Surg Pathol. 2017;41(9):1167–77.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Adsay V, Jang KT, Roa JC, Dursun N, Ohike N, Bagci P, et al. Intracholecystic papillary-tubular neoplasms (ICPN) of the gallbladder (neoplastic polyps, adenomas, and papillary neoplasms that are >/=1.0 cm): clinicopathologic and immunohistochemical analysis of 123 cases. Am J Surg Pathol. 2012;36(9):1279–301.

    Article  PubMed  Google Scholar 

  52. Argon A, Barbet FY, Nart D. The relationship between intracholecystic papillary-tubular neoplasms and invasive carcinoma of the gallbladder. Int J Surg Pathol. 2016;24(6):504–11.

    Article  PubMed  Google Scholar 

  53. Warfel KA, Hull MT. Villous papilloma of the gallbladder in association with leukodystrophy. Hum Pathol. 1984;15(12):1192–4.

    Article  CAS  PubMed  Google Scholar 

  54. Bennett S, Marginean EC, Paquin-Gobeil M, Wasserman J, Weaver J, Mimeault R, et al. Clinical and pathological features of intraductal papillary neoplasm of the biliary tract and gallbladder. HPB (Oxford). 2015;17(9):811–8.

    Article  Google Scholar 

  55. Hashimoto S, Horaguchi J, Fujita N, Noda Y, Kobayashi G, Ito K, et al. Intracholecystic papillary-tubular neoplasm of the gallbladder presenting with jaundice. Intern Med. 2014;53(20):2313–7.

    Article  PubMed  Google Scholar 

  56. Paez Cumpa C, Erimeiku Barahona A, Payeras Capo MA, Amengual Antich I, Garrido Duran C. Hemobilia due to intracholecystic papillary neoplasm. Rev Esp Enferm Dig. 2017;109(1):70–3.

    PubMed  Google Scholar 

  57. Hazarika P, Sharma MK. Intracholecystic papillary-tubular neoplasm of gallbladder: a 5-year retrospective pathological study. Indian J Pathol Microbiol. 2018;61(4):516–9.

    Article  PubMed  Google Scholar 

  58. Muranushi R, Saito H, Matsumoto A, Kato T, Tanaka N, Nakazato K, et al. A case report of intracholecystic papillary neoplasm of the gallbladder resembling a submucosal tumor. Surg Case Rep. 2018;4(1):124.

    Article  PubMed  PubMed Central  Google Scholar 

  59. He C, Fukumura Y, Toriyama A, Ogura K, Sasahara N, Mitani K, et al. Pyloric gland adenoma (PGA) of the gallbladder: a unique and distinct tumor from PGAs of the stomach, duodenum, and pancreas. Am J Surg Pathol. 2018;42(9):1237–45.

    Article  PubMed  Google Scholar 

  60. Albores-Saavedra J, Chable-Montero F, Gonzalez-Romo MA, Ramirez Jaramillo M, Henson DE. Adenomas of the gallbladder. Morphologic features, expression of gastric and intestinal mucins, and incidence of high-grade dysplasia/carcinoma in situ and invasive carcinoma. Hum Pathol. 2012;43(9):1506–13.

    Article  CAS  PubMed  Google Scholar 

  61. Schaefer IM, Cameron S, Middel P, Homayounfar K, Schworer H, Vieth M, et al. Pyloric gland adenoma of the cystic duct with malignant transformation: report of a case with a review of the literature. BMC Cancer. 2012;12:570.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  PubMed  Google Scholar 

  63. Stinton LM, Shaffer EA. Epidemiology of gallbladder disease: cholelithiasis and cancer. Gut Liver. 2012;6(2):172–87.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Duffy A, Capanu M, Abou-Alfa GK, Huitzil D, Jarnagin W, Fong Y, et al. Gallbladder cancer (GBC): 10-year experience at Memorial Sloan-Kettering Cancer Centre (MSKCC). J Surg Oncol. 2008;98(7):485–9.

    Article  CAS  PubMed  Google Scholar 

  65. Henley SJ, Weir HK, Jim MA, Watson M, Richardson LC. Gallbladder cancer incidence and mortality, United States 1999–2011. Cancer Epidemiol Biomark Prev. 2015;24(9):1319–26.

    Article  Google Scholar 

  66. Ali AH, Tabibian JH, Nasser-Ghodsi N, Lennon RJ, DeLeon T, Borad MJ, et al. Surveillance for hepatobiliary cancers in patients with primary sclerosing cholangitis. Hepatology. 2018;67(6):2338–51.

    Article  CAS  PubMed  Google Scholar 

  67. Chapman R, Fevery J, Kalloo A, Nagorney DM, Boberg KM, Shneider B, et al. Diagnosis and management of primary sclerosing cholangitis. Hepatology. 2010;51(2):660–78.

    Article  CAS  PubMed  Google Scholar 

  68. Tabibian JH, Ali AH, Lindor KD. Primary sclerosing cholangitis, part 2: cancer risk, prevention, and surveillance. Gastroenterol Hepatol (N Y). 2018;14(7):427–32.

    Google Scholar 

  69. Patel S, Roa JC, Tapia O, Dursun N, Bagci P, Basturk O, et al. Hyalinizing cholecystitis and associated carcinomas: clinicopathologic analysis of a distinctive variant of cholecystitis with porcelain-like features and accompanying diagnostically challenging carcinomas. Am J Surg Pathol. 2011;35(8):1104–13.

    Article  PubMed  Google Scholar 

  70. Roa JC, Tapia O, Manterola C, Villaseca M, Guzman P, Araya JC, et al. Early gallbladder carcinoma has a favorable outcome but Rokitansky-Aschoff sinus involvement is an adverse prognostic factor. Virchows Arch. 2013;463(5):651–61.

    Article  PubMed  Google Scholar 

  71. Nagano T, Ishii G, Nagai K, Ito T, Kawase A, Takahashi K, et al. Structural and biological properties of a papillary component generating a micropapillary component in lung adenocarcinoma. Lung Cancer. 2010;67(3):282–9.

    Article  PubMed  Google Scholar 

  72. Nakanuma Y, Jang KT, Fukushima N, Furukawa T, Hong SM, Kim H, et al. A statement by the Japan-Korea expert pathologists for future clinicopathological and molecular analyses toward consensus building of intraductal papillary neoplasm of the bile duct through several opinions at the present stage. J Hepatobiliary Pancreat Sci. 2018;25(3):181–7.

    Article  PubMed  Google Scholar 

  73. Nassar H, Pansare V, Zhang H, Che M, Sakr W, Ali-Fehmi R, et al. Pathogenesis of invasive micropapillary carcinoma: role of MUC1 glycoprotein. Mod Pathol. 2004;17(9):1045–50.

    Article  CAS  PubMed  Google Scholar 

  74. Hara S, Kijima H, Okada K, Igarashi Y. Invasive micropapillary variant of the gallbladder adenocarcinoma and its aggressive potential for lymph node metastasis. Biomed Res. 2010;31(2):89–95.

    Article  CAS  PubMed  Google Scholar 

  75. Lei L, Zhang H, Zhang XB, Lonser R, Thompson K, Raza A. Consensus and conflict in invasive micropapillary carcinoma: a case report and review of the literature. J Gastrointest Oncol. 2016;7(Suppl 1):S55–61.

    PubMed  PubMed Central  Google Scholar 

  76. Albores-Saavedra J, Nadji M, Henson DE. Intestinal-type adenocarcinoma of the gallbladder. A clinicopathologic study of seven cases. Am J Surg Pathol. 1986;10(1):19–25.

    Article  CAS  PubMed  Google Scholar 

  77. Wan X, Shi J, Wang A, Xie Y, Yang X, Zhu C, et al. Gallbladder papillary neoplasms share pathological features with intraductal papillary neoplasm of the bile duct. Oncotarget. 2017;8(19):31532–9.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Dursun N, Escalona OT, Roa JC, Basturk O, Bagci P, Cakir A, et al. Mucinous carcinomas of the gallbladder: clinicopathologic analysis of 15 cases identified in 606 carcinomas. Arch Pathol Lab Med. 2012;136(11):1347–58.

    Article  PubMed  Google Scholar 

  79. Ahmad Z, Qureshi A. Primary signet ring cell carcinoma of gall bladder: report of an extremely rare histological type of primary gall bladder carcinoma. BMJ Case Rep. 2010;2010:bcr0420091782.

    PubMed  PubMed Central  Google Scholar 

  80. Czyszczon IA, Alatassi H. Signet ring cell carcinoma of the gallbladder in a 22-year-old man: a case report and review of the literature. Int J Surg Pathol. 2010;18(5):358–62.

    Article  PubMed  Google Scholar 

  81. Karabulut Z, Yildirim Y, Abaci I, Ilgici D, Ozyilkan O. Signet-ring cell carcinoma of the gallbladder: a case report. Adv Ther. 2008;25(5):520–3.

    Article  PubMed  Google Scholar 

  82. Pudasainin S, Subedi N, Prasad KB, Rauniyar SK, Bhattacharya SK, Koirala R, et al. Signet ring cell carcinoma of the gallbladder: a case report. Nepal Med Coll J. 2011;13(4):308–10.

    CAS  PubMed  Google Scholar 

  83. Saito Y, Okuda H, Yoshida M, Okimasa S, Fukuda T, Yano M, et al. Gallbladder metastasis of renal clear cell carcinoma 15 years after primary cancer excision: a case report. J Med Case Rep. 2018;12(1):162.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Eken H, Balci MG, Buyukakincak S, Isik A, Firat D, Cimen O. Rare tumors of the gallbladder: clear cell carcinoma. Int J Surg Case Rep. 2015;9:65–8.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Vardaman C, Albores-Saavedra J. Clear cell carcinomas of the gallbladder and extrahepatic bile ducts. Am J Surg Pathol. 1995;19(1):91–9.

    Article  CAS  PubMed  Google Scholar 

  86. Gu L, Jiang CH, Xu Q, Liu Q, Luo M, Wu ZY. Primary clear cell carcinoma of hilar bile duct: a case report. J Dig Dis. 2010;11(1):63–5.

    Article  PubMed  Google Scholar 

  87. Roa JC, Tapia O, Cakir A, Basturk O, Dursun N, Akdemir D, et al. Squamous cell and adenosquamous carcinomas of the gallbladder: clinicopathological analysis of 34 cases identified in 606 carcinomas. Mod Pathol. 2011;24(8):1069–78.

    Article  PubMed  Google Scholar 

  88. Song HW, Chen C, Shen HX, Ma L, Zhao YL, Zhang GJ, et al. Squamous/adenosquamous carcinoma of the gallbladder: analysis of 34 cases and comparison of clinicopathologic features and surgical outcomes with adenocarcinoma. J Surg Oncol. 2015;112(6):677–80.

    Article  PubMed  Google Scholar 

  89. Ellouze S, Slim C, Ahmad G, Naourez G, Ali A, Hela M, et al. Hepatoid adenocarcinoma of the gallbladder. World J Surg Oncol. 2011;9:103.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Sakamoto K, Monobe Y, Kouno M, Moriya T, Sasano H. Hepatoid adenocarcinoma of the gallbladder: case report and review of the literature. Pathol Int. 2004;54(1):52–6.

    Article  PubMed  Google Scholar 

  91. van den Bos IC, Hussain SM, Dwarkasing RS, Stoop H, Zondervan PE, Krestin GP, et al. Hepatoid adenocarcinoma of the gallbladder: a mimicker of hepatocellular carcinoma. Br J Radiol. 2007;80(960):e317–20.

    Article  PubMed  Google Scholar 

  92. Kim MJ, Yu E, Ro JY. Sarcomatoid carcinoma of the gallbladder with a rhabdoid tumor component. Arch Pathol Lab Med. 2003;127(10):e406–8.

    Article  PubMed  Google Scholar 

  93. Arakawa A, Fujii H, Matsumoto T, Hirai S, Suda K. Loss of heterozygosity in clonal evolution with genetic progression and divergence in spindle cell carcinoma of the gallbladder. Hum Pathol. 2004;35(4):418–23.

    Article  CAS  PubMed  Google Scholar 

  94. Furuya Y, Hiroshima K, Wakahara T, Akimoto H, Yanagie H, Harigaya K, et al. Undifferentiated carcinoma of the gallbladder with endothelial differentiation: a case report and literature review. Mol Clin Oncol. 2016;5(6):773–6.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Akatsu T, Ueda M, Shimazu M, Wakabayashi G, Aiura K, Tanabe M, et al. Primary undifferentiated spindle-cell carcinoma of the gallbladder presenting as a liver tumor. J Gastroenterol. 2005;40(10):993–8.

    Article  PubMed  Google Scholar 

  96. Guo KJ, Yamaguchi K, Enjoji M. Undifferentiated carcinoma of the gallbladder. A clinicopathologic, histochemical, and immunohistochemical study of 21 patients with a poor prognosis. Cancer. 1988;61(9):1872–9.

    Article  CAS  PubMed  Google Scholar 

  97. Javle M, Bekaii-Saab T, Jain A, Wang Y, Kelley RK, Wang K, et al. Biliary cancer: utility of next-generation sequencing for clinical management. Cancer. 2016;122(24):3838–47.

    Article  CAS  PubMed  Google Scholar 

  98. Jiao Y, Pawlik TM, Anders RA, Selaru FM, Streppel MM, Lucas DJ, et al. Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nat Genet. 2013;45(12):1470–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Shibata T, Arai Y, Totoki Y. Molecular genomic landscapes of hepatobiliary cancer. Cancer Sci. 2018;109(5):1282–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Roa JC, Roa I, Correa P, Vo Q, Araya JC, Villaseca M, et al. Microsatellite instability in preneoplastic and neoplastic lesions of the gallbladder. J Gastroenterol. 2005;40(1):79–86.

    Article  CAS  PubMed  Google Scholar 

  101. Park SK, Andreotti G, Rashid A, Chen J, Rosenberg PS, Yu K, et al. Polymorphisms of estrogen receptors and risk of biliary tract cancers and gallstones: a population-based study in Shanghai, China. Carcinogenesis. 2010;31(5):842–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Nam AR, Kim JW, Cha Y, Ha H, Park JE, Bang JH, et al. Therapeutic implication of HER2 in advanced biliary tract cancer. Oncotarget. 2016;7(36):58007–21.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Iyer P, Shrikhande SV, Ranjan M, Joshi A, Gardi N, Prasad R, et al. ERBB2 and KRAS alterations mediate response to EGFR inhibitors in early stage gallbladder cancer. Int J Cancer. 2019;144(8):2008–19.

    Article  CAS  PubMed  Google Scholar 

  104. Silva VW, Askan G, Daniel TD, Lowery M, Klimstra DS, Abou-Alfa GK, et al. Biliary carcinomas: pathology and the role of DNA mismatch repair deficiency. Chin Clin Oncol. 2016;5(5):62.

    Article  PubMed  Google Scholar 

  105. Cha PC, Zembutsu H, Takahashi A, Kubo M, Kamatani N, Nakamura Y. A genome-wide association study identifies SNP in DCC is associated with gallbladder cancer in the Japanese population. J Hum Genet. 2012;57(4):235–7.

    Article  CAS  PubMed  Google Scholar 

  106. Khan SA, Emadossadaty S, Ladep NG, Thomas HC, Elliott P, Taylor-Robinson SD, et al. Rising trends in cholangiocarcinoma: is the ICD classification system misleading us? J Hepatol. 2012;56(4):848–54.

    Article  PubMed  Google Scholar 

  107. Raoof M, Singh G. Rising trends in intrahepatic cholangiocarcinoma incidence and mortality: getting at the root cause. Hepatobiliary Surg Nutr. 2019;8(3):301–3.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Tyson GL, Ilyas JA, Duan Z, Green LK, Younes M, El-Serag HB, et al. Secular trends in the incidence of cholangiocarcinoma in the USA and the impact of misclassification. Dig Dis Sci. 2014;59(12):3103–10.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Welzel TM, McGlynn KA, Hsing AW, O’Brien TR, Pfeiffer RM. Impact of classification of hilar cholangiocarcinomas (Klatskin tumors) on the incidence of intra- and extrahepatic cholangiocarcinoma in the United States. J Natl Cancer Inst. 2006;98(12):873–5.

    Article  PubMed  Google Scholar 

  110. Amin MB; American Joint Committee on Cancer, American Cancer Society. AJCC cancer staging manual. 8th ed. In: Amin MB, Editor-in-chief, Edge SB, et al., Gress DM, RHIT, CTR, Technical editor, Meyer LR, CAPM, Managing editor. Chicago: American Joint Committee on Cancer/Springer; 2017. xvii, 1024 p.

    Google Scholar 

  111. DeOliveira ML, Cunningham SC, Cameron JL, Kamangar F, Winter JM, Lillemoe KD, et al. Cholangiocarcinoma: thirty-one-year experience with 564 patients at a single institution. Ann Surg. 2007;245(5):755–62.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Nakeeb A, Pitt HA, Sohn TA, Coleman J, Abrams RA, Piantadosi S, et al. Cholangiocarcinoma. A spectrum of intrahepatic, perihilar, and distal tumors. Ann Surg. 1996;224(4):463–73; discussion 73–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kloppel G, Adsay V, Konukiewitz B, Kleeff J, Schlitter AM, Esposito I. Precancerous lesions of the biliary tree. Best Pract Res Clin Gastroenterol. 2013;27(2):285–97.

    Article  PubMed  Google Scholar 

  114. Carpino G, Cardinale V, Onori P, Franchitto A, Berloco PB, Rossi M, et al. Biliary tree stem/progenitor cells in glands of extrahepatic and intraheptic bile ducts: an anatomical in situ study yielding evidence of maturational lineages. J Anat. 2012;220(2):186–99.

    Article  PubMed  Google Scholar 

  115. Carpino G, Cardinale V, Renzi A, Hov JR, Berloco PB, Rossi M, et al. Activation of biliary tree stem cells within peribiliary glands in primary sclerosing cholangitis. J Hepatol. 2015;63(5):1220–8.

    Article  PubMed  Google Scholar 

  116. Sato Y, Harada K, Sasaki M, Nakanuma Y. Cystic and micropapillary epithelial changes of peribiliary glands might represent a precursor lesion of biliary epithelial neoplasms. Virchows Arch. 2014;464(2):157–63.

    Article  CAS  PubMed  Google Scholar 

  117. Gulamhusein AF, Eaton JE, Tabibian JH, Atkinson EJ, Juran BD, Lazaridis KN. Duration of inflammatory bowel disease is associated with increased risk of cholangiocarcinoma in patients with primary sclerosing cholangitis and IBD. Am J Gastroenterol. 2016;111(5):705–11.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Ebata T, Kosuge T, Hirano S, Unno M, Yamamoto M, Miyazaki M, et al. Proposal to modify the International Union Against Cancer staging system for perihilar cholangiocarcinomas. Br J Surg. 2014;101(2):79–88.

    Article  CAS  PubMed  Google Scholar 

  119. Hong SM, Pawlik TM, Cho H, Aggarwal B, Goggins M, Hruban RH, et al. Depth of tumor invasion better predicts prognosis than the current American Joint Committee on Cancer T classification for distal bile duct carcinoma. Surgery. 2009;146(2):250–7.

    Article  PubMed  Google Scholar 

  120. Young AL, Igami T, Senda Y, Adair R, Farid S, Toogood GJ, et al. Evolution of the surgical management of perihilar cholangiocarcinoma in a Western Centre demonstrates improved survival with endoscopic biliary drainage and reduced use of blood transfusion. HPB (Oxford). 2011;13(7):483–93.

    Article  Google Scholar 

  121. Brunt E, Aishima S, Clavien PA, Fowler K, Goodman Z, Gores G, et al. cHCC-CCA: consensus terminology for primary liver carcinomas with both hepatocytic and cholangiocytic differentation. Hepatology. 2018;68(1):113–26.

    Article  PubMed  Google Scholar 

  122. Albores-Saavedra J, Chable-Montero F, Mendez-Sanchez N, Mercado MA, Vilatoba-Chapa M, Henson DE. Adenocarcinoma with pyloric gland phenotype of the extrahepatic bile ducts: a previously unrecognized and distinctive morphologic variant of extrahepatic bile duct carcinoma. Hum Pathol. 2012;43(12):2292–8.

    Article  PubMed  Google Scholar 

  123. Jarnagin WR, Fong Y, DeMatteo RP, Gonen M, Burke EC, Bodniewicz BJ, et al. Staging, resectability, and outcome in 225 patients with hilar cholangiocarcinoma. Ann Surg. 2001;234(4):507–17; discussion 17–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Deoliveira ML, Schulick RD, Nimura Y, Rosen C, Gores G, Neuhaus P, et al. New staging system and a registry for perihilar cholangiocarcinoma. Hepatology. 2011;53(4):1363–71.

    Article  PubMed  Google Scholar 

  125. Wardell CP, Fujita M, Yamada T, Simbolo M, Fassan M, Karlic R, et al. Genomic characterization of biliary tract cancers identifies driver genes and predisposing mutations. J Hepatol. 2018;68(5):959–69.

    Article  CAS  PubMed  Google Scholar 

  126. Liau JY, Tsai JH, Yuan RH, Chang CN, Lee HJ, Jeng YM. Morphological subclassification of intrahepatic cholangiocarcinoma: etiological, clinicopathological, and molecular features. Mod Pathol. 2014;27(8):1163–73.

    Article  CAS  PubMed  Google Scholar 

  127. Kim HJ, Kim JS, Kim BH, Bak YT. Clinicopathologic study of biliary intraepithelial neoplasia in cholangiocarcinoma. Dig Surg. 2018;35(2):116–20.

    Article  CAS  PubMed  Google Scholar 

  128. Brooks C, Gausman V, Kokoy-Mondragon C, Munot K, Amin SP, Desai A, et al. Role of fluorescent in situ hybridization, cholangioscopic biopsies, and EUS-FNA in the evaluation of biliary strictures. Dig Dis Sci. 2018;63(3):636–44.

    Article  CAS  PubMed  Google Scholar 

  129. Rizvi S, Khan SA, Hallemeier CL, Kelley RK, Gores GJ. Cholangiocarcinoma – evolving concepts and therapeutic strategies. Nat Rev Clin Oncol. 2018;15(2):95–111.

    Article  CAS  PubMed  Google Scholar 

  130. Albores-Saavedra J, Cordova-Ramon JC, Chable-Montero F, Dorantes-Heredia R, Henson DE. Cystadenomas of the liver and extrahepatic bile ducts: morphologic and immunohistochemical characterization of the biliary and intestinal variants. Ann Diagn Pathol. 2015;19(3):124–9.

    Article  PubMed  Google Scholar 

  131. Quigley B, Reid MD, Pehlivanoglu B, Squires MH 3rd, Maithel S, Xue Y, et al. Hepatobiliary mucinous cystic neoplasms with ovarian type stroma (so-called “hepatobiliary cystadenoma/cystadenocarcinoma”): clinicopathologic analysis of 36 cases illustrates rarity of carcinomatous change. Am J Surg Pathol. 2018;42(1):95–102.

    Article  PubMed  Google Scholar 

  132. Arnaoutakis DJ, Kim Y, Pulitano C, Zaydfudim V, Squires MH, Kooby D, et al. Management of biliary cystic tumors: a multi-institutional analysis of a rare liver tumor. Ann Surg. 2015;261(2):361–7.

    Article  PubMed  Google Scholar 

  133. Rivero-Soto RJ, Hossein-Zadeh Z, Coleman J, Ahuja V. A mucinous cystic neoplasm originating from the gallbladder: a case report and literature review. Perm J. 2019;23:18–077.

    PubMed  PubMed Central  Google Scholar 

  134. Lee CW, Tsai HI, Lin YS, Wu TH, Yu MC, Chen MF. Intrahepatic biliary mucinous cystic neoplasms: clinicoradiological characteristics and surgical results. BMC Gastroenterol. 2015;15:67.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Jeong D, Jiang K, Anaya DA. Mucinous cystic neoplasm of the liver masquerading as an echinococcal cyst: radiologic-pathologic differential of complex cystic liver lesions. J Clin Imaging Sci. 2016;6:12.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Hsu M, Terris B, Wu TT, Zen Y, Eng HL, Huang WT, et al. Endometrial cysts within the liver: a rare entity and its differential diagnosis with mucinous cystic neoplasms of the liver. Hum Pathol. 2014;45(4):761–7.

    Article  PubMed  Google Scholar 

  137. Nakayama Y, Kato Y, Okubo S, Takahashi D, Okada R, Nishida Y, et al. A case of mucinous cystic neoplasm of the liver: a case report. Surg Case Rep. 2015;1(1):9.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Conner JR, Marino-Enriquez A, Mino-Kenudson M, Garcia E, Pitman MB, Sholl LM, et al. Genomic characterization of low- and high-grade pancreatic mucinous cystic neoplasms reveals recurrent KRAS alterations in “high-risk” lesions. Pancreas. 2017;46(5):665–71.

    Article  CAS  PubMed  Google Scholar 

  139. Fujikura K, Akita M, Abe-Suzuki S, Itoh T, Zen Y. Mucinous cystic neoplasms of the liver and pancreas: relationship between KRAS driver mutations and disease progression. Histopathology. 2017;71(4):591–600.

    Article  PubMed  Google Scholar 

  140. Gupta A, Dixon E. Epidemiology and risk factors: intrahepatic cholangiocarcinoma. Hepatobiliary Surg Nutr. 2017;6(2):101–4.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Saha SK, Zhu AX, Fuchs CS, Brooks GA. Forty-year trends in cholangiocarcinoma incidence in the U.S.: intrahepatic disease on the rise. Oncologist. 2016;21(5):594–9.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Shaib Y, El-Serag HB. The epidemiology of cholangiocarcinoma. Semin Liver Dis. 2004;24(2):115–25.

    Article  PubMed  Google Scholar 

  143. Ben-Menachem T. Risk factors for cholangiocarcinoma. Eur J Gastroenterol Hepatol. 2007;19(8):615–7.

    Article  PubMed  Google Scholar 

  144. Kurathong S, Lerdverasirikul P, Wongpaitoon V, Pramoolsinsap C, Kanjanapitak A, Varavithya W, et al. Opisthorchis viverrini infection and cholangiocarcinoma. A prospective, case-controlled study. Gastroenterology. 1985;89(1):151–6.

    Article  CAS  PubMed  Google Scholar 

  145. Lowenfels AB. Opisthorchis viverrini infection and cholangiocarcinoma. Gastroenterology. 1985;89(6):1449.

    Article  CAS  PubMed  Google Scholar 

  146. Okuda K, Nakanuma Y, Miyazaki M. Cholangiocarcinoma: recent progress. Part 2: molecular pathology and treatment. J Gastroenterol Hepatol. 2002;17(10):1056–63.

    Article  CAS  PubMed  Google Scholar 

  147. Okuda K, Nakanuma Y, Miyazaki M. Cholangiocarcinoma: recent progress. Part 1: epidemiology and etiology. J Gastroenterol Hepatol. 2002;17(10):1049–55.

    Article  PubMed  Google Scholar 

  148. Shaib YH, El-Serag HB, Nooka AK, Thomas M, Brown TD, Patt YZ, et al. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma: a hospital-based case-control study. Am J Gastroenterol. 2007;102(5):1016–21.

    Article  PubMed  Google Scholar 

  149. Singal AK, Vauthey JN, Grady JJ, Stroehlein JR. Intra-hepatic cholangiocarcinoma--frequency and demographic patterns: thirty-year data from the M.D. Anderson Cancer Center. J Cancer Res Clin Oncol. 2011;137(7):1071–8.

    Article  PubMed  Google Scholar 

  150. Suzuki Y, Mori T, Yokoyama M, Nakazato T, Abe N, Nakanuma Y, et al. Hepatolithiasis: analysis of Japanese nationwide surveys over a period of 40 years. J Hepatobiliary Pancreat Sci. 2014;21(9):617–22.

    Article  PubMed  Google Scholar 

  151. Welzel TM, Mellemkjaer L, Gloria G, Sakoda LC, Hsing AW, El Ghormli L, et al. Risk factors for intrahepatic cholangiocarcinoma in a low-risk population: a nationwide case-control study. Int J Cancer. 2007;120(3):638–41.

    Article  CAS  PubMed  Google Scholar 

  152. Zhang H, Yang T, Wu M, Shen F. Intrahepatic cholangiocarcinoma: epidemiology, risk factors, diagnosis and surgical management. Cancer Lett. 2016;379(2):198–205.

    Article  CAS  PubMed  Google Scholar 

  153. Welzel TM, Graubard BI, El-Serag HB, Shaib YH, Hsing AW, Davila JA, et al. Risk factors for intrahepatic and extrahepatic cholangiocarcinoma in the United States: a population-based case-control study. Clin Gastroenterol Hepatol. 2007;5(10):1221–8.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Aishima S, Iguchi T, Fujita N, Taketomi A, Maehara Y, Tsuneyoshi M, et al. Histological and immunohistological findings in biliary intraepithelial neoplasia arising from a background of chronic biliary disease compared with liver cirrhosis of non-biliary aetiology. Histopathology. 2011;59(5):867–75.

    Article  PubMed  Google Scholar 

  155. Aishima S, Oda Y. Pathogenesis and classification of intrahepatic cholangiocarcinoma: different characters of perihilar large duct type versus peripheral small duct type. J Hepatobiliary Pancreat Sci. 2015;22(2):94–100.

    Article  PubMed  Google Scholar 

  156. Nakanuma Y, Kakuda Y. Pathologic classification of cholangiocarcinoma: new concepts. Best Pract Res Clin Gastroenterol. 2015;29(2):277–93.

    Article  PubMed  Google Scholar 

  157. Nakanuma Y. Classification of intrahepatic cholangiocarcinoma based on recent progress and new proposal. Nihon Shokakibyo Gakkai Zasshi. 2012;109(11):1865–71.

    PubMed  Google Scholar 

  158. Akita M, Fujikura K, Ajiki T, Fukumoto T, Otani K, Azuma T, et al. Dichotomy in intrahepatic cholangiocarcinomas based on histologic similarities to hilar cholangiocarcinomas. Mod Pathol. 2017;30(7):986–97.

    Article  CAS  PubMed  Google Scholar 

  159. Rocken C, Pross M, Brucks U, Ridwelski K, Roessner A. Cholangiocarcinoma occurring in a liver with multiple bile duct hamartomas (von Meyenburg complexes). Arch Pathol Lab Med. 2000;124(11):1704–6.

    Article  CAS  PubMed  Google Scholar 

  160. Aishima S, Nishihara Y, Tsujita E, Taguchi K, Soejima Y, Taketomi A, et al. Biliary neoplasia with extensive intraductal spread associated with liver cirrhosis: a hitherto unreported variant of biliary intraepithelial neoplasia. Hum Pathol. 2008;39(6):939–47.

    Article  CAS  PubMed  Google Scholar 

  161. Blanc JF, Bernard PH, Carles J, Le Bail B, Balabaud C, Bioulac-Sage P. Cholangiocarcinoma arising in Von Meyenburg complex associated with hepatocellular carcinoma in genetic haemochromatosis. Eur J Gastroenterol Hepatol. 2000;12(2):233–7.

    Article  CAS  PubMed  Google Scholar 

  162. Pinho AC, Melo RB, Oliveira M, Almeida M, Lopes J, Graca L, et al. Adenoma-carcinoma sequence in intrahepatic cholangiocarcinoma. Int J Surg Case Rep. 2012;3(4):131–3.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Komuta M, Spee B, Vander Borght S, De Vos R, Verslype C, Aerts R, et al. Clinicopathological study on cholangiolocellular carcinoma suggesting hepatic progenitor cell origin. Hepatology. 2008;47(5):1544–56.

    Article  CAS  PubMed  Google Scholar 

  164. Nakanuma Y, Sato Y, Ikeda H, Harada K, Kobayashi M, Sano K, et al. Intrahepatic cholangiocarcinoma with predominant “ductal plate malformation” pattern: a new subtype. Am J Surg Pathol. 2012;36(11):1629–35.

    Article  PubMed  Google Scholar 

  165. Sigel CS, Drill E, Zhou Y, Basturk O, Askan G, Pak LM, et al. Intrahepatic cholangiocarcinomas have histologically and immunophenotypically distinct small and large duct patterns. Am J Surg Pathol. 2018;42(10):1334–45.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Sia D, Hoshida Y, Villanueva A, Roayaie S, Ferrer J, Tabak B, et al. Integrative molecular analysis of intrahepatic cholangiocarcinoma reveals 2 classes that have different outcomes. Gastroenterology. 2013;144(4):829–40.

    Article  CAS  PubMed  Google Scholar 

  167. Sekiya S, Suzuki A. Intrahepatic cholangiocarcinoma can arise from Notch-mediated conversion of hepatocytes. J Clin Invest. 2012;122(11):3914–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ishii Y, Sasaki T, Serikawa M, Minami T, Okazaki A, Yukutake M, et al. Elevated expression of cyclooxygenase-2 and microsomal prostaglandin E synthase-1 in primary sclerosing cholangitis: iotamplications for cholangiocarcinogenesis. Int J Oncol. 2013;43(4):1073–9.

    Article  CAS  PubMed  Google Scholar 

  169. Chan-On W, Nairismagi ML, Ong CK, Lim WK, Dima S, Pairojkul C, et al. Exome sequencing identifies distinct mutational patterns in liver fluke-related and non-infection-related bile duct cancers. Nat Genet. 2013;45(12):1474–8.

    Article  CAS  PubMed  Google Scholar 

  170. Jusakul A, Cutcutache I, Yong CH, Lim JQ, Huang MN, Padmanabhan N, et al. Whole-genome and epigenomic landscapes of etiologically distinct subtypes of cholangiocarcinoma. Cancer Discov. 2017;7(10):1116–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Andrici J, Goeppert B, Sioson L, Clarkson A, Renner M, Stenzinger A, et al. Loss of BAP1 expression occurs frequently in intrahepatic cholangiocarcinoma. Medicine (Baltimore). 2016;95(2):e2491.

    Article  CAS  Google Scholar 

  172. Mosbeh A, Halfawy K, Abdel-Mageed WS, Sweed D, Rahman MHA. Nuclear BAP1 loss is common in intrahepatic cholangiocarcinoma and a subtype of hepatocellular carcinoma but rare in pancreatic ductal adenocarcinoma. Cancer Genet. 2018;224–225:21–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Graham RP, Barr Fritcher EG, Pestova E, Schulz J, Sitailo LA, Vasmatzis G, et al. Fibroblast growth factor receptor 2 translocations in intrahepatic cholangiocarcinoma. Hum Pathol. 2014;45(8):1630–8.

    Article  CAS  PubMed  Google Scholar 

  174. Lowery MA, Ptashkin R, Jordan E, Berger MF, Zehir A, Capanu M, et al. Comprehensive molecular profiling of intrahepatic and extrahepatic cholangiocarcinomas: potential targets for intervention. Clin Cancer Res. 2018;24(17):4154–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Andersen JB, Spee B, Blechacz BR, Avital I, Komuta M, Barbour A, et al. Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors. Gastroenterology. 2012;142(4):1021–31 e15.

    Article  CAS  PubMed  Google Scholar 

  176. Sia D, Villanueva A, Friedman SL, Llovet JM. Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology. 2017;152(4):745–61.

    Article  CAS  PubMed  Google Scholar 

  177. Goeppert B, Frauenschuh L, Renner M, Roessler S, Stenzinger A, Klauschen F, et al. BRAF V600E-specific immunohistochemistry reveals low mutation rates in biliary tract cancer and restriction to intrahepatic cholangiocarcinoma. Mod Pathol. 2014;27(7):1028–34.

    Article  CAS  PubMed  Google Scholar 

  178. Sempoux C, Paradis V, Saxena R. Variant differentiation patterns in primary liver carcinoma. Semin Diagn Pathol. 2017;34(2):176–82.

    Article  PubMed  Google Scholar 

  179. Yoon YI, Hwang S, Lee YJ, Kim KH, Ahn CS, Moon DB, et al. Postresection outcomes of combined hepatocellular carcinoma-cholangiocarcinoma, hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J Gastrointest Surg. 2016;20(2):411–20.

    Article  PubMed  Google Scholar 

  180. Jarnagin WR, Weber S, Tickoo SK, Koea JB, Obiekwe S, Fong Y, et al. Combined hepatocellular and cholangiocarcinoma: demographic, clinical, and prognostic factors. Cancer. 2002;94(7):2040–6.

    Article  PubMed  Google Scholar 

  181. Fowler KJ, Sheybani A, Parker RA 3rd, Doherty S, Brunt EM, Chapman WC, et al. Combined hepatocellular and cholangiocarcinoma (biphenotypic) tumors: imaging features and diagnostic accuracy of contrast-enhanced CT and MRI. AJR Am J Roentgenol. 2013;201(2):332–9.

    Article  PubMed  Google Scholar 

  182. Wells ML, Venkatesh SK, Chandan VS, Fidler JL, Fletcher JG, Johnson GB, et al. Biphenotypic hepatic tumors: imaging findings and review of literature. Abdom Imaging. 2015;40(7):2293–305.

    Article  PubMed  Google Scholar 

  183. Zen C, Zen Y, Mitry RR, Corbeil D, Karbanova J, O’Grady J, et al. Mixed phenotype hepatocellular carcinoma after transarterial chemoembolization and liver transplantation. Liver Transpl. 2011;17(8):943–54.

    Article  PubMed  Google Scholar 

  184. Garancini M, Goffredo P, Pagni F, Romano F, Roman S, Sosa JA, et al. Combined hepatocellular-cholangiocarcinoma: a population-level analysis of an uncommon primary liver tumor. Liver Transpl. 2014;20(8):952–9.

    Article  PubMed  Google Scholar 

  185. Kim KH, Lee SG, Park EH, Hwang S, Ahn CS, Moon DB, et al. Surgical treatments and prognoses of patients with combined hepatocellular carcinoma and cholangiocarcinoma. Ann Surg Oncol. 2009;16(3):623–9.

    Article  PubMed  Google Scholar 

  186. Chu KJ, Lu CD, Dong H, Fu XH, Zhang HW, Yao XP. Hepatitis B virus-related combined hepatocellular-cholangiocarcinoma: clinicopathological and prognostic analysis of 390 cases. Eur J Gastroenterol Hepatol. 2014;26(2):192–9.

    Article  CAS  PubMed  Google Scholar 

  187. Park HS, Bae JS, Jang KY, Lee JH, Yu HC, Jung JH, et al. Clinicopathologic study on combined hepatocellular carcinoma and cholangiocarcinoma: with emphasis on the intermediate cell morphology. J Korean Med Sci. 2011;26(8):1023–30.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Tickoo SK, Zee SY, Obiekwe S, Xiao H, Koea J, Robiou C, et al. Combined hepatocellular-cholangiocarcinoma: a histopathologic, immunohistochemical, and in situ hybridization study. Am J Surg Pathol. 2002;26(8):989–97.

    Article  PubMed  Google Scholar 

  189. Brunt EM, Paradis V, Sempoux C, Theise ND. Biphenotypic (hepatobiliary) primary liver carcinomas: the work in progress. Hepat Oncol. 2015;2(3):255–73.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Theise ND, Yao JL, Harada K, Hytiroglou P, Portmann B, Thung SN, et al. Hepatic ‘stem cell’ malignancies in adults: four cases. Histopathology. 2003;43(3):263–71.

    Article  CAS  PubMed  Google Scholar 

  191. Leung CO, Mak WN, Kai AK, Chan KS, Lee TK, Ng IO, et al. Sox9 confers stemness properties in hepatocellular carcinoma through Frizzled-7 mediated Wnt/beta-catenin signaling. Oncotarget. 2016;7(20):29371–86.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Sasaki M, Sato H, Kakuda Y, Sato Y, Choi JH, Nakanuma Y. Clinicopathological significance of ‘subtypes with stem-cell feature’ in combined hepatocellular-cholangiocarcinoma. Liver Int. 2015;35(3):1024–35.

    Article  PubMed  Google Scholar 

  193. Fujii H, Zhu XG, Matsumoto T, Inagaki M, Tokusashi Y, Miyokawa N, et al. Genetic classification of combined hepatocellular-cholangiocarcinoma. Hum Pathol. 2000;31(9):1011–7.

    Article  CAS  PubMed  Google Scholar 

  194. Yano H, Iemura A, Haramaki M, Momosaki S, Ogasawara S, Higaki K, et al. A human combined hepatocellular and cholangiocarcinoma cell line (KMCH-2) that shows the features of hepatocellular carcinoma or cholangiocarcinoma under different growth conditions. J Hepatol. 1996;24(4):413–22.

    Article  CAS  PubMed  Google Scholar 

  195. Li L, Qian M, Chen IH, Finkelstein D, Onar-Thomas A, Johnson M, et al. Acquisition of cholangiocarcinoma traits during advanced hepatocellular carcinoma development in mice. Am J Pathol. 2018;188(3):656–71.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Moeini A, Sia D, Zhang Z, Camprecios G, Stueck A, Dong H, et al. Mixed hepatocellular cholangiocarcinoma tumors: cholangiolocellular carcinoma is a distinct molecular entity. J Hepatol. 2017;66(5):952–61.

    Article  CAS  PubMed  Google Scholar 

  197. Lee JH, Chung GE, Yu SJ, Hwang SY, Kim JS, Kim HY, et al. Long-term prognosis of combined hepatocellular and cholangiocarcinoma after curative resection comparison with hepatocellular carcinoma and cholangiocarcinoma. J Clin Gastroenterol. 2011;45(1):69–75.

    Article  PubMed  Google Scholar 

  198. Zuo HQ, Yan LN, Zeng Y, Yang JY, Luo HZ, Liu JW, et al. Clinicopathological characteristics of 15 patients with combined hepatocellular carcinoma and cholangiocarcinoma. Hepatobiliary Pancreat Dis Int. 2007;6(2):161–5.

    PubMed  Google Scholar 

  199. Desmet VJ. Congenital diseases of intrahepatic bile ducts: variations on the theme “ductal plate malformation”. Hepatology. 1992;16(4):1069–83.

    Article  CAS  PubMed  Google Scholar 

  200. Jain D, Sarode VR, Abdul-Karim FW, Homer R, Robert ME. Evidence for the neoplastic transformation of Von-Meyenburg complexes. Am J Surg Pathol. 2000;24(8):1131–9.

    Article  CAS  PubMed  Google Scholar 

  201. Panda N, Brackett D, Eymard C, Kawai T, Markmann J, Kotton CN, et al. Liver transplantation for recurrent cholangitis from Von Meyenburg complexes. Transplant Direct. 2019;5(3):e428.

    Article  PubMed  PubMed Central  Google Scholar 

  202. Jain D, Ahrens W, Finkelstein S. Molecular evidence for the neoplastic potential of hepatic Von-Meyenburg complexes. Appl Immunohistochem Mol Morphol. 2010;18(2):166–71.

    Article  CAS  PubMed  Google Scholar 

  203. Desmet VJ. Ludwig symposium on biliary disorders--part I. Pathogenesis of ductal plate abnormalities. Mayo Clin Proc. 1998;73(1):80–9.

    Article  CAS  PubMed  Google Scholar 

  204. Parekh V, Peker D. Malignant transformation in Von-Meyenburg complexes: histologic and immunohistochemical clues with illustrative cases. Appl Immunohistochem Mol Morphol. 2015;23(9):607–14.

    Article  CAS  PubMed  Google Scholar 

  205. Kaminsky P, Preiss J, Sasatomi E, Gerber DA. Biliary adenofibroma: a rare hepatic lesion with malignant features. Hepatology. 2017;65(1):380–3.

    Article  PubMed  Google Scholar 

  206. Sturm AK, Welsch T, Meissner C, Aust DE, Baretton G. A case of biliary adenofibroma of the liver with malignant transformation: a morphomolecular case report and review of the literature. Surg Case Rep. 2019;5(1):104.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Arnason T, Borger DR, Corless C, Hagen C, Iafrate AJ, Makhlouf H, et al. Biliary adenofibroma of liver: morphology, tumor genetics, and outcomes in 6 cases. Am J Surg Pathol. 2017;41(4):499–505.

    Article  PubMed  Google Scholar 

  208. Varnholt H, Vauthey JN, Dal Cin P, Marsh Rde W, Bhathal PS, Hughes NR, et al. Biliary adenofibroma: a rare neoplasm of bile duct origin with an indolent behavior. Am J Surg Pathol. 2003;27(5):693–8.

    Article  PubMed  Google Scholar 

  209. Akin O, Coskun M. Biliary adenofibroma with malignant transformation and pulmonary metastases: CT findings. AJR Am J Roentgenol. 2002;179(1):280–1.

    Article  PubMed  Google Scholar 

  210. Bhathal PS, Hughes NR, Goodman ZD. The so-called bile duct adenoma is a peribiliary gland hamartoma. Am J Surg Pathol. 1996;20(7):858–64.

    Article  CAS  PubMed  Google Scholar 

  211. Hasebe T, Sakamoto M, Mukai K, Kawano N, Konishi M, Ryu M, et al. Cholangiocarcinoma arising in bile duct adenoma with focal area of bile duct hamartoma. Virchows Arch. 1995;426(2):209–13.

    Article  CAS  PubMed  Google Scholar 

  212. Allaire GS, Rabin L, Ishak KG, Sesterhenn IA. Bile duct adenoma. A study of 152 cases. Am J Surg Pathol. 1988;12(9):708–15.

    Article  CAS  PubMed  Google Scholar 

  213. An C, Park S, Choi YJ. Diffusion-weighted MRI in intrahepatic bile duct adenoma arising from the cirrhotic liver. Korean J Radiol. 2013;14(5):769–75.

    Article  PubMed  PubMed Central  Google Scholar 

  214. Koga F, Tanaka H, Takamatsu S, Baba S, Takihara H, Hasegawa A, et al. A case of very large intrahepatic bile duct adenoma followed for 7 years. World J Clin Oncol. 2012;3(4):63–6.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Albores-Saavedra J, Hoang MP, Murakata LA, Sinkre P, Yaziji H. Atypical bile duct adenoma, clear cell type: a previously undescribed tumor of the liver. Am J Surg Pathol. 2001;25(7):956–60.

    Article  CAS  PubMed  Google Scholar 

  216. Arena V, Arena E, Stigliano E, Capelli A. Bile duct adenoma with oncocytic features. Histopathology. 2006;49(3):318–20.

    Article  CAS  PubMed  Google Scholar 

  217. Gambarotti M, Medicina D, Baronchelli C, Bercich L, Bonetti F, Facchetti F. Alpha-1-antitrypsin-positive “signet-ring” bile duct adenoma in a patient with M(MALTON) mutation. Int J Surg Pathol. 2008;16(2):218–21.

    Article  PubMed  Google Scholar 

  218. Wei J, Zhang D, Yang J, Xu C. Intrahepatic bile duct adenoma (peribiliary gland hamartoma): a case report and review of literature. Int J Clin Exp Pathol. 2015;8(5):5908–13.

    PubMed  PubMed Central  Google Scholar 

  219. Hughes NR, Goodman ZD, Bhathal PS. An immunohistochemical profile of the so-called bile duct adenoma: clues to pathogenesis. Am J Surg Pathol. 2010;34(9):1312–8.

    Article  PubMed  Google Scholar 

  220. Sasaki M, Matsubara T, Kakuda Y, Sato Y, Nakanuma Y. Immunostaining for polycomb group protein EZH2 and senescent marker p16INK4a may be useful to differentiate cholangiolocellular carcinoma from ductular reaction and bile duct adenoma. Am J Surg Pathol. 2014;38(3):364–9.

    Article  PubMed  Google Scholar 

  221. Pujals A, Zafrani ES, Calderaro J. Bile duct adenoma should not be designated as a reactive process. Pathol Int. 2015;65(6):338.

    Article  PubMed  Google Scholar 

  222. Klimstra DS, Modlin IR, Coppola D, Lloyd RV, Suster S. The pathologic classification of neuroendocrine tumors: a review of nomenclature, grading, and staging systems. Pancreas. 2010;39(6):707–12.

    Article  PubMed  Google Scholar 

  223. Modlin IM, Shapiro MD, Kidd M. An analysis of rare carcinoid tumors: clarifying these clinical conundrums. World J Surg. 2005;29(1):92–101.

    Article  PubMed  Google Scholar 

  224. Yao JC, Hassan M, Phan A, Dagohoy C, Leary C, Mares JE, et al. One hundred years after “carcinoid”: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol. 2008;26(18):3063–72.

    Article  PubMed  Google Scholar 

  225. Albores-Saavedra J, Batich K, Hossain S, Henson DE, Schwartz AM. Carcinoid tumors and small-cell carcinomas of the gallbladder and extrahepatic bile ducts: a comparative study based on 221 cases from the Surveillance, Epidemiology, and End Results Program. Ann Diagn Pathol. 2009;13(6):378–83.

    Article  PubMed  Google Scholar 

  226. Lee KJ, Cho JH, Lee SH, Lee KH, Park BK, Lee JK, et al. Clinicopathological characteristics of biliary neuroendocrine neoplasms: a multicenter study. Scand J Gastroenterol. 2017;52(4):437–41.

    Article  CAS  PubMed  Google Scholar 

  227. Eltawil KM, Gustafsson BI, Kidd M, Modlin IM. Neuroendocrine tumors of the gallbladder: an evaluation and reassessment of management strategy. J Clin Gastroenterol. 2010;44(10):687–95.

    Article  PubMed  Google Scholar 

  228. Matsumoto T, Imai Y, Inokuma T. Neuroendocrine carcinoma of the gallbladder accompanied by pancreaticobiliary maljunction. Clin Gastroenterol Hepatol. 2016;14(3):e29–30.

    Article  PubMed  Google Scholar 

  229. Chen C, Wang L, Liu X, Zhang G, Zhao Y, Geng Z. Gallbladder neuroendocrine carcinoma: report of 10 cases and comparision of clinicopathologic features with gallbladder adenocarcinoma. Int J Clin Exp Pathol. 2015;8(7):8218–26.

    PubMed  PubMed Central  Google Scholar 

  230. Tonelli F, Giudici F, Nesi G, Batignani G, Brandi ML. Biliary tree gastrinomas in multiple endocrine neoplasia type 1 syndrome. World J Gastroenterol. 2013;19(45):8312–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Norton JA, Foster DS, Blumgart LH, Poultsides GA, Visser BC, Fraker DL, et al. Incidence and prognosis of primary gastrinomas in the hepatobiliary tract. JAMA Surg. 2018;153(3):e175083.

    Article  PubMed  PubMed Central  Google Scholar 

  232. Maitra A, Tascilar M, Hruban RH, Offerhaus GJ, Albores-Saavedra J. Small cell carcinoma of the gallbladder: a clinicopathologic, immunohistochemical, and molecular pathology study of 12 cases. Am J Surg Pathol. 2001;25(5):595–601.

    Article  CAS  PubMed  Google Scholar 

  233. Zhang XY, Gao PT, Yang X, Cai JB, Ding GY, Zhu XD, et al. Reduced selenium-binding protein 1 correlates with a poor prognosis in intrahepatic cholangiocarcinoma and promotes the cell epithelial-mesenchymal transition. Am J Transl Res. 2018;10(11):3567–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Oshiro H, Matsuo K, Mawatari H, Inayama Y, Yamanaka S, Nagahama K, et al. Mucin-producing gallbladder adenocarcinoma with focal small cell and large cell neuroendocrine differentiation associated with pancreaticobiliary maljunction. Pathol Int. 2008;58(12):780–6.

    Article  PubMed  Google Scholar 

  235. Onishi I, Kitagawa H, Harada K, Maruzen S, Sakai S, Makino I, et al. Intraductal papillary neoplasm of the bile duct accompanying biliary mixed adenoneuroendocrine carcinoma. World J Gastroenterol. 2013;19(20):3161–4.

    Article  PubMed  PubMed Central  Google Scholar 

  236. Rugge M, Sonego F, Militello C, Guido M, Ninfo V. Primary carcinoid tumor of the cystic and common bile ducts. Am J Surg Pathol. 1992;16(8):802–7.

    Article  CAS  PubMed  Google Scholar 

  237. Noronha YS, Raza AS. Well-differentiated neuroendocrine (carcinoid) tumors of the extrahepatic biliary ducts. Arch Pathol Lab Med. 2010;134(7):1075–9.

    Article  PubMed  Google Scholar 

  238. Ehrlich L, Scrushy M, Meng F, Lairmore TC, Alpini G, Glaser S. Biliary epithelium: a neuroendocrine compartment in cholestatic liver disease. Clin Res Hepatol Gastroenterol. 2018;42(4):296–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Ligato S, Furmaga W, Cartun RW, Hull D, Tsongalis GJ. Primary carcinoid tumor of the common hepatic duct: a rare case with immunohistochemical and molecular findings. Oncol Rep. 2005;13(3):543–6.

    PubMed  Google Scholar 

  240. Maitra A, Krueger JE, Tascilar M, Offerhaus GJ, Angeles-Angeles A, Klimstra DS, et al. Carcinoid tumors of the extrahepatic bile ducts: a study of seven cases. Am J Surg Pathol. 2000;24(11):1501–10.

    Article  CAS  PubMed  Google Scholar 

  241. Parwani AV, Geradts J, Caspers E, Offerhaus GJ, Yeo CJ, Cameron JL, et al. Immunohistochemical and genetic analysis of non-small cell and small cell gallbladder carcinoma and their precursor lesions. Mod Pathol. 2003;16(4):299–308.

    Article  PubMed  Google Scholar 

  242. Li M, Liu F, Zhang Y, Wu X, Wu W, Wang XA, et al. Whole-genome sequencing reveals the mutational landscape of metastatic small-cell gallbladder neuroendocrine carcinoma (GB-SCNEC). Cancer Lett. 2017;391:20–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Payman Fathizadeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fathizadeh, P., Wang, H.L., Dietz, R.L. (2021). Pathologic Basis and Classification of Biliary Epithelial Neoplasms. In: Tabibian, J.H. (eds) Diagnosis and Management of Cholangiocarcinoma. Springer, Cham. https://doi.org/10.1007/978-3-030-70936-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70936-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70935-8

  • Online ISBN: 978-3-030-70936-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics