Skip to main content

Advertisement

Log in

Effect of Racemic and (+)- and (−)-Gossypol on the Survival and Development of Helicoverpa zea Larvae

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Gossypol is a sesquiterpene that occurs naturally in seed and other parts of the cotton plant. Because of restricted rotation around the binaphthyl bond, it occurs naturally as enantiomeric mixtures with (+)-gossypol to (−)-gossypol ratios that vary between 97:3 and 31:69. Commercial cotton varieties (Gossypium hirsutum) normally exhibit an approximate 3:2 ratio. (+)-Gossypol is significantly less toxic than (−)-gossypol to nonruminant animals; thus, cottonseed containing high levels of (+)-gossypol might be safely fed to nonruminants. Gossypol, however, is an important component in the cotton plant's defense against insect herbivores, but it is not known how cotton plants that exhibit high levels of (+)-gossypol in the foliage might be affected by insect herbivory. To address this question, 1-d-old Helicoverpa zea larvae were fed diets with 0.16, 0.20, and 0.24% racemic, (+)-, and (−)-gossypol. Larval pupal weights, days-to-pupation, and survival were adversely affected by all gossypol diets compared with the control diet. Statistical differences were determined by comparing the compounds among themselves at the three levels and between the three compounds at the same level. When the compounds were compared among themselves, no large differences were observed in pupal weights or in days-to-pupation among any of the diets. Among the three compounds, at the 0.16% level, the diet containing racemic gossypol was the most effective at reducing survival. At the 0.20 and 0.24% levels of racemic (+)- and (−)-gossypol, survival was not statistically different. The overall results indicate that (+)-gossypol is as inhibitory to H. zea larvae as racemic or (−)-gossypol, and thus, cotton plants containing predominantly the (+)-enantiomer in foliage may maintain significant defense against insect herbivory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agresti, A. 2002. Categorical Data Analysis, 2nd edn. John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Bailey, C. A., Stipanovic, R. D., Ziehr, M. S., Haq, A. U., Sattar, M., Kubena, L. F., Kim, H. L., and Vieira, R. D. M. 2000. Cottonseed with a high (+)- to (−)-gossypol enantiomer ratio favorable to broiler production. J. Agric. Food Chem. 48:5692–5695.

    Article  PubMed  CAS  Google Scholar 

  • Bell, A. A., Puckhaber, L. S., Kim, H. L., Stipanovic, R. D., and Percival, E. 2000. Genetic approaches for increasing percentages of (+)-gossypol levels in cotton, pp. 218–230, in C. Benedict and G. Jividen (eds.). Genetic Control of Cotton Fiber and Seed Quality. Cotton Inc., Cary, NC.

    Google Scholar 

  • Benz, C. C., Keniry, M. A., Ford, J. M., Townsend, A. J., Cox, F. W., Palayoor, S., Matlin, S. A., Hait, W. N., and Cowan, K. H. 1990. Biochemical correlates of the antitumor and antimitochondrial properties of gossypol enantiomers. Mol. Pharmacol. 37:840–847.

    PubMed  CAS  Google Scholar 

  • Blackstaffe, L., Shelley, M. D., and Fish, R. G. 1997. Cytotoxicity of gossypol enantiomers and its quinone metabolite gossypolone in melanoma cell lines. Melanoma Res. 7:364–372.

    Article  PubMed  CAS  Google Scholar 

  • Cass, Q. B., Tiritan, E., Matlin, S. A., and Freire, E. C. 1991. Gossypol enantiomer ratios in cotton seeds. Phytochemistry 30:2655–2657.

    Article  CAS  Google Scholar 

  • Dowd, M. K. 2003. Preparation of enantiomeric gossypol by crystallization. Chirality 15:486–493.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Garza, M. T., Matlin, S. A., Mata-Cardenas, B. D., and Said-Fernandez, S. 1993. Differential effects of the (+)- and (−)- gossypol enantiomers upon Entamoeba histolytica axenic cultures. J. Pharm. Pharmacol. 45:144–145.

    PubMed  CAS  Google Scholar 

  • Hedin, P. A., Parrott, W. L., and Jenkins, J. N. 1992. Relationship of glands, cotton square terpenoid aldehydes, and other allelochemicals to larval growth of Heliothis virescens (Lepidoptera: Noctuidae). J. Econ. Entomol. 85:359–364.

    CAS  Google Scholar 

  • Hosmer, D. W., and Lemeshow, S. 2000. Applied Logistic Regression, 2nd End. John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Jenkins, J. N., Maxwell, F. G., and Lafever, H. N. 1966. The comparative preference of insects for glanded and glandless cottons. J. Econ. Entomol. 59:352–356.

    Google Scholar 

  • Jaroszewski, J. W., Strøm-Hansen, T., and Hanson, S. H. 1992a. Optical activity of gossypol. Chirality 4:216–221.

    Article  CAS  Google Scholar 

  • Jaroszewski, J. W., Strøm-Hansen, T., Hanson, S. H., Thastrup, O., and Kofod, H. 1992b. On the botanical distribution of chiral forms of gossypol. Planta Med. 58:454–458.

    Article  PubMed  CAS  Google Scholar 

  • Li, H. and He, X. 1993. The effects of optical isomers of gossypol on Sertoli cells in vitro. Zhongguo Yixue Kexueyuan Xuebao 15:98–101.

    PubMed  CAS  Google Scholar 

  • Lin, T. S., Schinazi, R. F., Zhu, J., Birks, E., Carbone, R., Si, Y., WU, K., Huang, L., and Prusoff, W. H. 1993. Anti-HIV-1 activity and cellular pharmacology of various analogs of gossypol. Biochem. Pharmacol. 46:251–255.

    PubMed  CAS  Google Scholar 

  • Lindberg, M. C., Naqvi, R. H., Matlin, S. A., Zhou, R. H., Bialy, G., and Blye, R. P. 1987. Comparative anti-fertility effects of gossypol enantiomers in male hamsters. Int. J. Androl. 10:619–623.

    Article  PubMed  CAS  Google Scholar 

  • Lordelo, M. M., Davis, A. J., Calhoun, M. C., Dowd, M. K., and Dale, N. M. 2005. Relative toxicity of gossypol enantiomers in broilers. Poultry Sci. 84:1376–1382.

    CAS  Google Scholar 

  • Lukefahr, M. J., Noble, L. W., and Houghtaling, J. E. 1966. Growth and infestation of bollworms and other insects on glanded and glandless strains of cotton. J. Econ. Entomol. 59:817–820.

    Google Scholar 

  • Matlin, S. A., Zhou, R., Bialy, G., Blye, R. P., Naqvi, R. H., Lindberg, M. C., and Matlin, S. A. 1985. (−)-Gossypol: an active male antifertility agent. Contraception 31:141–149.

    Article  PubMed  CAS  Google Scholar 

  • Meisner, J., Ascher, K. R. S., and Zur, M. 1977. Phagodeterrency induced by pure gossypol and leaf extracts of a cotton strain with high gossypol content in the larva of Spodoptera littoralis. J. Econ. Entomol. 70:149–150.

    CAS  Google Scholar 

  • Oliver, B. F., Maxwell, F. G., and Jenkins, J. N. 1971. Growth of the bollworm on glanded and glandless cottons. J. Econ. Entomol. 64:396–398.

    Google Scholar 

  • Percy, R. G., Calhoun, M. C., and Kim, H. L. 1996. Seed gossypol variation within Gossypium barbadense L. cotton. Crop Sci. 36:193–197.

    Article  Google Scholar 

  • Puckhaber, L. S., Dowd, M. K., Stipanovic, R. D., and Howell, C. R. 2002. Toxicity of (+)- and (−)-gossypol to the plant pathogen, Rhizoctonia solani. J. Agric. Food Chem. 50:7017–7021.

    Article  PubMed  CAS  Google Scholar 

  • Sang, G., Lorenzo, B., and Reidenberg, M. M. 1991. Inhibitory effects of gossypol on corticosteroid 11-β-hydroxysteroid dehydrogenase from guinea pig kidney: A possible mechanism for causing hypokalemia. J. Steroid Biochem. Mol. Biol. 39:169–176.

    Article  PubMed  CAS  Google Scholar 

  • Shelley, M. D., Hartley, L., Fish, R. G., Groundwater, P., Morgan, J. J. G., Mort, D., Mason, M., and Evans, A. 1999. Stereo-specific cytotoxic effects of gossypol enantiomers and gossypolone in tumor cell lines. Cancer Lett. 135:171–180.

    Article  PubMed  CAS  Google Scholar 

  • Stipanovic, R. D., Altman, D. W., Begin, D. L., Greenblatt, G. A., and Benedict, J. H. 1988. Terpenoid aldehydes in Upland cottons: analysis by aniline and HPLC methods. J. Agric. Food Chem. 36:509–515.

    Article  CAS  Google Scholar 

  • Stipanovic, R. D., Bailey, C. A., Kubena, L. F., and Kim, H. L. 2001. Cottonseed containing high levels of (+)-gossypol: Potential as a feed/food source, pp. 231–243, in C. Benedict and G. Jividen (eds.). Genetic Control of Cotton Fiber and Seed Quality. Cotton, Inc., Cary, NC.

    Google Scholar 

  • Yang W.-H., Ma L.-H., Zhu H.-Q., and Xiang S.-K. 1999. Effects of different gossypol enantiomers on growth and development of cotton bollworm (Helicoverpa armigera) and Fusarium wilt. Acta Gossypii Sin. 11:31–34.

    Google Scholar 

  • Zur, M., Meisner, J., Kabonci, E., and Ascher, K. R. S. 1979. Gossypol content of cotton leaves during the growing season, and growth suppression of Spodoptera littoralis (Boisduval) larvae on some high-gossypol (HG) cotton strains. Z. Angew. Entomol. 87:435–439.

    CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the Cotton Foundation. We thank Michael O'Neil and Brittany Fuchs for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Stipanovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stipanovic, R.D., Lopez, J.D., Dowd, M.K. et al. Effect of Racemic and (+)- and (−)-Gossypol on the Survival and Development of Helicoverpa zea Larvae. J Chem Ecol 32, 959–968 (2006). https://doi.org/10.1007/s10886-006-9052-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-006-9052-9

Keywords

Navigation