Skip to main content

Combustion Spraying

  • Chapter
  • First Online:
Thermal Spray Fundamentals

Abstract

Combustion spraying, often referred to as “Flame spraying (FS),” is at the base of the wide field of thermal spray technologies, which was developed in the early twentieth century and remains one of the most widely used spray coating processes because of their favorable economics. Its most common application is in the corrosion protection of infrastructure buildings such as bridges and steel structures. Over the years, the growth of combustion processes was driven by both scientific and technical developments and market requirements. The development of High Velocity Oxy-Fuel (HVOF) spraying by Browning in 1983 is a typical example which was pushed forward by the need to produce WC-Co cermet coatings with superior properties as a replacement for the environmentally polluting chrome-plating technologies. Detonation gun (D-gun) spraying is another example of flame spraying that generally uses an acetylene-oxygen or hydrogen-oxygen mixture contained in a tube closed at one of its ends. The shock wave generated by the reaction in the highly compressed explosive medium (about 2 MPa) heats and accelerates the particles to be sprayed, which are projected toward the substrate. Gas velocities above 2000 m/s are commonly achieved in detonation spray guns. In this chapter, each of these three techniques is described in detail reviewing the basic concepts involved, gas and particle dynamics. References are given for expanded exposure to recent developments and immerging technologies and their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

APS:

Atmospheric Plasma Spraying

BC :

Bond Coat

CFD :

Computational Fluid Dynamic

DC:

Direct Current

D-gun :

Detonation Gun

EDS:

Energy Dispersive Spectroscopy

FS:

Flame Spraying

GS-HVOF:

Gas Shroud High-Velocity Oxy Fuel

HVAF :

High-Velocity Air Fuel

HVOF :

High-Velocity Oxy Fuel

HV-SPS:

High velocity Suspension Plasma Spraying

LHS:

Left-Hand Side

LT-HVOF:

Low-Temperature High-Velocity Oxy Fuel

MPD:

Maximum Power Density

PDTS:

Pulse Detonation Thermal Spray

PFS:

Powder Flame Spraying

PTS:

Polymer Thermal Spray

RHS:

Right-Hand Side

RT:

Room Temperature

SBF:

Simulated Body Fluid

SEM:

Scanning Electron Microscopy

SFS:

Solution Flame Spraying

SHS :

Self-propagating High Temperature Synthesis

slm :

standard liters per minute

SoD:

Standoff Distance

WFS:

Wire Flame Spraying

WS-HVAF:

Warm Spray High-Velocity Air Fuel

XRD:

X-ray Diffraction

YSZ :

Yttria-stabilized zirconia

References

  • Aalamialeagha, M.E., S.J. Harris, and M. Emamighomi. 2003. Influence of the HVOF spraying process on the microstructure and corrosion behavior of Ni-20%Cr coatings. Journal of Materials Science 38: 4587–4596.

    Article  CAS  Google Scholar 

  • Ahmed, R., and M. Hadfield. 2002. Mechanisms of fatigue failure in thermal spray coatings. Journal of Thermal Spray Technology 11 (4): 551–558.

    Google Scholar 

  • Altomare, L., D. Bellucci, G. Bolelli, B. Bonferroni, V. Cannillo, L. De Nardo, R. Gadow, A. Killinger, L. Lusvarghi, A. Sola, and N. Stiegler. 2011. Microstructure and in vitro behaviour of 45S5 bioglass coatings deposited by high velocity suspension flame spraying (HVSFS). Journal of Materials Science: Materials in Medicine 22: 1303–1319.

    CAS  Google Scholar 

  • American Welding Society. 1985. Thermal spraying, practice. Miami: Theory and Application.

    Google Scholar 

  • Ang, A.S.M., H. Howse, S.A. Wade, and C.C. Berndt. 2016. Development of processing windows for HVOF carbide-based coatings. Journal of Thermal Spray Technology 25 (1–2): 28–35.

    Article  CAS  Google Scholar 

  • Anon. 1913. Metal plating with the air brush. Scientific American 1: 346–352.

    Google Scholar 

  • Arcondéguy, A., A. Grimaud, A. Denoirjean, G. Gasnier, C. Huguet, B. Pateyron, and G. Montavon. 2007. Flame-sprayed glaze coatings: Effect of operating parameters and feedstock characteristics onto coating structures. Journal of Thermal Spray Technology 16 (5–6): 978–990.

    Article  CAS  Google Scholar 

  • Ashrafizadeh, H., A. McDonald, and P. Mertiny. 2016. Deposition of electrically conductive coatings on Castable polyurethane elastomers by the flame spraying process. Journal of Thermal Spray Technology 25 (3): 419–430.

    Article  CAS  Google Scholar 

  • Astakhov, E.A. 2008. Controlling the properties of detonation-sprayed coatings: Major aspects. Powder Metallurgy and Metal Ceramics 47 (1–2): 70–79.

    Article  CAS  Google Scholar 

  • Bandyopadhyay, R., and Per Nylén. 2003. A computational fluid dynamic analysis of gas and particle flow in flame spraying. 12 (4): 494–503.

    Google Scholar 

  • Barisov, Yui S., E.A. Asstachov, and V.S. Klimenko. 1990. Detonation Spraying equipment, materials and Applications, 26–32. Essen, Germany: Thermische Spritzkonferenz.

    Google Scholar 

  • Barthel, K., S. Rambert, and St. Siegmann. 2000. Microstructure and polarization resistance of thermally sprayed composite cathodes for solid oxide fuel cell use. Journal of Thermal Spray Technology 9 (3): 343–347.

    Article  CAS  Google Scholar 

  • Bartuli, C., T. Valente, F. Cipri, E. Bemporad, and M. Tului. 2005. Parametric study of an HVOF process for the deposition of nanostructured WC-co coatings. Journal of Thermal Spray Technology 14 (2): 187–195.

    Article  CAS  Google Scholar 

  • Belzunce, F.J., V. Higuera, S. Poveda, and A. Carriles. 2002. High temperature of HFPD thermal-sprayed MCrAlY coatings in simulated gas turbine environments. Journal of Thermal Spray Technology 11 (4): 461–467.

    Article  CAS  Google Scholar 

  • Bergant, Z., and J. Grum. 2009. Quality improvement of flame sprayed, heat treated, and Remelted NiCrBSi coatings. Journal of Thermal Spray Technology 18 (3): 380–391.

    Article  CAS  Google Scholar 

  • Berghaus, Oberste J., J.-G. Legoux, C. Moreau, R. Hui, C. Decès-Petit, W. Qu, S. Yick, Z. Wang, R. Maric, and D. Ghosh. 2008. Suspension HVOF spraying of reduced temperature solid oxide fuel cell electrolytes. Journal of Thermal Spray Technology 17 (5–6): 700–707.

    Article  CAS  Google Scholar 

  • Bhandari, S., H. Singh, H.K. Kansal, and V. Rastogi. 2012. Slurry Erosion behaviour of detonation gun spray Al2O3 and Al2O3–13TiO2-coated CF8M steel under hydro accelerated conditions. Tribology Letters 45: 319–331.

    Article  CAS  Google Scholar 

  • Bobzin, K., M. Ote, T.F. Linke, and K.M. Malik. 2016. Wear and corrosion resistance of Fe-based coatings reinforced by TiC particles for application in hydraulic systems. Journal of Thermal Spray Technology 25 (1–2): 365–374.

    Article  CAS  Google Scholar 

  • Bolelli, G., and L. Lusvarghi. 2006. Heat treatment effects on the Tribological performance of HVOF sprayed co-Mo-Cr-Si coatings. Journal of Thermal Spray Technology 15 (4): 802–810.

    Article  CAS  Google Scholar 

  • Bolelli, G., V. Cannillo, L. Lusvarghi, and S. Ricco. 2006. Mechanical and tribological properties of electrolytic hard chrome and HVOF-sprayed coatings. Surface & Coatings Technology 200: 2995–3009.

    Article  CAS  Google Scholar 

  • Bolelli, G., J. Rauch, V. Cannillo, A. Killinger, L. Lusvarghi, and R. Gadow. 2009. Microstructural and Tribological Investigation of High-Velocity Suspension Flame Sprayed (HVSFS) Al2O3 Coatings. Journal of Thermal Spray Technology 18 (1): 35–49.

    Article  CAS  Google Scholar 

  • Brandl, W., D. Toma, J. Kruger, H.J. Grabke, and G. Matthäus. 1997. The oxidation behavior of HVOF thermal-sprayed MCrAlY coatings. Surface and Coatings Technology 93-95: 21–26.

    Article  Google Scholar 

  • Brantner, H.P., R. Pippan, and W. Prantl. 2003. Local and global fracture toughness of a flame sprayed molybdenum coating. Journal of Thermal Spray Technology 12 (4): 560–571.

    Article  CAS  Google Scholar 

  • Browning, J.A. 1983. Highly concentrated supersonic liquefied material flame spray method and apparatus. US patent # 4,416,421, November.

    Google Scholar 

  • ———. 1992. Hypervelocity impact fusion-a technical note. Journal of Thermal Spray Technology 1 (4): 289–229.

    Article  CAS  Google Scholar 

  • ———. 1999. Viewing the future of HVOF and HVAF thermal spraying. Journal of Thermal Spray Technology 8 (3): 351–356.

    Google Scholar 

  • Cannon, J.E., M. Alkam, and P.B. Butler. 2008. Efficiency of pulsed detonation thermal spraying. Journal of Thermal Spray Technology 17 (4): 456–464.

    Article  Google Scholar 

  • Cetegen, B.M., and S. Basu. 2009. Review of modeling of liquid precursor droplets and particles injected into plasmas and high-velocity oxy-fuel (HVOF) flame jets for thermal spray deposition applications. Journal of Thermal Spray Technology 18 (5–6): 769–793.

    Article  CAS  Google Scholar 

  • Chang-Jiu, Li, and Yu-Yue Wang. 2002. Effect of particle state on the adhesive strength of HVOF sprayed metallic coating. Journal of Thermal Spray Technology 11 (4): 523–552.

    Article  Google Scholar 

  • Chebbi, A., and J. Stokes. 2012. Thermal spraying of bioactive polymer coatings for orthopedic applications. Journal of Thermal Spray Technology 21 (3–4): 719–730.

    Article  CAS  Google Scholar 

  • Chen, W.R., X. Wua, B.R. Marple, D.R. Nagy, and P.C. Patnaik. 2008. TGO growth behavior in TBCs with APS and HVOF bond coats. Surface & Coatings Technology 202 (12): 2677–2683.

    Article  CAS  Google Scholar 

  • Cheng, D., Q. Xu, G. Trapaga, and E.J. Lavernia. 2001. The effect of particle size and morphology on the in-flight behavior of particles during high-velocity oxyfuel thermal spraying. Metallurgical and Materials Transactions B 32 (3): 525–535.

    Article  Google Scholar 

  • ———. 2001b. A numerical study of high-velocity oxygen fuel thermal spraying process. Part I: gas phase dynamics. Metallurgical and Materials Transactions A 32A: 1609–1620.

    Article  CAS  Google Scholar 

  • Chow, R., T.A. Decker, R.V. Gansert, D. Gansert, and D. Lee. 2003. Properties of aluminium deposited by a HVOF process. Journal of Thermal Spray Technology 12 (2): 208–213.

    Article  CAS  Google Scholar 

  • Deng, C., M. Liu, C. Wu, K. Zhou, and J. Song. 2007. Impingement resistance of HVAF WC-based coatings. Journal of Thermal Spray Technology 16 (5–6): 604–609.

    Article  CAS  Google Scholar 

  • Dent, A.H., S. DePalo, and S. Sampath. 2002. Examination of the wear properties of HVOF sprayed nanostructured and conventional WC-co Cermets with different binder phase contents. Journal of Thermal Spray Technology 11 (4): 551–558.

    Article  CAS  Google Scholar 

  • Dobbins, T.A., R. Knight, and M.J. Mayo. 2003. HVOF thermal spray deposited Y2O3- ZrO2 coatings for thermal barrier applications. Journal of Thermal Spray Technology 12 (2): 214–225.

    Article  CAS  Google Scholar 

  • Dobler, K., H. Kreye, and R. Schwetzke. 2000. Oxidation of stainless steel in the high velocity oxy-fuel process. Journal of Thermal Spray Technology 9 (3): 407–413.

    Article  CAS  Google Scholar 

  • Dolatabadi, A., V. Pershin, and J. Mostaghimi. 2005. New attachment for controlling gas flow in the HVOF process. Journal of Thermal Spray Technology 14 (1): 91–99.

    Article  CAS  Google Scholar 

  • Dongmo, E., R. Gadow, A. Killinger, and M. Wenzelburger. 2009a. Modeling of combustion as well as heat, mass, and momentum transfer during thermal spraying by HVOF and HVSFS. Journal of Thermal Spray Technology 18 (5–6): 896–908.

    Article  CAS  Google Scholar 

  • Dongmo, E., A. Killinger, M. Wenzelburger, and R. Gadow. 2009b. Numerical approach and optimization of the combustion and gas dynamics in High Velocity Suspension Flame Spraying (HVSFS). Surface & Coatings Technology 203: 2139–2145.

    Article  CAS  Google Scholar 

  • Du, H., W. Hua, J. Liu, J. Gong, C. Sun, and L. Wen. 2005. Influence of process variables on the qualities of detonation gun sprayed WC–Co coatings. Materials Science and Engineering A 408: 202–210.

    Article  CAS  Google Scholar 

  • Du, H., C. Sun, W.G. Hua, Y.S. Zhang, Z. Han, T.G. Wang, J. Gong, and S.W. Lee. 2006. Fabrication and evaluation of D-gun sprayed WC–Co coating with self-lubricating property. Tribology Letters 23 (3): 261–266.

    Article  CAS  Google Scholar 

  • Du, H., C. Sun, W. Hua, T. Wang, J. Gong, X. Jiang, and S. Wohn Lee. 2007. Structure, mechanical and sliding wear properties of WC-Co/MoS2-Ni coatings by detonation gun spray. Materials Science and Engineering A 445-446: 122–134.

    Article  CAS  Google Scholar 

  • Edrisy, A., T. Perry, and A.T. Alpas. 2005. Wear mechanism maps for thermal-spray steel coatings. Metallurgical and Materials Transactions 36A: 2737–2750.

    Article  CAS  Google Scholar 

  • Endo, T., R. Obayashi, T. Tajiri, K. Kimura, Y. Morohashi, T. Johzaki, K. Matsuoka, T. Hanafusa, and S. Mizunari. 2016. Thermal spray using a high-frequency pulse detonation combustor operated in the liquid-purge mode. Journal of Thermal Spray Technology 25 (3): 494–508.

    Article  CAS  Google Scholar 

  • Evdokimenko, Y.I., V.M. Kisel, V. Kh, A. Kadyrov, A. Korol, and O.I. Get’man. 2001. High-velocity flame spraying of powder Aluminium protective coatings. Powder Metallurgy and Metal Ceramics 40 (3–4): 121–126.

    CAS  Google Scholar 

  • Filimonov, V. Yu, V.I. Yakovlev, M.A. Korchagin, M.V. Loginova, A.S. Semenchina, and A.V. Afanas’ev. 2008. Structure formation during gas-detonation spraying of coatings from composite powders TiAl3 and Ni3Al. Combustion, Explosion, and Shock Waves 44 (5): 591–596.

    Article  Google Scholar 

  • Fossati, A., M. Di Ferdinando, A. Lavacchi, U. Bardi, C. Giolli, and A. Scrivani. 2010. Improvement of the isothermal oxidation resistance of CoNiCrAlY coating sprayed by high velocity oxygen fuel. Surface & Coatings Technology 204: 3723–3728.

    Article  CAS  Google Scholar 

  • Furuhata, T., S. Tanno, T. Miura, Y. Ikeda, and T. Nakajima. 1997. Performance of numerical spray combustion simulation, energy convers. Manage 38 (10–13): 1111–1122.

    CAS  Google Scholar 

  • Ganesh Sundara Raman, S., B. Rajasekaran, S.V. Joshi, and G. Sundararajan. 2007. Influence of substrate material on plain fatigue and fretting fatigue behavior of detonation gun sprayed cu-Ni-in coating. Journal of Thermal Spray Technology 16 (4): 571–579.

    Article  CAS  Google Scholar 

  • Gao, Y., H. Zu-kun, X. Xiaolei, and X. Gang. 2001. Formation of molybdenum boride cermet coating by the detonation spray process. Journal of Thermal Spray Technology 10 (3): 456–460.

    Article  CAS  Google Scholar 

  • Gärtner, F., T. Stoltenhoff, T. Schmidt, and H. Kreye. 2006. The Cold Spray Process and Its Potential for Industrial Applications. Journal of Thermal Spray Technology 15 (2): 223–232.

    Article  CAS  Google Scholar 

  • Gavrilenko, T.P., and Yu.A. Nikolaev. 2006. Limits of gaseous detonation spraying. Combustion, Explosion, and Shock Waves 42 (5): 594–597.

    Article  Google Scholar 

  • ———. 2007. Calculation of detonation gas spraying. Combustion, Explosion, and Shock Waves 43 (6): 724–731.

    Article  Google Scholar 

  • Gawne, D.T., T. Zhang, and Y. Bao. 2001. Heating effect of flame impingement on polymer coatings, thermal spray 2001. In New surfaces for a new millennium, ed. C. Berndt, K. Khor, and E. Lugscheider. Materials: ASM International.

    Google Scholar 

  • Glassman, I. 1977. Combustion. New York: Academic.

    Google Scholar 

  • Gonzalez, R., H. Ashrafizadeh, A. Lopera, P. Mertiny, and A. McDonald. 2016. A review of thermal spray metallization of polymer-based structures. Journal of Thermal Spray Technology 25 (5): 897–919.

    Article  CAS  Google Scholar 

  • Gordon, S., and B.J. McBride. 1994. Computer program for calculation of complex chemical equilibrium compositions and applications, NASA reference publication 1311. Cleveland: Lewis Research Center.

    Google Scholar 

  • Grewal, Harpreet Singh, Sanjeev Bhandari, and Harpreet Singh. 2012. Parametric study of slurry-Erosion of hydro-turbine steels with and without detonation gun spray coatings using Taguchi technique. Metallurgical and Materials Transactions A 43A: 3387–3401.

    Article  CAS  Google Scholar 

  • Gross, K.A., J. Tikkanen, J. Keskinen, V. Pitkänen, M. Eerola, R. Siikamaki, and M. Rajala. 1999. Liquid flame spraying for glass coloring. Journal of Thermal Spray Technology 8 (4): 583–589.

    Article  CAS  Google Scholar 

  • Gu, S., C.N. Eastwick, K.A. Simmons, and D.G. McCartney. 2001. Computational fluid dynamic modelling of gas flow characteristics in a high-velocity oxy-fuel thermal spray system. Journal of Thermal Spray Technology 10 (3): 461–469.

    Article  CAS  Google Scholar 

  • Gu, S., D.G. McCartney, C.N. Eastwick, and K. Simmons. 2004. Numerical modeling of in-flight characteristics of Inconel 625 particles during high-velocity oxy-fuel thermal spraying. Journal of Thermal Spray Technology 13 (2): 200–213.

    Article  CAS  Google Scholar 

  • Guilemany, J.M., N. Espallargas, P.H. Suegama, A.V. Benedetti, and J. Fernández. 2005. High-velocity oxyfuel Cr3C2-NiCr replacing hard chromium coatings. Journal of Thermal Spray Technology 14 (3): 335–341.

    Article  CAS  Google Scholar 

  • Gupta, M., N. Markocsan, X.-H. Li, and L. Östergren. 2018. Influence of bond-coat spray process on lifetime of suspension plasma-sprayed thermal barrier coatings. Journal of Thermal Spray Technology 27: 84–97.

    Article  CAS  Google Scholar 

  • Hackett, C.M., and G.S. Settles. 1995. Research on HVOF gas shrouding for coating oxidation control. In Thermal spray: Science and technology, ed. C.C. Berndt and S. Sampath, 21–29. Geauga County: ASM International, Materials Park.

    Google Scholar 

  • Hall, A., D. Urrea, J. Mccloskey, D. Beatty, T. Roemer, and D. Hirschfeld. 2010. The effect of torch hardware on particle temperature and particle velocity distributions in the powder flame spray process. Journal of Thermal Spray Technology 19 (4): 824–827.

    Article  CAS  Google Scholar 

  • Han, Y., H. Chen, D. Gao, G. Yang, B. Liu, Y. Chu, J. Fan, and Y. Gao. 2017. Microstructural evolution of NiCoCrAlHfYSi and NiCoCrAlTaY coatings deposited by AC-HVAF and APS. Journal of Thermal Spray Technology 26: 1758–1775.

    Article  CAS  Google Scholar 

  • Hanshin, C., S. Lee, B. Kim, H. Jo, and C. Lee. 2005. Effect of in-flight particle oxidation on the phase evolution of HVOF NiTiZrSiSn bulk amorphous coating. Journal of Materials Science 40: 6121–6126.

    Article  CAS  Google Scholar 

  • Hanson, T.C., C.M. Hackett, and G.S. Settles. 2002. Independent control of HVOF particle velocity and temperature. Journal of Thermal Spray Technology 11: 75–85.

    Article  CAS  Google Scholar 

  • Harsha, S., D.K. Dwivedi, and A. Agarwal. 2007. Influence of CrC addition in Ni-Cr-Si-B flame sprayed coatings on microstructure, microhardness and wear behaviour. Surface & Coatings Technology 201: 5766–5775.

    Article  CAS  Google Scholar 

  • Hassan, B., A.R. Lopez, and W.L. Oberkampf. 1998. Computational analysis of a three-dimensional High-Velocity Oxygen Fuel (HVOF) thermal spray torch. Journal of Thermal Spray Technology 7 (1): 71–77.

    Article  CAS  Google Scholar 

  • He, J., M. Ice, and E. Lavernia. 2001. Particle melting behavior during high-velocity oxygen fuel thermal spraying. Journal of Thermal Spray Technology 10 (1): 83–93.

    Article  CAS  Google Scholar 

  • Henkes and H. Olivier, J (2014) Particle Acceleration in a High Enthalpy Nozzle Flow with a Modified Detonation Gun. J Thermal Spray Technology 23(4) 626-640

    Google Scholar 

  • Hideki, I., U. Shibakumaran, and G. Kazumasa. 1991. Method for thermally spraying and grazing cement martial. Japanese patent JP3033084, 13-02-1991.

    Google Scholar 

  • Higuera, V., F.J. Belzunce, A. Carriles, and S. Poveda. 2002. Influence of the thermal-spray procedure on the properties of a nickel-chromium coating. Journal of Materials Science 37: 649–654.

    Article  CAS  Google Scholar 

  • Horlock, A.J., Z. Sadeghian, D.G. McCartney, and P.H. Shipway. 2005. High-velocity Oxyfuel reactive spraying of mechanically alloyed Ni-Ti-C powders. Journal of Thermal Spray Technology 14 (1): 77–84.

    Article  Google Scholar 

  • Huang, J., Y. Liu, J. Yuan, and H. Li. 2014. Al/Al2O3 composite coating deposited by flame spraying for marine applications: Alumina skeleton enhances anti-corrosion and Wear performances. Journal of Thermal Spray Technology 23 (4): 676–683.

    Article  CAS  Google Scholar 

  • Hussary, N.A., and J.V.R. Heberlein. 2007. Effect of system parameters on metal breakup and particle formation in the wire arc spray process. Journal of Thermal Spray Technology 16 (1): 140–152.

    Article  CAS  Google Scholar 

  • Ishikawa, K., T. Suzuki, Y. Kitamura, and S. Tobe. 1999. Corrosion resistance of thermal sprayed titanium coatings in chloride solution. Journal of Thermal Spray Technology 8 (2): 273–278.

    Article  CAS  Google Scholar 

  • Ishikawa, K., T. Suzuki, S. Tobe, Y. Kitamura, and K. Ishikawa. 2001. Alloy against aqueous corrosion. Journal of Thermal Spray Technology 10 (3): 520–525.

    Article  CAS  Google Scholar 

  • Ishikawa, Y., J. Kawakita, S. Osawa, T. Itsukaichi, Y. Sakamoto, M. Takaya, and S. Kuroda. 2005. Evaluation of corrosion and Wear resistance of hard cermet coatings sprayed by using an improved HVOF process. Journal of Thermal Spray Technology 14 (3): 384–390.

    Article  CAS  Google Scholar 

  • Ishikawa, Y., S. Kuroda, J. Kawakita, Y. Sakamoto, and T. Matsufumi. 2007. Sliding wear properties of HVOF sprayed WC–20%Cr3C2–7%Ni cermet coatings. Surface & Coatings Technology 201: 4718–4727.

    Google Scholar 

  • Ivosevic, M., R. Knight, S.R. Kalidindi, G.R. Palmese, and J.K. Sutter. 2005. Adhesive/cohesive properties of thermally sprayed functionally graded coatings for polymer matrix composites. Journal of Thermal Spray Technology 14 (1): 45–51.

    Article  Google Scholar 

  • Ivosevic, M., R.A. Cairncross, and R. Knight. 2007. Melting and degradation of Nylon-11 particles during HVOF combustion spraying. Journal of App. Pol. Science 105 (2): 827–837.

    Article  CAS  Google Scholar 

  • Ivosevic, M., S.L. Coguill, and S.L. Galbraith. 2009. Polymer thermal spraying: A novel coating process. In Thermal spray 2009: Proceedings of the international thermal spray conference, ed. B.R. Marple, M.M. Hyland, Y.-C. Lau, C.-J. Li, R.S. Lima, and G. Montavon, 1078–1083. Materials Park, OH, USA: ASM International.

    Google Scholar 

  • Jackson, L., M. Ivosevic, R. Knight, and R.A. Cairncross. 2007. Sliding Wear properties of HVOF thermally sprayed Nylon-11 and Nylon-11/ceramic composites on steel. Journal of Thermal Spray Technology 16 (5–6): 927–932.

    Article  Google Scholar 

  • Jacobs, L., M.M. Hyland, and M. De Bonte. 1998. Comparative study of WC-cermet coatings sprayed via the HVOF and the HVAF process. Journal of Thermal Spray Technology 7 (2): 213–218.

    Article  CAS  Google Scholar 

  • ———. 1999. Study of the influence of microstructural properties on the sliding-Wear behavior of HVOF and HVAF sprayed WC-cermet coatings. Journal of Thermal Spray Technology 8 (1): 125–132.

    Article  CAS  Google Scholar 

  • Jang, H.-J., D.-H. Park, Y.-G. Junga, J.-C. Jang, S.-C. Choi, and U. Paik. 2006. Mechanical characterization and thermal behavior of HVOF-sprayed bond coat in thermal barrier coatings (TBCs). Surface & Coatings Technology 200: 4355–4362.

    Article  CAS  Google Scholar 

  • Jayaganthan, R., S. Prakash, and Sanjay Kumar. 2008. Hot corrosion behavior of detonation gun sprayed Cr3C2–NiCr coatings on Ni and Fe-based superalloys in Na2SO4–60% V2O5 environment at 900 °C. Journal of Alloys and Compounds 463: 358–372.

    Article  CAS  Google Scholar 

  • Ji, G.-C., C.-J. Li, Y.-Y. Wang, and W.-Y. Li. 2007. Erosion performance of HVOF-sprayed Cr3C2-NiCr coatings. Journal of Thermal Spray Technology 16 (4): 557–565.

    Article  CAS  Google Scholar 

  • Jin, Kawakita, Seiji Kuroda, Takeshi Fukushima, and Toshiaki Kodama. 2005. Improvement of corrosion resistance of high-velocity oxyfuel-sprayed stainless-steel coatings by addition of molybdenum. Journal of Thermal Spray Technology 14 (2): 224–230.

    Article  CAS  Google Scholar 

  • Jorge, Lino F., Teresa P. Duarte, and Ricardo Maia. 2003. Development of coated ceramic components for the aluminum industry. Journal of Thermal Spray Technology 12 (2): 250–257.

    Article  Google Scholar 

  • Kadyrov, E. 1996. Gas-particle interaction in detonation spraying systems. Journal of Thermal Spray Technology 5 (2): 185–195.

    Article  CAS  Google Scholar 

  • Kadyrov, E., and V. Kadyrov. 1995. Gas dynamical parameters of detonation powder spraying. Journal of Thermal Spray Technology 4 (3): 280–286.

    Article  CAS  Google Scholar 

  • Kamal, S., R. Jayaganthan, S. Prakash, and Sanjay Kumar. 2008. Hot corrosion behavior of detonation gun sprayed Cr3C2–NiCr coatings on Ni and Fe-based superalloys in Na2SO4–60% V2O5 environment at 900 °C. Journal of Alloys and Compounds 463: 358–372.

    Article  CAS  Google Scholar 

  • Kamal, S., R. Jayaganthan, and S. Prakash. 2009. High temperature oxidation studies of detonation-gun-sprayed Cr3C2–NiCr coating on Fe- and Ni-based superalloys in air under cyclic condition at 900 °C. Journal of Alloys and Compounds 472: 378–389.

    Article  CAS  Google Scholar 

  • ———. 2011. Hot corrosion studies of detonation-gun-sprayed NiCrAlY + 0.4 wt.% CeO2 coated Superalloys in molten salt environment, Journal of. Materials Engineering and Performance 20 (6): 1068–1077.

    Article  CAS  Google Scholar 

  • Kamnis, S., and S. Gu. 2006. Numerical modelling of propane combustion in a high velocity oxygen–fuel thermal spray gun. Chemical Engineering and Processing 45: 246–253.

    Article  CAS  Google Scholar 

  • Katanoda, H., H. Yamamoto, and K. Matsuo. 2006. Numerical simulation on supersonic flow in high velocity oxy fuel thermal spray gun. Journal of Thermal Science 15 (1): 65–70.

    Article  CAS  Google Scholar 

  • Katanoda, H., T. Matsuoka, S. Kuroda, J. Kawakita, H. Fukanuma, and K. Matsuo. 2005. Aerodynamic study on supersonic flows in high-velocity oxy-fuel thermal spray process. Journal of Thermal Science 14: 126–129.

    Article  Google Scholar 

  • Katanoda, H., H. Yamamoto, and K. Matsuo. 2006. Numerical simulation on supersonic flow in high velocity oxy fuel thermal spray gun. Journal of Thermal Science 15 (1): 65–70.

    Article  CAS  Google Scholar 

  • Kaushal, G., H. Singh, and S. Prakash. 2011. Comparative high temperature analysis of HVOF- sprayed and detonation gun sprayed Ni–20Cr coating in laboratory and actual boiler environments. Oxidation of Metals 76: 169–191.

    Article  CAS  Google Scholar 

  • Kaushal, G., N. Bala, H. Singh, N. Kaur, and S. Prakash. 2014. Comparative high-temperature corrosion behavior of Ni-20Cr coatings on T22 boiler steel produced by HVOF, D-Gun, and Cold spraying. Metallurgical and Materials Transactions A 45A: 395–410.

    Article  CAS  Google Scholar 

  • Kawahara, Y. 2007. Application of high temperature corrosion-resistant materials and coatings under severe corrosive environment in waste-to-energy boilers. Journal of Thermal Spray Technology 16 (2): 202–213.

    Google Scholar 

  • Jin, Kawakita, Seiji Kuroda, Takeshi Fukushima, and Toshiaki Kodama. 2005. Improvement of corrosion resistance of high-velocity oxyfuel-sprayed stainless steel coatings by addition of molybdenum. Journal of Thermal Spray Technology 14 (2): 224–230.

    Article  CAS  Google Scholar 

  • Kawakita, J., S. Kuroda, T. Fukushima, H. Katanoda, K. Matsuo, and H. Fukanuma. 2006. Dense titanium coatings by modified HVOF spraying. Surface & Coatings Technology 201: 1250–1255.

    Article  CAS  Google Scholar 

  • Ke, P.L., Y.N. Wu, Q.M. Wang, J. Gong, C. Sun, and L.S. Wen. 2005. Study on thermal barrier coatings deposited by detonation gun. Surface & Coatings Technology 200: 2271–2276.

    Article  CAS  Google Scholar 

  • Kharlamov, Y.A. 2004. Gaseous pulse detonation spraying: Current status, challenges, and future perspective. In ITSC-2004: Thermal spray crossing borders, ed. E. Lugsheider. Düsseldorf, Germany: DVS. E-proceedings.

    Google Scholar 

  • Killinger, A., M. Kuhn, and R. Gadow. 2006. High-velocity suspension flame spraying (HVSFS), a new approach for spraying nanoparticles with hypersonic speed. Surface & Coatings Technology 201 (2006): 1922–1929.

    Article  CAS  Google Scholar 

  • Killinger, A., P. Müller, and R. Gadow. 2015. What do we know, what are the current limitations of suspension HVOF spraying? Journal of Thermal Spray Technology 24 (7): 1130–1142.

    Article  Google Scholar 

  • Kim, J.H., K.M. Lim, B.G. Seong, and C.G. Park. 2001. Amorphous phase formation of Zr-based alloy coating by HVOF spraying process. Journal of Materials Science 36: 49–54.

    Article  CAS  Google Scholar 

  • Kim, J.H., M.C. Kim, and C.G. Park. 2003. Evaluation of functionally graded thermal barrier coatings fabricated by detonation gun spray technique. Surface and Coatings Technology 168: 275–280.

    Article  CAS  Google Scholar 

  • Kim, K.H., S. Kuroda, and M. Watanabe. 2010. Microstructural development and deposition behavior of titanium powder particles in warm spraying process: From single splat to coating. Journal of Thermal Spray Technology 19 (6): 1244–1254.

    Article  CAS  Google Scholar 

  • Kleinstein, G. 1964. Mixing in turbulent axially symmetric free jets. Journal of Spacecraft 1 (4): 403–408.

    Article  Google Scholar 

  • Koji, N., H. Kunio, and Y. Eiichi. 1990. Glass-coated metallic work piece. Japanese patent JP2011749, 16-01-1990.

    Google Scholar 

  • Korpiola, K., J.P. Hirvonen, L. Laas, and F. Rossi. 1997. The influence of the nozzle design on HVOF exit gas velocity and coating microstructure. Journal of Thermal Spray Technology 6 (4): 469–474.

    Article  CAS  Google Scholar 

  • Kumar, Ashok, J. Boy, Ray Zatorski, and L.D. Stephenson. 2005. Thermal spray and weld repair alloys for the repair of cavitation damage in turbines and pumps: A technical note. Journal of Thermal Spray Technology 14 (2): 177–182.

    Article  CAS  Google Scholar 

  • Kuroda, S., Y. Tashiro, H. Yumoto, S. Taira, H. Fukanuma, and S. Tobe. 2001. Peening action and residual stresses in high-velocity oxygen fuel thermal spraying of 316L stainless steel. Journal of Thermal Spray Technology 10 (2): 367–374.

    Article  CAS  Google Scholar 

  • Kuroda, S., M. Watanabe, K.H. Kim, and H. Katanoda. 2011. Current status and future prospects of warm spray technology. Journal of Thermal Spray Technology 20 (4): 653–676.

    Article  Google Scholar 

  • Kwon, J.-Y., J.-H. Lee, Y.-G. Jung, and U. Paik. 2006. Effect of bond coat nature and thickness on mechanical characteristic and contact damage of zirconia-based thermal barrier coatings. Surface & Coatings Technology 201: 3483–3490.

    Article  CAS  Google Scholar 

  • Laribi, M., A.B. Vannes, and D. Treheux. 2006. On a determination of wear resistance and adhesion of molybdenum, Cr–Ni and Cr–Mn steel coatings thermally sprayed on a 35CrMo4 steel. Surface & Coatings Technology 200: 2704–2710.

    Article  CAS  Google Scholar 

  • Li, M., and P.D. Christofides. 2005. Multi-scale modelling and analysis of an industrial HVOF thermal spray process. Chemical Engineering Science 60: 3649–3669.

    Article  CAS  Google Scholar 

  • Li, S., and Panagiotis D. Christofides. 2006. Computational study of particle in-flight behavior in the HVOF thermal spray process. Chemical Engineering Science 61: 6540–6552.

    Google Scholar 

  • Li, C.-J., and A. Ohmori. 1996. The lamellar structure of a detonation gun sprayed A12O3 coating. Surface and Coatings Technology 82: 254–258.

    Article  CAS  Google Scholar 

  • Chang-Jiu, Li, and Yu-Yue Wang. 2002. Effect of particle state on the adhesive strength of HVOF sprayed metallic coating. Journal of Thermal Spray Technology 11 (4): 523–552.

    Article  Google Scholar 

  • Li, M., P. Shi, and P.D. Christofides. 2004a. Diamond jet hybrid HVOF thermal spray: Gas-phase and particle behavior modelling and feedback control design. Industrial and Engineering Chemistry Research 43: 3632–3652.

    Article  CAS  Google Scholar 

  • Li, J.F., L. Li, and F.H. Stott. 2004b. Multi-layered surface coatings of refractory ceramics prepared by combined laser and flame spraying. Surface and Coatings Technology 180–181: 500–505.

    Article  CAS  Google Scholar 

  • Lima, C.R.C., and J.M. Guilemany. 1997. The oxidation behavior of HVOF thermal-sprayed MCrAlY coatings. Surface and Coatings Technology 93-95: 21–26.

    Google Scholar 

  • Lima, C.R.C., and J.M. Guilemany. 2007. Adhesion improvements of thermal barrier coatings with HVOF thermally sprayed bond coats. Surface & Coatings Technology 201: 4694–4701.

    Article  CAS  Google Scholar 

  • Lima, R.S., and B.R. Marple. 2003a. High Weibull modulus HVOF titania coatings. Journal of Thermal Spray Technology 12 (2): 240–249.

    Article  CAS  Google Scholar 

  • ———. 2003b. Optimized HVOF titania coatings. Journal of Thermal Spray Technology 12 (3): 360–369.

    Article  CAS  Google Scholar 

  • Lima, C.R.C., J. Nin, and J.M. Guilemany. 2006. Evaluation of residual stresses of thermal barrier coatings with HVOF thermally sprayed bond coats using the modified layer removal method (MLRM). Surface & Coatings Technology 200: 5963–5972.

    Article  CAS  Google Scholar 

  • Lin, L., and K. Han. 1998. Optimization of surface properties by flame spray coating and boriding. Surface and Coatings Technology 106: 100–105.

    Article  CAS  Google Scholar 

  • Lin, Q.S., K.S. Zhou, C.M. Deng, M. Liu, L.P. Xu, and C.G. Deng. 2014. Deposition mechanisms and oxidation behaviors of Ti-Ni coatings deposited in low-temperature HVOF spraying process. Journal of Thermal Spray Technology 23 (6): 892–902.

    Article  CAS  Google Scholar 

  • Liu, Hui, and Jihua Huang. 2005. Reactive thermal spraying of TiC-Fe composite coating by using asphalt as carbonaceous precursor. Journal of Materials Science 40: 4149–4151.

    Article  CAS  Google Scholar 

  • Liu, Hui Yuan, and Ji Hua Huang. 2006. Reactive flame spraying of TiC-Fe cermet coating using asphalt as a carbonaceous precursor. Surface & Coatings Technology 200: 5328–5333.

    Article  CAS  Google Scholar 

  • Liu, C.S., J.H. Huang, and S. Yin. 2002. The influence of composition and process parameters on the microstructure of TiC-Fe coatings obtained by reactive flame spray process. Journal of Materials Science 37 (2002): 5241–5245.

    Article  CAS  Google Scholar 

  • Liu, M., K. Yang, C.-M. Deng, C.-G. Deng, and K.-S. Zhou. 2016. Microstructure and properties of Cu coating fabricated onto diamond-Cu substrate by low-temperature HVOF process. Journal of Thermal Spray Technology 25 (8): 1516–1525.

    Article  CAS  Google Scholar 

  • Lopez, A.R., B. Hassan, W.L. Oberkampf, R.A. Neiser, and T.J. Roemer. 1998. Computational fluid dynamics analysis of a wire-feed, high-velocity oxygen fuel (HVOF) thermal spray torch. Journal of Thermal Spray Technology 7 (3): 374–382.

    Article  CAS  Google Scholar 

  • Lugsheider, E., P. Remer, A. Nyland, and R. Siking. 1995. Thermal spraying of Bio-active glass ceramics. In Thermal Spray: Science and Technology, ed. C.C. Berndt and S. Sampath, 583–587. Materials Park, OH, USA: ASM International.

    Google Scholar 

  • Lyphout, C., and S. Björklund. 2015. Internal diameter HVAF spraying for Wear and corrosion applications. Journal of Thermal Spray Technology 24 (1–2): 235–243.

    CAS  Google Scholar 

  • Lyphout, C., K. Sato, S. Houdkova, E. Smazalova, L. Lusvarghi, G. Bolelli, and P. Sassatelli. 2016. Tribological properties of hard metal coatings sprayed by high-velocity air fuel process. Journal of Thermal Spray Technology 25 (1–2): 331–345.

    Article  CAS  Google Scholar 

  • Ma, J., X. Liu, W.O. Qu, and C. Zhou. 2015. Corrosion behavior of detonation gun sprayed Al coating on sintered NFeB. Journal of Thermal Spray Technology 24 (3): 394–400.

    Article  CAS  Google Scholar 

  • Maiti, A.K., N. Mukhopadhyay, and R. Raman. 2007. Effect of adding WC powder to the feedstock of WC-Co-Cr based HVOF coating and its impact on erosion and abrasion resistance. Surface & Coatings Technology 201: 7781–7788.

    Article  CAS  Google Scholar 

  • Manish, R. 2002. Dynamic hardness detonation sprayed WC-co coatings. Journal of Thermal Spray Technology 11 (3): 393–399.

    Article  Google Scholar 

  • Marple, B.R., and R.S. Lima. 2005. Process temperature/velocity-hardness-Wear relationships for high-velocity Oxyfuel sprayed nanostructured and conventional cermet coatings. Journal of Thermal Spray Technology 14 (1): 67–76.

    Article  Google Scholar 

  • Marple, B.R., and J. Voyer. 2001. Improved Wear performance by the incorporation of solid lubricants during thermal spraying. Journal of Thermal Spray Technology 10 (4): 626–636.

    Article  CAS  Google Scholar 

  • Masataka, M., and K. Kazumi. 1989. Substrate for flame-sprayed tile. Japanese patent JP1192777, 02-08-1989.

    Google Scholar 

  • Matikainen, V., H. Koivuluoto, P. Vuoristo, J. Schubert, and S. Houdkova. 2018. Effect of nozzle geometry on the microstructure and properties of HVAF-sprayed WC-10Co4Cr and Cr3C2-25NiCr Coatings. Journal of Thermal Spray Technology 27: 680–694.

    Article  CAS  Google Scholar 

  • Matthews, S., M. Hyland, and B. James. 2004. Long-term carbide development in high-velocity oxygen fuel/high-velocity air fuel Cr3C2-NiCr coatings heat treated at 900 °C. Journal of Thermal Spray Technology 13 (4): 526–536.

    Article  CAS  Google Scholar 

  • Mesrati, N., H. Ajhrourh, Du Nguyen, and D. Treheux. 2000. Thermal spraying and adhesion of oxides onto graphite. Journal of Thermal Spray Technology 9 (1): 95–99.

    Article  CAS  Google Scholar 

  • Milanti, A., H. Koivuluoto, and P. Vuoristo. 2015. Influence of the spray gun type on microstructure and properties of HVAF sprayed Fe-based corrosion resistant coatings. Journal of Thermal Spray Technology 24 (7): 1312–1322.

    Article  CAS  Google Scholar 

  • Min’kov, D.V., V.Yu. Lakunin, S.T. Kartashov, O.M. Bashkirov, A.S. Ivanov, A.V. Kasatkin, and M.D. Min’kov. 2008. Restoration of drying cylinders on spinning machines by gas detonation spraying. Fibre Chemistry 40 (6): 545–547.

    Article  CAS  Google Scholar 

  • Mingheng, Li, and Panagiotis D. Christofides. 2006. Computational study of particle in-flight behavior in the HVOF thermal spray process. Chemical Engineering Science 61: 6540–6552.

    Article  CAS  Google Scholar 

  • Mizuno, H., and J. Kitamura. 2007. MoB/CoCr cermet coatings by HVOF spraying against Erosion by molten Al-Zn alloy. Journal of Thermal Spray Technology 16 (3): 404–413.

    Article  CAS  Google Scholar 

  • Modi, S.C., and E. Calla. 2001. A study of high-velocity combustion wire molybdenum coatings. Journal of Thermal Spray Technology 10 (3): 480–486.

    Article  CAS  Google Scholar 

  • Moskowitz, L., and K. Trelewicz. 1997. HVOF coatings for heavy-Wear, high-impact applications. Journal of Thermal Spray Technology 6 (3): 294–299.

    Article  CAS  Google Scholar 

  • Mudgal, D., S. Singh, and S. Prakash. 2015. Evaluation of ceria-added Cr3C2-25(NiCr) coating on three Superalloys under simulated incinerator environment. Journal of Thermal Spray Technology 24 (3): 496–514.

    Article  CAS  Google Scholar 

  • Müller, P., A. Killinger, and R. Gadow. 2012. Comparison between high-velocity suspension flame spraying and suspension plasma spraying of alumina. Journal of Thermal Spray Technology 21 (6): 1120–1127.

    Article  CAS  Google Scholar 

  • Murthy, J.K.N., and B. Venkataraman. 2006. Abrasive wear behaviour of WC–CoCr and Cr3C2–20(NiCr) deposited by HVOF and detonation spray processes. Surface & Coatings Technology 200: 2642–2652.

    Article  CAS  Google Scholar 

  • Murthy, J.K.N., D.S. Rao, and B. Venkataraman. 2001. Effect of grinding on the erosion behaviour of a WC–Co–Cr coating deposited by HVOF and detonation gun spray processes. Wear 249: 592–600.

    Article  CAS  Google Scholar 

  • Murthy, J.K.N., S. Bysakh, K. Gopinath, and B. Venkataraman. 2007. Microstructure dependent erosion in Cr3C2–20(NiCr) coating deposited by a detonation gun. Surface & Coatings Technology 202: 1–12.

    Article  CAS  Google Scholar 

  • Navas, C., R. Colaço, J. de Damborenea, and R. Vilar. 2006. Abrasive wear behaviour of laser clad and flame sprayed-melted NiCrBSi coatings. Surface & Coatings Technology 200: 6854–6862.

    Article  CAS  Google Scholar 

  • Navidpour, A.H., M. Salehi, H.R. Salimijazi Y. Kalantari, and M. Azarpour Siahkali. 2017. Photocatalytic activity of flame-sprayed coating of zinc ferrite powder. Journal of Thermal Spray Technology 26: 2030–2039.

    Article  CAS  Google Scholar 

  • Neiser, R.A., J.E. Brockmann, T.J. O’Hern, R.C. Dyhkuizen, M.F. Smith, T.J. Roemer, and R.E. Teets. 1995. Wire melting and droplet atomization in a HVOF jet. In Thermal Spray Science and Technology, ed. C.C. Berndt and S. Sampath, 99–104. Materials Park OH, USA: ASM International.

    Google Scholar 

  • Neiser, R.A., M.F. Smith, and R.C. Dykhuizen. 1998. Oxidation in wire HVOF-sprayed steel. Journal of Thermal Spray Technology 7 (4): 537–545.

    Article  CAS  Google Scholar 

  • Nevgod, V.A., V.H. Kadyrov, and A. Khairutdinov. 1987a. Gas detonation apparatus. U.S. Patent 4 669 658.

    Google Scholar 

  • ———. 1987b. Gas detonation apparatus. U.S. Patent 4 687 135.

    Google Scholar 

  • Ni, L.Y., C. Liu, H. Huang, and C.G. Zhou. 2011. Thermal Cycling behavior of thermal barrier coatings with HVOF NiCrAlY bond coat. Journal of Thermal Spray Technology 20 (5): 1133–1138.

    Article  CAS  Google Scholar 

  • Niemi, K., P. Vuoristo, and T. Mantyla. 1994. Properties of alumina-based coatings deposited by plasma spray and detonation gun spray processes. Journal of Thermal Spray Technology 3 (2): 199–203.

    Article  CAS  Google Scholar 

  • Nikolaev, Y.A., A.A. Vasil'ev, and B.Yu. Ul'yanitskii. 2003. Gas detonation and its application in engineering and technologies (review). Combustion, Explosion, and Shock Waves 39 (4): 382–410.

    Article  Google Scholar 

  • Nylén, P., and R. Bandyopadhyay. 2000. A computational fluid dynamic analysis of gas and particle flow in flame spraying. In Thermal Spray: Surface Engineering via Applied Research, ed. C.C. Berndt, 237–244. Materials Park, Ohio, USA: ASM International®.

    Google Scholar 

  • Oberkampf, W.L., and M. Talpallikar. 1994. Analysis of a high velocity oxygen-fuel (HVOF). In Proceedings of 7th. National Thermal Spray Conf., Boston, MA, 381–392.

    Google Scholar 

  • ———. 1996a. Analysis of a high velocity oxygen-fuel (HVOF) thermal spray torch part1: Numerical simulation. Journal of Thermal Spray Technology 5 (1): 53–61.

    Article  CAS  Google Scholar 

  • ———. 1996b. Analysis of a high velocity oxygen-fuel (HVOF) thermal spray torch part 2: Computational results. Journal of Thermal Spray Technology 5 (1): 62–68.

    Article  CAS  Google Scholar 

  • Oliker, V.E., E.F. Grechishkin, V.V. Polotai, M.G. Loskutov, and I.I. Timofeeva. 2004. Influence of the structure and properties of WC-Co alloy powders on the structure and wear resistance of detonation coatings. Powder Metallurgy and Metal Ceramics 43 (5–6): 258–264.

    Article  CAS  Google Scholar 

  • Oliker, V.E., V.L. Sirovatka, I.I. Timofeeva, E.F. Grechishkin, and T. Ya Gridasova. 2005. Effects of properties of titanium aluminide powders and detonation spraying conditions on phase and structure formation in coatings. Powder Metallurgy and Metal Ceramics 44 (9–10): 472–480.

    Article  CAS  Google Scholar 

  • Oliker, V.E., V.L. Sirovatka, I.I. Timofeeva, T. Ya Gridasova, and Ye F. Hrechyshkin. 2006. Formation of detonation coatings based on titanium aluminide alloys and aluminium titanate ceramic sprayed from mechanically alloyed powders Ti—Al. Surface & Coatings Technology 200: 3573–3581.

    Article  CAS  Google Scholar 

  • Oliker, V.E., M.Yu. Barabash, E.F. Grechishkin, I.I. Timofeeva, and T. Ya Gridasova. 2007a. High-temperature air oxidation based on eutectic (β-NiAl + γ- and NiAl) Intermetallide. Powder Metallurgy and Metal Ceramics 46 (3–4): 175–181.

    Article  CAS  Google Scholar 

  • Oliker, V.E., A.A. Pritulyak, V.L. Syrovatka, E.F. Grechishkin, and T. Ya Gridasova. 2007b. Formation and high-temperature oxidation of thermal-barrier coatings with Ti–Al–Cr binding layer. Powder Metallurgy and Metal Ceramics 46 (9–10): 483–491.

    Article  CAS  Google Scholar 

  • Otsubo, F., H. Era, T. Uchida, and K. Kishitake. 2000. Properties of Cr3C2-NiCr cermet coating sprayed by high power plasma and high velocity oxy-fuel processes. Journal of Thermal Spray Technology 9 (4): 499–504.

    Article  CAS  Google Scholar 

  • Ozdemir, I., I. Hamanaka, Y. Tsunekawa, and M. Okumiya. 2005. In-process exothermic reaction in high-velocity oxyfuel and plasma spraying with SiO2/Ni/Al-Si-mg composite powder. Journal of Thermal Spray Technology 14 (3): 321–329.

    Article  CAS  Google Scholar 

  • Panossian, Z., L. Mariaca, M. Morcillo, S. Flores, J. Rocha, J.J. Pen, F. Herrera, F. Corvo, M. Sanchez, O.T. Rincon, G. Pridybailo, and J. Simancas. 2005. Steel cathodic protection afforded by zinc, aluminium and zinc/aluminium alloy coatings in the atmosphere. Surface & Coatings Technology 190: 244–248.

    Article  CAS  Google Scholar 

  • Pant, Bharat K., Vivek Arya, and B.S. Mann. 2007. Development of low-oxide MCrAlY coatings for gas turbine applications. Journal of Thermal Spray Technology 16 (2): 275–280.

    Article  CAS  Google Scholar 

  • Parco, M., L. Zhao, J. Zwick, K. Bobzin, and E. Lugscheider. 2006. Investigation of HVOF spraying on magnesium alloys. Surface & Coatings Technology 201: 3269–3274.

    Article  CAS  Google Scholar 

  • Paredes, R.S.C., S.C. Amico, and A.S.C.M. d’Oliveira. 2006. The effect of roughness and pre-heating of the substrate on the morphology of aluminium coatings deposited by thermal spraying. Surface & Coatings Technology 200: 3049–3055.

    Article  CAS  Google Scholar 

  • Park, S.Y., M.C. Kim, and C.G. Park. 2007. Mechanical properties and microstructure evolution of the nano WC–Co coatings fabricated by detonation gun spraying with post heat treatment. Materials Science and Engineering A 449–451: 894–897.

    Article  CAS  Google Scholar 

  • Perry, J.M., A. Neville, and T. Hodgkiess. 2002. A comparison of the corrosion behaviour of WC-Co-Cr and WC-Co HVOF thermally sprayed coatings by in situ atomic force microscopy (AFM). Journal of Thermal Spray Technology 11 (4): 536–541.

    Article  CAS  Google Scholar 

  • Petrovicova, E., R. Knight, L.S. Schadler, and T.E. Twardowski. 2000. Nylon 11/Silica nanocomposite coatings applied by the HVOF process. II. mechanical and barrier properties. Journal of Applied Polymer Science 78: 2272–2289.

    Article  CAS  Google Scholar 

  • Planche, M.P., H. Liao, B. Normand, and C. Coddet. 2005. Relationships between NiCrBSi particle characteristics and corresponding coating properties using different thermal spraying processes. Surface & Coatings Technology 200: 2465–2473.

    Article  CAS  Google Scholar 

  • Podchernyaeva, I.A., V.V. Shchepetov, A.D. Panasyuk, V.Yu. Gromenko, D.V. Yurechko, and V.P. Katashinskii. 2003. Refractory and ceramic materials structure and properties of wear-resistant detonation coatings based on titanium carbonitride. Powder Metallurgy and Metal Ceramics 42 (9–10): 497–502.

    Article  CAS  Google Scholar 

  • Pogrebnyak, A.D., Yu.N. Tyurin, Yu.F. Ivanov, A.P. Kobzev, O.P. Kul’ment’eva, and M.I. Il’yashenko. 2000. Preparation and investigation of the structure and properties of Al2O3 plasma-detonation coatings. Technical Physics Letters 26 (11): 960–963.

    Article  CAS  Google Scholar 

  • Poirier, T., A. Vardelle, M.F. Elchinger, M. Vardelle, A. Grimaud, and H. Vesteghem. 2003. Deposition of nanoparticle suspensions by aerosol flame spraying: Model of the spray and impact processes. Journal of Thermal Spray Technology 12 (3): 393–402.

    Article  Google Scholar 

  • Poorman, R.M., H.B. Sargent, and R. Lamprey. 1955. Method and apparatus utilizing detonation waves for spraying and other purposes’. US patent 2 714 563.

    Google Scholar 

  • Rajasekaran, B.S., S. Ganesh Sundara Raman, V. Joshi, and G. Sundararajan. 2006. Effect of detonation gun sprayed Cu–Ni–In coating on plain fatigue and fretting fatigue behavior of Al–Mg–Si alloy. Surface & Coatings Technology 201: 1548–1558.

    Article  CAS  Google Scholar 

  • Rajasekaran, B.S., S. Ganesh Sundara Ramana, V. Joshi, and G. Sundararajan. 2008. Performance of plasma sprayed and detonation gun sprayed Cu–Ni–In coatings on Ti–6Al–4V under plain fatigue and fretting fatigue loading. Materials Science and Engineering A 479: 83–92.

    Article  CAS  Google Scholar 

  • Rajasekaran, B., G. Mauer, and R. Vaßen. 2011. Enhanced characteristics of HVOF-sprayed MCrAlY bond coats for TBC applications. Journal of Thermal Spray Technology 20 (6): 1209–1216.

    Article  CAS  Google Scholar 

  • Ramadan, K., and P. Barry Butler. 2004. Analysis of particle dynamics and heat transfer in detonation thermal spraying systems. Journal of Thermal Spray Technology 13 (2): 248–264.

    Article  CAS  Google Scholar 

  • Rani, A., N. Bala, and C.M. Gupta. 2017. Accelerated hot corrosion studies of D-gun-sprayed Cr2O3–50% Al2O3 coating on boiler steel and Fe- based Superalloy. Oxidation of Metals 88: 621–648.

    Article  CAS  Google Scholar 

  • Richer, P., M. Yandouzi, L. Beauvais, and B. Jodoin. 2010. Oxidation behaviour of CoNiCrAlY bond coats produced by plasma. HVOF and cold gas dynamic spraying, Surface & Coatings Technology 204: 3962–3974.

    Article  CAS  Google Scholar 

  • Roberson, J.A., and C.T. Crowe. 1997. Engineering fluid dynamics. 6th ed. New York: Wiley.

    Google Scholar 

  • Rodriguez, R.M.H.P., R.S.C. Paredes, S.H. Wido, and A. Calixto. 2007. Comparison of aluminium coatings deposited by flame spray and by electric arc spray. Surface & Coatings Technology 202: 172–179.

    Article  CAS  Google Scholar 

  • Roy, G.D., S.M. Frolov, A.A. Borisov, and D.W. Netzer. 2004. Pulse detonation propulsion: Challenges, current status, and future perspective. Progress in Energy and Combustion Science 30: 545–672.

    Article  Google Scholar 

  • Sadeghimeresht, E., N. Markocsan, and P. Nylen. 2016. A comparative study on Ni-based coatings prepared by HVAF, HVOF, and APS methods for corrosion protection applications. Journal of Thermal Spray Technology 25 (8): 1604–1616.

    Article  CAS  Google Scholar 

  • Saeidi, S., K.T. Voisey, and D.G. McCartney. 2011. Mechanical properties and microstructure of VPS and HVOF CoNiCrAlY coatings. Journal of Thermal Spray Technology 20 (6): 1231–1243.

    Article  CAS  Google Scholar 

  • Sainz, M.A., M.I. Osendi, and P. Miranzo. 2008. Protective Si-Al-O-Y glass coatings on stainless steel in situ prepared by combustion flame spraying. Surface & Coatings Technology 202: 1712–1717.

    Article  CAS  Google Scholar 

  • Sakaki, K., and Y. Shimizu. 2001. Effect of the increase in the entrance convergent section length of the gun nozzle on the high-velocity oxygen fuel and cold spray process. Journal of Thermal Spray Technology 10 (3): 487.

    Article  CAS  Google Scholar 

  • Sakata, K., K. Nakano, H. Miyahara, Y. Matsubara, and K. Ogi. 2007. Microstructure control of thermally sprayed co-based self-fluxing alloy coatings by diffusion treatment. Journal of Thermal Spray Technology 16 (5–6): 991–997.

    Article  CAS  Google Scholar 

  • Saladi, S., J.V. Menghani, and S. Prakash. 2015. Characterization and evaluation of cyclic hot corrosion resistance of detonation-gun sprayed Ni-5Al coatings on Inconel-718. Journal of Thermal Spray Technology 24 (5): 778–788.

    Article  CAS  Google Scholar 

  • Saravanan, P., V. Selvarajan, D.S. Rao, S.V. Joshi, and G. Sundararajan. 2000. Influence of process variables on the quality of detonation gun sprayed alumina coatings. Surface and Coatings Technology 123: 44–54.

    Article  CAS  Google Scholar 

  • Schwetzke, R., and H. Kreye. 1999. Microstructure and properties of tungsten carbide coatings sprayed with various high-velocity oxygen fuel spray systems. Journal of Thermal Spray Technology 8 (3): 433–439.

    Article  CAS  Google Scholar 

  • Scrivani, A., U. Bardi, L. Carrafiello, A. Lavacchi, F. Niccolai, et al. 2003. A comparative study of high velocity oxygen fuel, vacuum plasma spray, and axial plasma spray for the deposition of CoNiCrAlY bond coat alloy. Journal of Thermal Spray Technology 12 (4): 504–507.

    Article  CAS  Google Scholar 

  • Semenov, S.Y., and B.M. Cetegen. 2002. Experiments and modeling of the deposition of nano-structured alumina–titania coatings by detonation waves. Materials Science and Engineering A335: 67–81.

    Article  CAS  Google Scholar 

  • Senderowski, C., and Z. Bojar. 2008. Gas detonation spray forming of Fe–Al coatings in the presence of interlayer. Surface & Coatings Technology 202: 3538–3548.

    Article  CAS  Google Scholar 

  • ———. 2009. Influence of detonation gun spraying conditions on the quality of Fe-Al intermetallic protective coatings in the presence of NiAl and NiCr interlayers. Journal of Thermal Spray Technology 18 (3): 435–447.

    Article  CAS  Google Scholar 

  • Sidhu, T.S., S. Prakash, and R.D. Agrawal. 2005. Studies on the properties of high-velocity oxy-fuel thermal spray coatings for higher temperature applications. Materials Science 41 (6): 805–823.

    Article  CAS  Google Scholar 

  • Sidhu, H.S., B.S. Sidhu, and S. Prakash. 2006. Comparative characteristic and erosion behavior of NiCr coatings deposited by various high-velocity Oxyfuel spray processes Journal of. Materials Engineering and Performance 15 (6): 699–704.

    Article  CAS  Google Scholar 

  • Sidhu, T.S., S. Prakash, and R.D. Agrawal. 2006a. Characterisation of NiCr wire coatings on Ni- and Fe-based superalloys by the HVOF process. Surface & Coatings Technology 200: 5542–5549.

    Article  CAS  Google Scholar 

  • ———. 2006b. Characterizations and hot corrosion resistance of Cr3C2-NiCr coating on Ni-base superalloys in an aggressive environment. Journal of Thermal Spray Technology 15 (4): 811–816.

    Article  CAS  Google Scholar 

  • ———. 2006c. Hot corrosion resistance of high-velocity oxyfuel sprayed coatings on a nickel-base superalloy in molten salt environment. Journal of Thermal Spray Technology 15 (3): 387–399.

    Article  CAS  Google Scholar 

  • Sidhu, H.S., B.S. Sidhu, and S. Prakash. 2007a. Hot corrosion behavior of HVOF sprayed coatings on ASTM SA213-T11 steel. Journal of Thermal Spray Technology 16 (3): 349–354.

    Article  CAS  Google Scholar 

  • Sidhu, T.S., A. Malik, S. Prakash, and R.D. Agrawal. 2007b. Oxidation and hot corrosion resistance of HVOF WC-NiCrFeSiB coating on Ni- and Fe-based superalloys. Journal of Thermal Spray Technology 16 (5-6): 844–849.

    Article  CAS  Google Scholar 

  • Smith, R.W. 1991. Plasma spray processing… The state of the art and future. From a surface to a materials processing technology. In Proceedings of the 2nd Plasma Technik symposium, vol. 1, 13–38. Wohlen, Switzerland: Plasma Technik.

    Google Scholar 

  • Sobiecki, J.R., J. Ewertowshi, T. Babul, and T. Wierzchon. 2004. Properties of alumina coatings produced by gas-detonation method. Surface and Coatings Technology 180–181: 556–555.

    Article  CAS  Google Scholar 

  • Srivatsan, V.R., and A. Dolatabadi. 2006. Simulation of particle-shock interaction in a high velocity oxygen fuel process. Journal of Thermal Spray Technology 15 (4): 481–487.

    Article  CAS  Google Scholar 

  • Stahr, C.C., S. Saaro, L.-M. Berger, J. Dubsky, K. Neufuss, and M. Hermann. 2006. Dependence of the stabilization of α-alumina on the spray process. Journal of Thermal Spray Technology 16 (5–6): 822–830.

    Google Scholar 

  • Stanisic, J., D. Kosikowski, and P.S. Mohanty. 2006. High-speed visualization and plume characterization of the hybrid spray process. Journal of Thermal Spray Technology 15 (4): 750–758.

    Article  CAS  Google Scholar 

  • Stiegler, N., D. Bellucci, G. Bolelli, V. Cannillo, R. Gadow, A. Killinger, L. Lusvarghi, and A. Sola. 2012. High-velocity suspension flame sprayed (HVSFS) hydroxyapatite coatings for biomedical applications. Journal of Thermal Spray Technology 21 (2): 275–287.

    Article  CAS  Google Scholar 

  • Sundararajan, T., S. Kuroda, and F. Abe. 2004a. Steam oxidation of 80Ni-20Cr high-velocity oxyfuel coatings on 9Cr-1Mo steel: Diffusion-induced phase transformations in the substrate adjacent to the coating. Metallurgical and Materials Transactions A 36A: 2165–2174.

    Google Scholar 

  • ———. 2004b. Effect of thermal spray on the microstructure and adhesive strength of high-velocity oxy-fuel–sprayed Ni-Cr coatings on 9Cr-1Mo steel. Metallurgical and Materials Transactions A 35A: 3187–3199.

    Article  CAS  Google Scholar 

  • Sundararajan, G., D. Sen, and G. Sivakumar. 2005. The tribological behavior of detonation sprayed coatings: The importance of coating process parameters. Wear 258: 377–391.

    Article  CAS  Google Scholar 

  • Sundararajan, G., G. Sivakumar, D. Sen, D. Srinivasa Rao, and G. Ravichandra. 2010. The tribological behaviour of detonation sprayed TiMo(CN) based cermet coatings. International Journal of Refractory Metals & Hard Materials 28: 71–81.

    Article  CAS  Google Scholar 

  • Suresh, Babu P., D.S. Rao, G.V.N. Rao, and G. Sundararajan. 2007. Effect of feedstock size and its distribution on the properties of detonation sprayed coatings. Journal of Thermal Spray Technology 16 (2): 281–290.

    Article  CAS  Google Scholar 

  • Suresh, Babu P., B. Basu, and G. Sundararajan. 2008. Processing–structure–property correlation and decarburization phenomenon in detonation sprayed WC–12Co coatings. Acta Materialia 56: 5012–5026.

    Article  CAS  Google Scholar 

  • Tatsuya, N., K. Izozou, M. Haruyuki, and S. Yasuhi. 1988. Improved glaze application for coating and flame spraying and glaze. Japanese patent JP63277583, 15-11-1988.

    Google Scholar 

  • Tawfik, H.H., and F. Zimmerman. 1997. Mathematical modelling of the gas and powder flow in HVOF systems. Journal of Thermal Spray Technology 6 (3): 345–352.

    Article  CAS  Google Scholar 

  • Taylor, T.A., and J.K. Knapp. 1995. Dispersion-strengthened modified MCrAlY coatings produced by reactive deposition. Surface and Coatings Technology 76-77: 34–40.

    Article  CAS  Google Scholar 

  • Thermal Spraying, Practice, Theory and Application. 1985. American welding society. Miami.

    Google Scholar 

  • Thiele, S., R.B. Heimann, L.-M. Berger, M. Herrmann, M. Nebelung, T. Schnick, B. Wielage, and P. Vuoristo. 2002. Microstructure and properties of thermally sprayed silicon nitride-based coatings. Journal of Thermal Spray Technology 11 (2): 218–225.

    Article  CAS  Google Scholar 

  • Thorpe, M.L., and H.J. Richter. 1992. A pragmatic analysis and comparison of HVOF processes. Journal of Thermal Spray Technology 1 (2): 161–170.

    Article  CAS  Google Scholar 

  • Tikkanen, J., K.A. Gross, C.C. Berndt, V. Pitkatnen, J. Keskinen, S. Raghu, M. Rajala, and J. Karthikeyan. 1997. Characteristics of the liquid flame spray process. Surface and Coatings Technology 90: 210–216.

    Article  CAS  Google Scholar 

  • Tillmann, W., E. Vogli, and J. Nebel. 2007. Development of detonation flame sprayed Cu-Base coatings containing large ceramic particles. Journal of Thermal Spray Technology 16 (5–6): 751–758.

    Article  CAS  Google Scholar 

  • Tillmann, W., C. Schaak, L. Hagen, G. Mauer, and G. Matthäus. 2018. Internal diameter coating processes for bond coat (HVOF) and thermal barrier coating (APS) systems. Journal of Thermal Spray Technology. Published online: 30-10-2018.

    Google Scholar 

  • Torres, B., P. Rodrigo, M. Campo, A. Urena, and J. Rams. 2009. Oxy-acetylene flame thermal spray of Al/SiCp composites with high fraction of re-enforcements. Journal of Thermal Spray Technology 18 (4): 642–651.

    Article  CAS  Google Scholar 

  • Totemeier, T.C. 2005. Effect of high-velocity oxygen-fuel thermal spraying on the physical and mechanical properties of type 316 stainless steel. Journal of Thermal Spray Technology 14 (3): 369–372.

    Article  CAS  Google Scholar 

  • Totemeier, T.C., R.N. Wright, and W.D. Swank. 2002. Microstructure and stresses in HVOF sprayed Iron aluminide coatings. Journal of Thermal Spray Technology 11 (3): 400–408.

    Article  CAS  Google Scholar 

  • ———. 2003. Mechanical and physical properties of high-velocity oxy-fuel–sprayed Iron aluminide coatings. Metallurgical and Materials Transactions A 34A: 2223–2231.

    Article  CAS  Google Scholar 

  • ———. 2004. Residual stresses in high-velocity oxy-fuel metallic coatings. Metallurgical and Materials Transactions A 35A: 1807–1814.

    Article  CAS  Google Scholar 

  • Trompetter, W.J., M. Hyland, P. Munroe, and A. Markwitz. 2005. Evidence of mechanical interlocking of NiCr particles thermally sprayed onto Al substrates. Journal of Thermal Spray Technology 14 (4): 524–529.

    Article  CAS  Google Scholar 

  • Trompetter, W., M. Hyland, D. McGrouther, P. Munroe, and A. Markwitz. 2006. Effect of substrate hardness on splat morphology in high-velocity thermal spray coatings. Journal of Thermal Spray Technology 15 (4): 663–669.

    Article  CAS  Google Scholar 

  • ———. 2010. The effect of substrate surface oxides on the bonding of NiCr alloy particles HVAF thermally sprayed onto aluminum substrates. Journal of Thermal Spray Technology 19 (5): 1024–1031.

    Article  CAS  Google Scholar 

  • Venkataraman, R., B. Ravikumar, R. Krishnamurthy, and D.K. Das. 2006. A study on phase stability observed in as sprayed Alumina-13 wt.% Titania coatings grown by detonation gun and plasma spraying on low alloy steel substrates. Surface & Coatings Technology 201: 3087–3095.

    Article  CAS  Google Scholar 

  • Vijaya, Babu M., R. Krishna Kumar, O. Prabhakar, and N. Gowri Shank. 1996a. Simultaneous optimization of flame spraying process parameters for high quality molybdenum coatings using Taguchi methods. Surface & Coatings Technology 79: 276–288.

    Article  Google Scholar 

  • Vijaya, Babu M., R. Krishna Kumar, O. Prabhakar, and N. Gowri Shankar. 1996b. Simultaneous optimization of flame spraying process parameters for high quality molybdenum coatings using Taguchi methods. Surface and Coatings Technology 79: 276–288.

    Article  Google Scholar 

  • Villiers Lovelock, H.L., P.W. Richter, J.M. Benson, and P.M. Young. 1998. Parameter study of HP/HVOF deposited WC-Co coatings. Journal of Thermal Spray Technology 7 (1): 97–107.

    Article  Google Scholar 

  • Voyer, Joel. 2013. Flexible and conducting metal-fabric composites using the flame spray process for the production of Li-ion batteries. Journal of Thermal Spray Technology 22 (5): 699–709.

    Article  CAS  Google Scholar 

  • Wang, Y. 2004. Nano- and submicron-structured sulfide self-lubricating coatings produced by thermal spraying. Tribology Letters 17 (2): 165–168.

    Article  CAS  Google Scholar 

  • Wang, J., Zhang Li, B. Sun, and Y. Zhou. 2000. Study of the Cr3C2-NiCr detonation spray coating. Surface and Coatings Technology 130: 69–73.

    Article  CAS  Google Scholar 

  • Wang, Jun, Baode Sun, Qixin Guo, Mitsuhiro Nishio, and Hiroshi Ogawa. 2002. Wear resistance of a Cr3C2-NiCr detonation spray coating. Journal of Thermal Spray Technology 11 (2): 261–265.

    Article  CAS  Google Scholar 

  • Wang, J., Baode Sun, Qixin Guo, Mitsuhiro Nishio, and Hiroshi Ogawa. 2002b. Wear resistance of a Cr3C2-NiCr detonation spray coating. Journal of Thermal Spray Technology 11 (2): 261–265.

    Article  CAS  Google Scholar 

  • Wang, T.-G., S.-S. Zhao, W.-G. Hua, J. Gong, and C. Sun. 2009. Design of a separation device used in detonation gun spraying system and its effects on the performance of WC–Co coatings. Surface & Coatings Technology 203: 1637–1644.

    Article  CAS  Google Scholar 

  • Wang, T.-G., S.-S. Zhao, W.-G. Hua, J.-B. Li, J. Gong, and C. Sun. 2010. Estimation of residual stress and its effects on the mechanical properties of detonation gun sprayed WC–Co coatings. Materials Science and Engineering A 527 (3): 454–461.

    Article  CAS  Google Scholar 

  • Wang, X., Q. Song, and Z. Yu. 2016. Numerical investigation of combustion and flow dynamics in a high velocity oxygen-fuel thermal spray gun. Journal of Thermal Spray Technology 25 (3): 441–450.

    Article  CAS  Google Scholar 

  • Wielage, B., A. Wank, H. Pokhmurska, T. Grund, Ch. Rupprecht, G. Reisel, and E. Friesen. 2006. Development and trends in HVOF spraying technology. Surface & Coatings Technology 201: 2032–2037.

    Article  CAS  Google Scholar 

  • Wigren, J., et al. 1996. On-line diagnostics of traditional flame spraying as a tool to increase reproducibility. In Proceedings of National Thermal Spray Conference, ed. C.C. Berndt, 675–681. Materials Park, OH, USA: ASM International.

    Google Scholar 

  • Withy, B.P., M.M. Hyland, and B.J. James. 2008. The effect of surface chemistry and morphology on the properties of HVAF PEEK single splats. Journal of Thermal Spray Technology 17 (5–6): 631–636.

    Article  CAS  Google Scholar 

  • Wood, R.J.K., B.G. Mellor, and M.L. Binfield. 1997. Sand erosion performance of detonation gun applied tungsten carbide/cobalt-chromium coatings. Wear 211: 70–83.

    Article  CAS  Google Scholar 

  • Wu, Y.N., F.H. Wang, W.G. Hua, J. Gong, C. Sun, and L.S. Wen. 2003. Oxidation behavior of thermal barrier coatings obtained by detonation spraying. Surface and Coatings Technology 166: 189–194.

    Article  CAS  Google Scholar 

  • Wu, Y.N., P.L. Ke, Q.M. Wang, C. Sun, and F.H. Wang. 2004. High temperature properties of thermal barrier coatings obtained by detonation spraying. Corrosion Science 46: 2925–2935.

    Article  CAS  Google Scholar 

  • Wu, T., S. Kuroda, J. Kawakita, K. Katanoga, and R. Reed. 2006. Processing and properties of titanium coatings produced by warm spraying. In Thermal spray: Building on 100 years of success, ed. B. Marple et al. ASM International, Materials Park, OH, USA. e-proceedings.

    Google Scholar 

  • Yang, G., H. Zu-kun, X. Xiaolei, and X. Gang. 2001. Formation of molybdenum boride cermet coating by the detonation spray process. Journal of Thermal Spray Technology 10 (3): 456–460.

    Article  Google Scholar 

  • Yang, Y.-M., H. Liao, and C. Coddet. 2002. Simulation and application of a HVOF process for MCrAlY thermal spraying. Journal of Thermal Spray Technology 11 (1): 36–43.

    Article  Google Scholar 

  • Yang, G.-J., C.-J. Li, and Y.-Y. Wang. 2005. Phase formation of Nano-TiO2 particles during flame spraying with liquid feedstock. Journal of Thermal Spray Technology 14 (4): 480–486.

    Article  CAS  Google Scholar 

  • Yasunari, Ishikawa, Seiji Kuroda, and Jin Kawakita. 2007. Yukihiro Sakamoto, Matsufumi Takaya, sliding wear properties of HVOF sprayed WC-20%Cr3C2-7%Ni cermet coatings. Surface & Coatings Technology 201: 4718–4727.

    Article  CAS  Google Scholar 

  • Yilbas, B.S., and A.F.M. Arif. 2007. Residual stress analysis for HVOF diamalloy 1005 coating on Ti–6Al–4V alloy. Surface & Coatings Technology 202: 559–568.

    Article  CAS  Google Scholar 

  • Yilbas, B.S., M. Khalid, and B.J. Abdul-Aleem. 2003. Corrosion behavior of HVOF coated sheets. Journal of Thermal Spray Technology 12 (4): 572–575.

    Article  CAS  Google Scholar 

  • Yuan, X., H. Wang, G. Hou, and B. Zha. 2006. Numerical modelling of a low temperature high velocity air fuel spraying process with injection of liquid and metal particles. Journal of Thermal Spray Technology 15 (3): 413–421.

    Article  CAS  Google Scholar 

  • Yuan, F.H., Z.X. Chen, Z.W. Huang, Z.G. Wang, and S.J. Zhu. 2008. Oxidation behavior of thermal barrier coatings with HVOF and detonation-sprayed NiCrAlY bondcoats. Corrosion Science 50: 1608–1617.

    Article  CAS  Google Scholar 

  • Yuuzou, Kawahara. 2007. Application of high temperature corrosion-resistant materials and coatings under severe corrosive environment in waste-to-energy boilers. Journal of Thermal Spray Technology 16 (2): 202–213.

    Article  CAS  Google Scholar 

  • Zhang, T., Z. Qiu, Y. Bao, G.T. Gawne, and K. Zhang. 2000. Temperature profile and thermal stress analysis of plasma sprayed glass-composite coatings. In Thermal spray: Surface engineering via applied research, ed. C.C. Berndt, 355–361. ASM International, Materials Park, OH, USA.

    Google Scholar 

  • Zhang, Yu-Juan, Xiao-Feng Sun, Heng-Rong Guana, and Zhuang-Qi Hua. 2002. 1050°C isothermal oxidation behavior of detonation gun sprayed NiCrAlY coating. Surface and Coatings Technology 161: 302–305.

    Article  CAS  Google Scholar 

  • Zhang, Y.J., X.F. Sun, Y.C. Zhang, T. Jin, C.G. Deng, H.R. Guan, and Z.Q. Hu. 2003. A comparative study of DS NiCrAlY coating and LPPS NiCrAlY coating. Materials Science and Engineering A 360: 65–69.

    Article  CAS  Google Scholar 

  • Zhang, G., H. Liao, H. Yu, S. Costil, S.G. Mhaisalkar, J.-M. Bordes, and C. Coddet. 2006. Deposition of PEEK coatings using a combined flame spraying–laser remelting process. Surface & Coatings Technology 201: 243–249.

    Article  CAS  Google Scholar 

  • Zhang, Z., B. Liang, and H. Guo. 2014. Interface microstructure and Tribological properties of flame spraying NiCr/La2O3 coatings. Journal of Thermal Spray Technology 23 (8): 1404–1412.

    Article  CAS  Google Scholar 

  • Zhu, J.L., J.H. Huang, H.T. Wang, J.L. Xu, X.K. Zhao, and H. Zhang. 2008. In-situ synthesis and microstructure of TiC–Fe36Ni composite coatings by reactive detonation-gun spraying. Materials Letters 62: 2009–2012.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Nomenclature

Nomenclature

Units are indicated in parentheses; when no units are indicated, the parameter is dimensionless.

1.1 Latin Alphabet

a i :

local sound velocity, \( {a}_i=\sqrt{\gamma \rho /{\rho}_g} \) (m/s)

A :

oxidizer volume or mass (m3 or kg)

A i :

cross-sectional area perpendicular to the direction of the flow (m2)

A t :

throat area (m2)

D :

detonation wave velocity (m/s)

F :

fuel volume or mass (m3 or kg)

F/A :

fuel to oxidizer molar ratio

h i :

enthalpy (J/kg)

\( {\dot{m}}_{O_2} \) :

oxygen gas feed rate (kg/s)

M a :

Mach number, Ma = vg/ai

p :

pressure (Pa)

p t :

gas pressure at the throat (Pa)

P F :

power dissipated in the flame (kW)

q :

chemical energy release at constant pressure (J/kg)

Q :

Gas flow rate (slm)

E D :

specific energy of detonation (J)

R :

perfect gas constant (J/K.kg)

S t :

stoichiometric factor \( {S}_t={Q}_{O_2}/{\left({Q}_{O_2}\right)}_{St.} \)

R u :

universal gas constant (8.32 J/K.mole)

R , :

flame richness ratio R, = (F/A)/(F/A)St.

t c :

detonation cycle duration time (s)

T g :

gas temperature (K)

T m :

melting temperature (K)

T p :

particle temperature (K)

T t :

temperature at the throat (K)

u b :

burned gas velocity (m/s)

u u :

unburned gas velocity (m/s)

v f :

flame velocity (m/s)

v g :

g velocity (m/s)

1.2 Greek Alphabet

b :

burned gases (in the immediate vicinity behind the front)

g :

gas

p :

particle

t :

throat

u :

unburned gas (before the detonation wave front)

1.3 Subscripts

Δt i :

characteristic time intervals of a detonation (s)

ϕ :

dummy variable

ϕ’ :

time- (or Reynolds) averaged dumb variable

ϕ” :

density-averaged dumb variable

γ :

specific heats ratio γ = cp/cv

ρ g :

gas mass density (kg/m3)

ρ p :

particle mass density (kg/m3)

ρ t :

gas mass density at the throat (kg/m3)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boulos, M.I., Fauchais, P.L., Heberlein, J.V.R. (2021). Combustion Spraying. In: Thermal Spray Fundamentals. Springer, Cham. https://doi.org/10.1007/978-3-030-70672-2_7

Download citation

Publish with us

Policies and ethics