Skip to main content

Genetics and Genomics of Cottonseed Oil

  • Chapter
  • First Online:
Oil Crop Genomics

Abstract

The Gossypium genus consists of about 50 diploid species distributed in 8 genome groups (A–G and K) and 7 known tetraploid species derived from the fusion of the A and D genomes. Recently, the genomes of allotetraploid cotton and its progenitors have been sequenced. Cotton (Gossypium sp.) is grown primarily for fiber and to a lesser extent its oilseed. The phenolic compound, gossypol, needs to be removed to make cottonseed oil edible. The oil composition is approximately two-thirds unsaturated to one-third saturated fatty acids. Understanding the genetic network of oil production and genes related to oil traits is important to develop a healthy edible product to fight global food scarcity. Studies pertaining to structural variation in genome and positional cloning have increased with the availability of genome sequence, enormous -omics data, and current low-cost next-generation sequencing techniques. Further, with the availability of functional verification tools like RNA-Seq and gene editing via RNAi or CRISPR/CAS9, one can effectively decipher the function of gene/s and their role in complex biosynthesis process of oil production. Whole-genome sequencing will serve as a foundation in developing cotton germplasm that can improve cottonseed oil without disturbing lint yield components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelraheem A, Liu F, Song M, Zhang JF (2017) A meta-analysis of quantitative trait loci for abiotic and biotic stress resistance in tetraploid cotton. Mol Gen Genomics 292:1221–1235

    Article  CAS  Google Scholar 

  • Agarwal DK, Sing P, Mayee CD, Nita K (2002) Genetic improvement of cottonseed oil. Central Institute for Cotton Research Technical Bulletin 21:3–10

    CAS  Google Scholar 

  • An C, Jenkins JN, Wu J, Guo Y, McCarty JC (2010) Use of fiber and fuzz mutants to detect QTL for yield components, seed, and fiber traits of upland cotton. Euphytica 172:21–34

    Article  Google Scholar 

  • Auld DL, Bechere E (2018) Use of the naked-tufted mutant in Upland cotton to improve fiber quality, increase seed oil content, increase ginning efficiency, and reduce the cost of delinting. Euphytica 167:333–339

    Google Scholar 

  • Badigannavar A, Myers GO (2015) Genetic diversity, population structure, and marker-trait associations for seed quality traits in cotton (Gossypium hirsutum). J Genet 94:87–94

    Article  CAS  PubMed  Google Scholar 

  • Bao X, Katz S, Pollard M, Ohlrogge J (2002) Carbocyclic fatty acids in plants: biochemical and molecular genetic characterization of cyclopropane fatty acid synthesis of Sterculia foetida. PNAS 99:7172–7177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates PD (2012) The significance of different diacylgycerol synthesis pathways on plant oil composition and bioengineering. Front Plant Sci 3:147

    Article  PubMed  PubMed Central  Google Scholar 

  • Bell AA, Stipanovic RD (1977) The chemical composition, biological activity, and genetics of pigment glands in cotton. In: Proceeding of the Beltwide cotton production research conference, Jan. 10–12, Atlanta, pp 244–258

    Google Scholar 

  • Berardi LC, Goldblatt LA (1980) Gossypol. In: Liener IE (ed) Toxic constituents of plant foodstuffs, 2nd edn. Academic, New York, pp 183–237

    Google Scholar 

  • Blom JH, Lee KJ, Rinchard J, Dabrowski K, Ottobre J (2001) Reproductive efficiency and maternal-offspring transfer of gossypol in rainbow trout (Oncorhynchus mykiss) fed diets containing cottonseed meal. J Anim Sci 79(6):1533–1539

    Article  CAS  PubMed  Google Scholar 

  • Calhoun MC, Wan PJ, Kuhlmann SW, Baldwin BC Jr (2004) Variation in the nutrient and gossypol content of whole and processed cottonseed. Proceedings of the 2004 Mid-South Ruminant Nutrition Conference

    Google Scholar 

  • Campbell BT, Myers GO (2015) Quantitative genetics. In: Fang D, Percy R (eds) Cotton, Agron. Monogr. 57, 2nd edn. ASA, CSSA, and SSSA, Madison

    Google Scholar 

  • Campbell BT, Greene JK, Wu J, Jones DC (2014) Assessing the breeding potential of day-neutral converted racestock germplasm in the Pee Dee cotton germplasm enhancement program. Euphytica 195:453–465

    Article  Google Scholar 

  • Campbell BT, Chapman KD, Sturtevant D, Kennedy C, Horn P, Chee PW, Lubbers E, Meredith WR Jr, Johnson J, Fraser D, Jones DC (2016) Genetic analysis of cottonseed protein and oil in a diverse cotton germplasm. Crop Sci 56:2457–2464

    Article  Google Scholar 

  • Cherry JP, Leffler HR (1984) Seeds. In: Kohel RJ, Lewis CF (eds) Cotton. ASA, CSSA, and SSSA, Madison

    Google Scholar 

  • Cui Y, Liu Z, Zhao Y, Wang Y, Huang Y et al (2017a) Overexpression of heteromeric GhACCase subunits enhanced oil accumulation in Upland cotton. Plant Mol Biol Report 35:287–297

    Article  CAS  Google Scholar 

  • Cui Y, Zhao Y, Wang Y, Liu Z, Ijaz B et al (2017b) Genome-wide identification and expression analysis of the biotin carboxyl carrier subunits of heteromeric acetyl-CoA carboxylase in Gossypium. Front Plant Sci 8:624

    Article  PubMed  PubMed Central  Google Scholar 

  • Damaty SM, Hudson BJ (1975) Preparation of low-gossypol cottonseed flour. J Sci Food Agr 26:109–115

    Article  CAS  Google Scholar 

  • Du X, Huang G, He S, Yang Z, Sun G et al (2018a) Resequencing of 243 diploid cotton accessions based on an updated a genome identifies the genetic basis of key agronomic traits. Nat Genet 50:796–802

    Article  CAS  PubMed  Google Scholar 

  • Du X, Liu S, Sun J, Zhang G, Jia Y et al (2018b) Dissection of complicate genetic architecture and breeding perspective of cottonseed traits by genome-wide association study. BMC Genomics 19:451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eisele GR (1986) A perspective on gossypol ingestion in swine. Vet Hum Toxicol 28:118–122

    CAS  PubMed  Google Scholar 

  • Elahi N, Duncan RW, Stasolla C (2015) Decreased seed oil production in FUSCA3 Brassica napus mutant plants. Plant Phys Biochem 96:222–230

    Article  CAS  Google Scholar 

  • Gardner HK Jr, Hron RJ Sr, Vix HLE, Ridlehuber JM (1976) Process for producing an edible cottonseed protein concentrate. United States Patent, US3972861A

    Google Scholar 

  • Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A et al (2014) Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J 12:934–940

    Article  CAS  PubMed  Google Scholar 

  • Hess DC (1977) Genetic improvement of gossypol-free cotton varieties. Cereal Food World 22:98–103

    Google Scholar 

  • Hinze LL, Horn PJ, Kothari N, Dever JK, Frelichowski J et al (2015) Nondestructive measurements of cottonseed nutritional trait diversity in the US National Cotton Germplasm Collection. Crop Sci 55:770–782

    Article  CAS  Google Scholar 

  • Horn PJ, Neogi P, Tombokan X, Ghosh S, Campbell BT, Chapman KD (2011) Simultaneous quantification of oil and protein in cottonseed by low-field time-domain nuclear magnetic resonance. J Am Oil Chem Soc 88:1521–1529

    Article  CAS  Google Scholar 

  • Hovav R, Faigenboim-Doron A, Kadmon N, Hu G, Zhang X et al (2015) A transcriptome profile for developing seed of polyploid cotton. Plant Genome 8:1–15

    Article  CAS  Google Scholar 

  • Hu G, Hovav R, Grover CE, Faigenboim-Doron A, Kadmon N et al (2016) Evolutionary conservation and divergence of gene coexpression networks in Gossypium (cotton) seeds. Genome Biol Evol 8:3765–3783

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins JN, Wilson FD (1996) Host plant resistance. In: King EG, Phillips JR, Coleman RJ (eds) Cotton insects and mites: characterization and management. The Cotton Foundation, Memphis, pp 563–597

    Google Scholar 

  • Jenkins JN, Maxwell FG, Lafever HN (1966) The comparative preference of insects for glanded and glandless cottons. J Econ Entomol 59:352–356

    Article  Google Scholar 

  • Jiao X, Zhao X, Zhou XR, Green AG, Fan Y et al (2013) Comparative transcriptomic analysis of developing cotton cotyledons and embryo axis. PLoS One 8:e71756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson AR, Pearson JA, Shenstone FS, Fogerty AC, Giovanelli J (1967) The biosynthesis of cyclopropane and cyclopropene -fatty acids in plant tissues. Lipids 2:308–315

    Article  CAS  PubMed  Google Scholar 

  • Ke J, Wen TN, Nikolau BJ, Wurtele ES (2000) Coordinate regulation of the nuclear and plastidic genes coding for the subunits of the heteromeric acetyl-coenzyme A carboxylase. Plant Physiol 122:1057–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan FZ, Rehman SU, Abid MA, Malik W, Hanif CM, Bilal M, Qanmber G, Latif A, Ashraf J, Farhan U (2015) Exploitation of germplasm for plant yield improvement in cotton (Gossypium hirsutum L.). J Green Physiol Genet Genom 1:1–10

    Google Scholar 

  • Kim HL, Calhoun MC, Stipanovic RD (1996) Accumulation of gossypol enantiomers in ovine tissues. Comp Biochem Phys B 113:417–420

    Article  CAS  Google Scholar 

  • Kohel RJ (1978) Survey of Gossypium hirsutum L. germplasm collections for seed-oil percentage and seed characteristics. U.S. Dep. Agric. ARS-S 187

    Google Scholar 

  • Konishi T, Sasaki Y (1994) Compartmentalization of two forms of acetyl-CoA carboxylase in plants and the origin of their tolerance toward herbicides. PNAS 91:3598–3601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konishi T, Shinohara K, Yamada K, Sasaki Y (1996) Acetyl-CoA carboxylase in higher plants: most plants other than Gramineae have both the prokaryotic and the eukaryotic forms of this enzyme. Plant Cell Physiol 37:117–122

    Article  CAS  PubMed  Google Scholar 

  • Kothari N, Campbell BT, Dever JK, Hinze LL (2016) Combining ability and performance of cotton germplasm with diverse seed oil content. Crop Sci 56:19–29

    Article  CAS  Google Scholar 

  • Kothari NK, Dever J, Hinze L (2017) Combining abilities for seed oil and protein content in cotton. In: Proceeding of the Beltwide cotton conference, Dallas

    Google Scholar 

  • Lacape JM, Llewellyn D, Jacobs J, Arioli T, Becker D et al (2010) Meta-analysis of cotton fiber quality QTLs across diverse environments in a Gossypium hirsutum x G. barbadense RIL population. BMC Plant Biol 10:132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li F, Fan G, Wang K, Sun F, Yuan Y et al (2014) Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 46:567–572

    Article  CAS  PubMed  Google Scholar 

  • Li F, Fan G, Lu C, Xiao G, Zou C et al (2015) Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol 33:524–530

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Singh S, Green A (2000) Genetic modification of cottonseed oil using inverted-repeat gene-silencing techniques. Biochem Soc Trans 28:927–929

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Singh SP, Green AG (2002) High-stearic and high-oleic cottonseed oils produced by hairpin RNA-mediated post-transcriptional gene silencing. Plant Physiol 129:1732–1743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Liu F, Shan X, Zhang J, Tang S et al (2015a) Construction of a high-density genetic map and lint percentage and cottonseed nutrient trait QTL identification in upland cotton (Gossypium hirsutum L.). Mol Gen Genomics 290:1683–1700

    Article  CAS  Google Scholar 

  • Liu G, Mei H, Wang S, Li X, Zhu X et al (2015b) Association mapping of seed oil and protein contents in Upland cotton. Euphytica 205:637–645

    Article  CAS  Google Scholar 

  • Liu X, Zhao B, Zheng HJ, Hu Y, Lu G et al (2015c) Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites. Sci Rep 5:14139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu F, Zhao YP, Zhu HG, Zhu QH, Sun J (2017a) Simultaneous silencing of GhFAD2-1 and GhFATB enhances the quality of cottonseed oil with high oleic acid. J Plant Physiol 215:132–139

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Wu M, Zhang B, Shrestha P, Petrie J et al (2017b) Genetic enhancement of palmitic acid accumulation in cottonseed oil through RNAi down-regulation of ghKAS 2 encoding β-ketoacyl-ACP synthase II (KASII). Plant Biotechnol J 15:132–143

    Article  CAS  PubMed  Google Scholar 

  • Lusas EW, Jividen GM (1987) Glandless cottonseed: a review of the first 25 years of processing and utilization research. J Am Oil Chem Soc 64:839–854

    Article  CAS  Google Scholar 

  • Mayorga H, Gonzales J, Menchu JF, Rolz C (1975) Preparation of a low free gossypol cottonseed flour by dry and continuous processing. J Food Sci 40:1270–1274

    Article  CAS  Google Scholar 

  • McMichael SC (1959) Hopi cotton, a source of cottonseed free of gossypol pigments. Agron J 51:630–630

    Article  Google Scholar 

  • McMichael SC (1960) Combined effects of glandless genes gl2 and gl3 on pigment glands in the cotton plant. Agron J 52:385–386

    Article  Google Scholar 

  • Mendoza MS, Dubreucq B, Miquel M, Caboche M, Lepiniec L (2005) LEAFY COTYLEDON 2 activation is sufficient to trigger the accumulation of oil and seed-specific mRNAs in Arabidopsis leaves. FEBS Lett 579:4666–4670

    Article  CAS  Google Scholar 

  • Mu J, Tan H, Zheng Q, Fu F, Liang Y et al (2008) LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis. Plant Physiol 148:1042–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohlrogge JB, Jaworski JG (1997) Regulation of fatty acid synthesis. Annu Rev Plant Biol 48:109–136

    Article  CAS  Google Scholar 

  • Palle SR, Campbell LM, Pandeya D, Puckhaber L, Tollack LK et al (2013) RNAi-mediated ultra-low gossypol cottonseed trait: performance of transgenic lines under field conditions. Plant Biotechnol J 11:296–304

    Article  CAS  PubMed  Google Scholar 

  • Patel M, Jung S, Moore K, Powell G, Ainsworth C et al (2004) High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theor Appl Genet 108:1492–1502

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J et al (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492:423–427

    Article  CAS  PubMed  Google Scholar 

  • Pham AT, Lee JD, Shannon JG, Bilyeu KD (2010) Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait. BMC Plant Biol 10:195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pirtle IL, Kongcharoensuntorn W, Nampaisansuk M, Knesek JE, Chapman KD et al (2001) Molecular cloning and functional expression of the gene for a cotton Δ-12 fatty acid desaturase (FAD2). BBA-Gene Struct Exp 1522:122–129

    Article  CAS  Google Scholar 

  • Pouvreau B, Baud S, Vernoud V, Morin V, Py C et al (2011) Duplicate maize Wrinkled1 transcription factors activate target genes involved in seed oil biosynthesis. Plant Physiol 156:674–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puckhaber LS, Dowd MK, Stipanovic RD, Howell CR (2002) Toxicity of (+)-and (−)-gossypol to the plant pathogen, Rhizoctonia solani. J Agric Food Chem 50:7017–7021

    Article  CAS  PubMed  Google Scholar 

  • Quampah A, Liu HY, Xu HM, Li JR, Wu JG et al (2012) Mapping of quantitative trait loci for oil content in cottonseed kernel. J Genet 91:289–295

    Article  CAS  Google Scholar 

  • Rathore KS, Sundaram S, Sunilkumar G, Campbell LM, Puckhaber L et al (2012) Ultra-low gossypol cottonseed: generational stability of the seed-specific, RNAi-mediated phenotype and resumption of terpenoid profile following seed germination. Plant Biotechnol J 10:174–183

    Article  CAS  PubMed  Google Scholar 

  • Reverdatto S, Beilinson V, Nielsen NC (1999) A multisubunit acetyl coenzyme A carboxylase from soybean. Plant Physiol 119:961–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romano GB, Scheffler JA (2008) Lowering seed gossypol content in glanded cotton (Gossypium hirsutum L.) lines. Plant Breed 127:619–624

    Article  Google Scholar 

  • Rong J, Feltus FA, Waghmare VN, Pierce GJ, Chee PW et al (2007) Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development. Genetics 176:2577–2588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Said JI, Lin Z, Zhang X, Song M, Zhang J (2013) A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Genomics 14:776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Said JI, Knapka JA, Song M, Zhang J (2015a) Cotton QTLdb: a cotton QTL database for QTL analysis, visualization, and comparison between Gossypium hirsutum and G. hirsutum × G. barbadense populations. Mol Gen Genomics 290:1615–1625

    Article  CAS  Google Scholar 

  • Said JI, Song M, Wang H, Lin Z, Zhang X et al (2015b) A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations. Mol Gen Genomics 290:1003–1025

    Article  CAS  Google Scholar 

  • Santos JEP, Villasenor M, Robinson PH, DePeters EJ, Holmberg CA (2003) Type of cottonseed and level of gossypol in diets of lactating dairy cows: plasma gossypol, health, and reproductive performance. J Dairy Sci 86:892–905

    Article  CAS  PubMed  Google Scholar 

  • Sasaki Y, Nagano Y (2004) Plant acetyl-CoA carboxylase: structure, biosynthesis, regulation, and gene manipulation for plant breeding. Biosci Biotech Bioch 68:1175–1184

    Article  CAS  Google Scholar 

  • Shang L, Abduweli A, Wang Y, Hua J (2016) Genetic analysis and QTL mapping of oil content and seed index using two recombinant inbred lines and two backcross populations in Upland cotton. Plant Breed 135:224–231

    Article  CAS  Google Scholar 

  • Shang X, Cheng C, Ding J, Guo W (2017) Identification of candidate genes from the SAD gene family in cotton for determination of cottonseed oil composition. Mol Gen Genomics 292:173–186

    Article  CAS  Google Scholar 

  • Shockey J, Dowd M, Mack B, Gilbert M, Scheffler B et al (2017) Naturally occurring high oleic acid cottonseed oil: identification and functional analysis of a mutant allele of Gossypium barbadense fatty acid desaturase-2. Planta 245:611–622

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Singh VV, Choudhary AD (2010) Combining ability estimates for oil content, yield components, and fibre quality traits in cotton (G. hirsutum) using an 8× 8 diallel mating design. Trop Subtrop Agroecosyst 12:161–166

    Google Scholar 

  • Song XL, Zhang TZ (2007) Identification of quantitative trait loci controlling seed physical and nutrient traits in cotton. Seed Sci Res 17:243–251

    Article  CAS  Google Scholar 

  • Stipanovic RD, Lopez JD, Dowd MK, Puckhaber LS, Duke SE (2006) Effect of racemic and (+)-and (−)-gossypol on the survival and development of Helicoverpa zea larvae. J Chem Ecol 32:959–968

    Article  CAS  PubMed  Google Scholar 

  • Sturtevant D, Horn P, Kennedy C, Hinze L, Percy R et al (2017) Lipid metabolites in seeds of diverse Gossypium accessions: molecular identification of a high oleic mutant allele. Planta 245:595–610

    Article  CAS  PubMed  Google Scholar 

  • Su Y, Liang W, Liu Z, Wang Y, Zhao Y et al (2017) Overexpression of GhDof1 improved salt and cold tolerance and seed oil content in Gossypium hirsutum. J Plant Physiol 218:222–234

    Article  CAS  PubMed  Google Scholar 

  • Sunilkumar G, Campbell LM, Puckhaber L, Stipanovic RD, Rathore KS (2006) Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. PNAS 103:18054–18059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki M, Wang HH-Y, McCarty DR (2007) Repression of the LEAFY COTYLEDON 1/B3 regulatory network in plant embryo development by VP1/ABSCISIC ACID INSENSITIVE 3-LIKE B3 genes. Plant Physiol 143:902–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner JH, Ramey HH, Worley S (1976) Relationship of yield, seed quality, and fiber properties in Upland cotton. Crop Sci 16:578–580

    Article  Google Scholar 

  • Vroh Bi I, Baudoin J, Hau B et al (1999) Development of high-gossypol cotton plants with low-gossypol seeds using trispecies bridge crosses and in vitro culture of seed embryos. Euphytica 106:243–251

    Article  Google Scholar 

  • Wang H, Guo J, Lambert KN, Lin Y (2007a) Developmental control of Arabidopsis seed oil biosynthesis. Planta 226:773–783

    Article  CAS  PubMed  Google Scholar 

  • Wang HW, Zhang B, Hao YJ, Huang J, Tian AG et al (2007b) The soybean Dof-type transcription factor genes, GmDof4 and GmDof11, enhance lipid content in the seeds of transgenic Arabidopsis plants. Plant J 52:716–729

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Ma J, Pei W, Wu M, Li H et al (2017) A genome-wide analysis of the lysophosphatidate acyltransferase (LPAAT) gene family in cotton: organization, expression, sequence variation, and association with seed oil content and fiber quality. BMC Genomics 18:218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weiss SB, Kennedy EP, Kiyasu JY (1960) The enzymatic synthesis of triglycerides. J Biol Chem 235:40–44

    Article  CAS  PubMed  Google Scholar 

  • Wendel JF, Cronn RC (2003) Polyploidy and the evolutionary history of cotton. Adv Agron 78:139–186

    Article  Google Scholar 

  • Wendel JF, Grover CE (2015) Taxonomy and evolution of the cotton genus, Gossypium. 25-44. In: Fang DD, Percy RG, Cotton., Amer. Soc. Agron., Madison, WI

    Google Scholar 

  • Wu J, Jenkins JN, McCarty JC, Thaxton P (2009) Seed trait evaluation of Gossypium barbadense L. chromosomes/arms in a G. hirsutum L. background. Euphytica 167:371–380

    Article  Google Scholar 

  • Xu Z, Li J, Guo X, Jin S, Zhang X (2016) Metabolic engineering of cottonseed oil biosynthesis pathway via RNA interference. Sci Rep 6:33342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeap WC, Lee FC, Shabari Shan DK, Musa H, Appleton DR et al (2017) WRI 1-1, ABI 5, NF-YA 3, and NF-YC 2 increase oil biosynthesis in coordination with hormonal signaling during fruit development in oil palm. Plant J 91:97–113

    Article  CAS  PubMed  Google Scholar 

  • Yu XH, Rawat R, Shanklin J (2011) Characterization and analysis of the cotton cyclopropane fatty acid synthase family and their contribution to cyclopropane fatty acid synthesis. BMC Plant Biol 11:97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Yu S, Fan S, Song M, Zhai H et al (2012) Mapping quantitative trait loci for cottonseed oil, protein, and gossypol content in a Gossypium hirsutum× Gossypium barbadense backcross inbred line population. Euphytica 187:191–201

    Article  Google Scholar 

  • Yu J, Jung S, Cheng CH, Ficklin SP, Lee T et al (2013) CottonGen: a genomics, genetics, and breeding database for cotton research. Nucleic Acids Res 42:D1229–D1236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan Y, Wang X, Wang L, Xing H, Wang Q et al (2018) Genome-wide association study identifies candidate genes related to seed oil composition and protein content in Gossypium hirsutum L. Front Plant Sci 9:1359

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang D, Pirtle IL, Park SJ, Nampaisansuk M, Neogi P et al (2009) Identification and expression of a new delta-12 fatty acid desaturase (FAD2-4) gene in Upland cotton and its functional expression in yeast and Arabidopsis thaliana plants. Plant Physiol Biochem 47:462–471

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Yu J, Pei W, Li X, Said J et al (2015a) Genetic analysis of Verticillium wilt resistance in a backcross inbred line population and a meta-analysis of quantitative trait loci for disease resistance in cotton. BMC Genomics 16:577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang T, Hu Y, Jiang W, Fang L, Guan X et al (2015b) Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol 33:531–537

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Maximova SN, Guiltinan MJ (2015c) Characterization of a stearoyl-acyl carrier protein desaturase gene family from chocolate tree, Theobroma cacao L. Front Plant Sci 6:239–239

    PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Huang Y, Wang Y, Cui Y, Liu Z et al (2018a) RNA interference of GhPEPC2 enhanced seed oil accumulation and salt tolerance in Upland cotton. Plant Sci 271:52–61

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Liu Z, Wang X, Wang Y, Hua J (2018b) Molecular characterization and expression analysis of GhWRI1 in Upland cotton. J Plant Biol 61:186–197

    Article  CAS  Google Scholar 

  • Zhao Y, Wang Y, Huang Y, Cui Y, Hua J (2018c) Gene network of oil accumulation reveals expression profiles in developing embryos and fatty acid composition in Upland cotton. J Plant Physiol 228:101–112

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Chee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel, J., Lubbers, E., Kothari, N., Koebernick, J., Chee, P. (2021). Genetics and Genomics of Cottonseed Oil. In: Tombuloglu, H., Unver, T., Tombuloglu, G., Hakeem, K.R. (eds) Oil Crop Genomics. Springer, Cham. https://doi.org/10.1007/978-3-030-70420-9_3

Download citation

Publish with us

Policies and ethics