Skip to main content

Congenital Defects of Phagocytes

  • Chapter
  • First Online:
Cellular Primary Immunodeficiencies

Part of the book series: Rare Diseases of the Immune System ((RDIS))

  • 825 Accesses

Abstract

Phagocytes form the first line of defense against invading pathogens and play a key role in wound healing following tissue injury. A broad range of monogenic defects affecting phagocyte numbers and/or function have been described. A common hallmark of all congenital defects of phagocytes is an increased susceptibility to severe bacterial and fungal infections. Typical sites of infection are the skin, the oral mucosa and gingiva, lymph nodes, the lungs, and other internal organs. Furthermore, many congenital phagocyte disorders are associated with an increased risk of inflammatory manifestations and/or hematological malignancies. In the 1950s, survival of the first described disorders was dramatically poor with most patients dying from infectious complications in the first years of life. However, in the past decades, advances in diagnosis and treatment strategies have significantly improved patient outcome. In addition, the increased understanding of the molecular disease mechanisms has paved the way for gene therapy as a promising new treatment option. This chapter outlines the current knowledge on congenital defects of phagocytes, categorized according to their major underlying defect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbas AK, Lichtman AH, Pillai S (2017) Cellular and molecular immunology, 9th edn. Elsevier Saunders, Philadelphia

    Google Scholar 

  2. Papayannopoulos V (2018) Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol 18(2):134–147

    Article  CAS  PubMed  Google Scholar 

  3. Janeway CA, Craig J, Davison M, Doroney W, Gitlin D, Sullivan JC (1954) Hypergammaglobulinemia associated with severe, recurrent, and chronic non-specific infection. Am J Dis Child 88:388–392

    Google Scholar 

  4. Kostmann R (1956) Infantile genetic agranulocytosis. A new recessive lethal disease in man. Acta Paediatr Scand 45:1–78

    Article  CAS  Google Scholar 

  5. Picard C, Bobby Gaspar H, Al-Herz W, Bousfiha A, Casanova JL, Chatila T et al (2018) International Union of Immunological Societies: 2017 primary immunodeficiency diseases committee report on inborn errors of immunity. J Clin Immunol 38(1):96–128

    Article  PubMed  Google Scholar 

  6. Lanini LL, Prader S, Siler U, Reichenbach J (2017) Modern management of phagocyte defects. Pediatr Allergy Immunol 28(2):124–134

    Article  PubMed  Google Scholar 

  7. Seger RA (2008) Modern management of chronic granulomatous disease. Br J Haematol 140(3):255–266

    Article  CAS  PubMed  Google Scholar 

  8. Gennery AR, Albert MH, Slatter MA, Lankester A (2019) Hematopoietic stem cell transplantation for primary immunodeficiencies. Front Pediatr 7:445

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mukherjee S, Thrasher AJ (2013) Gene therapy for PIDs: progress, pitfalls and prospects. Gene 525(2):174–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Samarghitean C, Ortutay C, Vihinen M (2009) Systematic classification of primary immunodeficiencies based on clinical, pathological, and laboratory parameters. J Immunol 183(11):7569–7575

    Article  CAS  PubMed  Google Scholar 

  11. Tangye SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C, Etzioni A et al (2020) Human inborn errors of immunity: 2019 update on the classification from the International Union of Immunological Societies Expert Committee. In: J Clin Immunol

    Google Scholar 

  12. Donadieu J, Fenneteau O, Beaupain B, Mahlaoui N, Chantelot CB (2011) Congenital neutropenia: diagnosis, molecular bases and patient management. Orphanet J Rare Dis 6:26

    Article  PubMed  PubMed Central  Google Scholar 

  13. Donadieu J, Beaupain B, Mahlaoui N, Bellanne-Chantelot C (2013) Epidemiology of congenital neutropenia. Hematol Oncol Clin North Am 27(1):1–17, vii

    Article  PubMed  Google Scholar 

  14. Spoor J, Farajifard H, Rezaei N (2019) Congenital neutropenia and primary immunodeficiency diseases. Crit Rev Oncol Hematol 133:149–162

    Article  PubMed  Google Scholar 

  15. Donadieu J, Beaupain B, Fenneteau O, Bellanne-Chantelot C (2017) Congenital neutropenia in the era of genomics: classification, diagnosis, and natural history. Br J Haematol 179(4):557–574

    Article  PubMed  Google Scholar 

  16. Bakhtiar S, Shadur B, Stepensky P (2019) The evidence for allogeneic hematopoietic stem cell transplantation for congenital neutrophil disorders: a comprehensive review by the inborn errors working party group of the EBMT. Front Pediatr 7:436

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sullivan KE (2019) Neutropenia as a sign of immunodeficiency. J Allergy Clin Immunol 143(1):96–100

    Article  PubMed  Google Scholar 

  18. Klein C (2011) Genetic defects in severe congenital neutropenia: emerging insights into life and death of human neutrophil granulocytes. Annu Rev Immunol 29:399–413

    Article  CAS  PubMed  Google Scholar 

  19. Xia J, Link DC (2008) Severe congenital neutropenia and the unfolded protein response. Curr Opin Hematol 15(1):1–7

    Article  CAS  PubMed  Google Scholar 

  20. Dale DC, Person RE, Bolyard AA, Aprikyan AG, Bos C, Bonilla MA et al (2000) Mutations in the gene encoding neutrophil elastase in congenital and cyclic neutropenia. Blood 96(7):2317–2322

    Article  CAS  PubMed  Google Scholar 

  21. Skokowa J, Dale DC, Touw IP, Zeidler C, Welte K (2017) Severe congenital neutropenias. Nat Rev Dis Primers 3:17032

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kollner I, Sodeik B, Schreek S, Heyn H, von Neuhoff N, Germeshausen M et al (2006) Mutations in neutrophil elastase causing congenital neutropenia lead to cytoplasmic protein accumulation and induction of the unfolded protein response. Blood 108(2):493–500

    Article  PubMed  CAS  Google Scholar 

  23. Nanua S, Murakami M, Xia J, Grenda DS, Woloszynek J, Strand M et al (2011) Activation of the unfolded protein response is associated with impaired granulopoiesis in transgenic mice expressing mutant Elane. Blood 117(13):3539–3547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nayak RC, Trump LR, Aronow BJ, Myers K, Mehta P, Kalfa T et al (2015) Pathogenesis of ELANE-mutant severe neutropenia revealed by induced pluripotent stem cells. J Clin Invest 125(8):3103–3116

    Article  PubMed  PubMed Central  Google Scholar 

  25. Anguita E, Candel FJ, Chaparro A, Roldan-Etcheverry JJ (2017) Transcription factor GFI1B in health and disease. Front Oncol 7:54

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zarebski A, Velu CS, Baktula AM, Bourdeau T, Horman SR, Basu S et al (2008) Mutations in growth factor independent-1 associated with human neutropenia block murine granulopoiesis through colony stimulating factor-1. Immunity 28(3):370–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Makaryan V, Rosenthal EA, Bolyard AA, Kelley ML, Below JE, Bamshad MJ et al (2014) TCIRG1-associated congenital neutropenia. Hum Mutat 35(7):824–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rosenthal EA, Makaryan V, Burt AA, Crosslin DR, Kim DS, Smith JD et al (2016) Association between absolute neutrophil count and variation at TCIRG1: the NHLBI exome sequencing project. Genet Epidemiol 40(6):470–474

    Article  PubMed  PubMed Central  Google Scholar 

  29. Carapito R, Konantz M, Paillard C, Miao Z, Pichot A, Leduc MS et al (2017) Mutations in signal recognition particle SRP54 cause syndromic neutropenia with Shwachman-Diamond-like features. J Clin Invest 127(11):4090–4103

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bellanne-Chantelot C, Schmaltz-Panneau B, Marty C, Fenneteau O, Callebaut I, Clauin S et al (2018) Mutations in the SRP54 gene cause severe congenital neutropenia as well as Shwachman-Diamond-like syndrome. Blood 132(12):1318–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Klein C, Grudzien M, Appaswamy G, Germeshausen M, Sandrock I, Schaffer AA et al (2007) HAX1 deficiency causes autosomal recessive severe congenital neutropenia (Kostmann disease). Nat Genet 39(1):86–92

    Article  CAS  PubMed  Google Scholar 

  32. Klein C (2017) Kostmann’s disease and HCLS1-associated protein X-1 (HAX1). J Clin Immunol 37(2):117–122

    Article  CAS  PubMed  Google Scholar 

  33. Boztug K, Jarvinen PM, Salzer E, Racek T, Monch S, Garncarz W et al (2014) JAGN1 deficiency causes aberrant myeloid cell homeostasis and congenital neutropenia. Nat Genet 46(9):1021–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Baris S, Karakoc-Aydiner E, Ozen A, Delil K, Kiykim A, Ogulur I et al (2015) JAGN1 deficient severe congenital neutropenia: two cases from the same family. J Clin Immunol 35(4):339–343

    Article  CAS  PubMed  Google Scholar 

  35. Stepensky P, Saada A, Cowan M, Tabib A, Fischer U, Berkun Y et al (2013) The Thr224Asn mutation in the VPS45 gene is associated with the congenital neutropenia and primary myelofibrosis of infancy. Blood 121(25):5078–5087

    Article  CAS  PubMed  Google Scholar 

  36. Vilboux T, Lev A, Malicdan MC, Simon AJ, Jarvinen P, Racek T et al (2013) A congenital neutrophil defect syndrome associated with mutations in VPS45. N Engl J Med 369(1):54–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Meerschaut I, Bordon V, Dhooge C, Delbeke P, Vanlander AV, Simon A et al (2015) Severe congenital neutropenia with neurological impairment due to a homozygous VPS45 p.E238K mutation: a case report suggesting a genotype-phenotype correlation. Am J Med Genet A 167a(12):3214–3218

    Article  PubMed  CAS  Google Scholar 

  38. Shadur B, Asherie N, Newburger PE, Stepensky P (2019) How we approach: severe congenital neutropenia and myelofibrosis due to mutations in VPS45. Pediatr Blood Cancer 66(1):e27473

    Article  PubMed  Google Scholar 

  39. Triot A, Jarvinen PM, Arostegui JI, Murugan D, Kohistani N, Dapena Diaz JL et al (2014) Inherited biallelic CSF3R mutations in severe congenital neutropenia. Blood 123(24):3811–3817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Devriendt K, Kim AS, Mathijs G, Frints SG, Schwartz M, Van Den Oord JJ et al (2001) Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia. Nat Genet 27(3):313–317

    Article  CAS  PubMed  Google Scholar 

  41. Westerberg LS, Meelu P, Baptista M, Eston MA, Adamovich DA, Cotta-de-Almeida V et al (2010) Activating WASP mutations associated with X-linked neutropenia result in enhanced actin polymerization, altered cytoskeletal responses, and genomic instability in lymphocytes. J Exp Med 207(6):1145–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Link DC (2019) Mechanisms of leukemic transformation in congenital neutropenia. Curr Opin Hematol 26(1):34–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Touw IP, van de Geijn GJ (2007) Granulocyte colony-stimulating factor and its receptor in normal myeloid cell development, leukemia and related blood cell disorders. Front Biosci 12:800–815

    Article  CAS  PubMed  Google Scholar 

  44. Fioredda F, Iacobelli S, van Biezen A, Gaspar B, Ancliff P, Donadieu J et al (2015) Stem cell transplantation in severe congenital neutropenia: an analysis from the European Society for Blood and Marrow Transplantation. Blood 126(16):1885–1892; quiz 1970

    Article  CAS  PubMed  Google Scholar 

  45. Dale DC, Bolyard AA, Aprikyan A (2002) Cyclic neutropenia. Semin Hematol 39(2):89–94

    Article  CAS  PubMed  Google Scholar 

  46. Rezaei N, Farhoudi A, Pourpak Z, Aghamohammadi A, Ramyar A, Moin M et al (2004) Clinical and laboratory findings in Iranian children with cyclic neutropenia. Iran J Allergy Asthma Immunol 3(1):37–40

    PubMed  Google Scholar 

  47. Horwitz M, Benson KF, Person RE, Aprikyan AG, Dale DC (1999) Mutations in ELA2, encoding neutrophil elastase, define a 21-day biological clock in cyclic haematopoiesis. Nat Genet 23(4):433–436

    Article  CAS  PubMed  Google Scholar 

  48. Cipe FE, Celiksoy MH, Erturk B, Aydogmus C (2018) Cyclic manner of neutropenia in a patient with HAX-1 mutation. Pediatr Hematol Oncol 35(3):181–185

    Article  CAS  PubMed  Google Scholar 

  49. Palmer SE, Stephens K, Dale DC (1996) Genetics, phenotype, and natural history of autosomal dominant cyclic hematopoiesis. Am J Med Genet 66(4):413–422

    Article  CAS  PubMed  Google Scholar 

  50. Dale DC, Bolyard A, Marrero T, Makaryan V, Bonilla M, Link DC et al (2017) Long-term effects of G-CSF therapy in cyclic neutropenia. N Engl J Med 377(23):2290–2292

    Article  PubMed  PubMed Central  Google Scholar 

  51. Loughran TP Jr, WPt H (1986) Adult-onset cyclic neutropenia is a benign neoplasm associated with clonal proliferation of large granular lymphocytes. J Exp Med 164(6):2089–2094

    Article  CAS  PubMed  Google Scholar 

  52. Bohn G, Allroth A, Brandes G, Thiel J, Glocker E, Schaffer AA et al (2007) A novel human primary immunodeficiency syndrome caused by deficiency of the endosomal adaptor protein p14. Nat Med 13(1):38–45

    Article  CAS  PubMed  Google Scholar 

  53. Langemeier J, Schrom EM, Rabner A, Radtke M, Zychlinski D, Saborowski A et al (2012) A complex immunodeficiency is based on U1 snRNP-mediated poly(A) site suppression. EMBO J 31(20):4035–4044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bodian M, Sheldon W, Lightwood R (1964) Congenital hypoplasia of the exocrine pancreas. Acta Paediatr 53:282–293

    Article  CAS  PubMed  Google Scholar 

  55. Shwachman H, Diamond LK, Oski FA, Khaw KT (1964) The syndrome of pancreatic insufficiency and bone marrow dysfunction. J Pediatr 65:645–663

    Article  CAS  PubMed  Google Scholar 

  56. Minelli A, Nicolis E, Cannioto Z, Longoni D, Perobelli S, Pasquali F et al (2012) Incidence of Shwachman-Diamond syndrome. Pediatr Blood Cancer 59(7):1334–1335

    Article  PubMed  Google Scholar 

  57. Nelson AS, Myers KC (2018) Diagnosis, treatment, and molecular pathology of Shwachman-Diamond Syndrome. Hematol Oncol Clin North Am 32(4):687–700

    Article  PubMed  Google Scholar 

  58. Oyarbide U, Corey SJ (2018) SRP54 and a need for a new neutropenia nosology. Blood 132(12):1220–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bezzerri V, Cipolli M (2019) Shwachman-Diamond Syndrome: molecular mechanisms and current perspectives. Mol Diagn Ther 23(2):281–290

    Article  CAS  PubMed  Google Scholar 

  60. Boocock GR, Morrison JA, Popovic M, Richards N, Ellis L, Durie PR et al (2003) Mutations in SBDS are associated with Shwachman-Diamond syndrome. Nat Genet 33(1):97–101

    Article  CAS  PubMed  Google Scholar 

  61. Zhang S, Shi M, Hui CC, Rommens JM (2006) Loss of the mouse ortholog of the shwachman-diamond syndrome gene (Sbds) results in early embryonic lethality. Mol Cell Biol 26(17):6656–6663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dhanraj S, Matveev A, Li H, Lauhasurayotin S, Jardine L, Cada M et al (2017) Biallelic mutations in DNAJC21 cause Shwachman-Diamond syndrome. Blood 129(11):1557–1562

    Article  CAS  PubMed  Google Scholar 

  63. Stepensky P, Chacon-Flores M, Kim KH, Abuzaitoun O, Bautista-Santos A, Simanovsky N et al (2017) Mutations in EFL1, an SBDS partner, are associated with infantile pancytopenia, exocrine pancreatic insufficiency and skeletal anomalies in aShwachman-Diamond like syndrome. J Med Genet 54(8):558–566

    Article  CAS  PubMed  Google Scholar 

  64. Tummala H, Walne AJ, Williams M, Bockett N, Collopy L, Cardoso S et al (2016) DNAJC21 mutations link a cancer-prone bone marrow failure syndrome to corruption in 60S ribosome subunit maturation. Am J Hum Genet 99(1):115–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. D’Amours G, Lopes F, Gauthier J, Saillour V, Nassif C, Wynn R et al (2018) Refining the phenotype associated with biallelic DNAJC21 mutations. Clin Genet 94(2):252–258

    Article  PubMed  CAS  Google Scholar 

  66. Myers KC, Furutani E, Weller E, Siegele B, Galvin A, Arsenault V et al (2019) Clinical features and outcomes of patients with Shwachman-Diamond syndrome and myelodysplastic syndrome or acute myeloid leukaemia: a multicentre, retrospective, cohort study. Lancet Haematol 7:e238

    Article  PubMed  PubMed Central  Google Scholar 

  67. Tan QK, Cope H, Spillmann RC, Stong N, Jiang YH, McDonald MT et al (2018) Further evidence for the involvement of EFL1 in a Shwachman-Diamond-like syndrome and expansion of the phenotypic features. Cold Spring Harb Mol Case Stud 4(5)

    Google Scholar 

  68. Tan S, Kermasson L, Hoslin A, Jaako P, Faille A, Acevedo-Arozena A et al (2019) EFL1 mutations impair eIF6 release to cause Shwachman-Diamond syndrome. Blood 134(3):277–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rothbaum R, Perrault J, Vlachos A, Cipolli M, Alter BP, Burroughs S et al (2002) Shwachman-Diamond syndrome: report from an international conference. J Pediatr 141(2):266–270

    Article  PubMed  Google Scholar 

  70. Dror Y, Donadieu J, Koglmeier J, Dodge J, Toiviainen-Salo S, Makitie O et al (2011) Draft consensus guidelines for diagnosis and treatment of Shwachman-Diamond syndrome. Ann N Y Acad Sci 1242:40–55

    Article  PubMed  Google Scholar 

  71. Hashmi SK, Allen C, Klaassen R, Fernandez CV, Yanofsky R, Shereck E et al (2011) Comparative analysis of Shwachman-Diamond syndrome to other inherited bone marrow failure syndromes and genotype-phenotype correlation. Clin Genet 79(5):448–458

    Article  CAS  PubMed  Google Scholar 

  72. Ramsay J, Morton J, Norris M, Kanungo S (2018) Organic acid disorders. Ann Transl Med 6(24):472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Saric A, Andreau K, Armand AS, Moller IM, Petit PX (2015) Barth syndrome: from mitochondrial dysfunctions associated with aberrant production of reactive oxygen species to pluripotent stem cell studies. Front Genet 6:359

    PubMed  Google Scholar 

  74. Wortmann SB, Zietkiewicz S, Kousi M, Szklarczyk R, Haack TB, Gersting SW et al (2015) CLPB mutations cause 3-methylglutaconic aciduria, progressive brain atrophy, intellectual disability, congenital neutropenia, cataracts, movement disorder. Am J Hum Genet 96(2):245–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Steward CG, Groves SJ, Taylor CT, Maisenbacher MK, Versluys B, Newbury-Ecob RA et al (2019) Neutropenia in Barth syndrome: characteristics, risks, and management. Curr Opin Hematol 26(1):6–15

    Article  PubMed  PubMed Central  Google Scholar 

  76. Chou JY, Jun HS, Mansfield BC (2015) Type I glycogen storage diseases: disorders of the glucose-6-phosphatase/glucose-6-phosphate transporter complexes. J Inherit Metab Dis 38(3):511–519

    Article  CAS  PubMed  Google Scholar 

  77. Chou JY, Jun HS, Mansfield BC (2010) Neutropenia in type Ib glycogen storage disease. Curr Opin Hematol 17(1):36–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kim GY, Lee YM, Kwon JH, Jun HS, Chou J (2017) Glycogen storage disease type Ib neutrophils exhibit impaired cell adhesion and migration. Biochem Biophys Res Commun 482(4):569–574

    Article  CAS  PubMed  Google Scholar 

  79. Rake JP, Visser G, Labrune P, Leonard JV, Ullrich K, Smit GP (2002) Guidelines for management of glycogen storage disease type I—European study on glycogen storage disease type I (ESGSD I). Eur J Pediatr 161(Suppl 1):S112–S119

    Article  PubMed  Google Scholar 

  80. Visser G, Rake JP, Labrune P, Leonard JV, Moses S, Ullrich K et al (2002) Consensus guidelines for management of glycogen storage disease type 1b - European study on glycogen storage disease type 1. Eur J Pediatr 161(Suppl 1):S120–S123

    PubMed  Google Scholar 

  81. Adachi M, Shinkai M, Ohhama Y, Tachibana K, Kuratsuji T, Saji H et al (2004) Improved neutrophil function in a glycogen storage disease type 1b patient after liver transplantation. Eur J Pediatr 163(4–5):202–206

    Article  PubMed  Google Scholar 

  82. Dale DC, Bolyard AA, Marrero T, Kelley ML, Makaryan V, Tran E et al (2019) Neutropenia in glycogen storage disease Ib: outcomes for patients treated with granulocyte colony-stimulating factor. Curr Opin Hematol 26(1):16–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Pierre G, Chakupurakal G, McKiernan P, Hendriksz C, Lawson S, Chakrapani A (2008) Bone marrow transplantation in glycogen storage disease type 1b. J Pediatr 152(2):286–288

    Article  CAS  PubMed  Google Scholar 

  84. Chou JY, Cho JH, Kim GY, Mansfield BC (2018) Molecular biology and gene therapy for glycogen storage disease type Ib. J Inherit Metab Dis 41(6):1007–1014

    Article  CAS  PubMed  Google Scholar 

  85. Boztug K, Rosenberg PS, Dorda M, Banka S, Moulton T, Curtin J et al (2012) Extended spectrum of human glucose-6-phosphatase catalytic subunit 3 deficiency: novel genotypes and phenotypic variability in severe congenital neutropenia. J Pediatr 160(4):679–683.e672

    Article  CAS  PubMed  Google Scholar 

  86. Desplantes C, Fremond ML, Beaupain B, Harousseau JL, Buzyn A, Pellier I et al (2014) Clinical spectrum and long-term follow-up of 14 cases with G6PC3 mutations from the French severe congenital neutropenia registry. Orphanet J Rare Dis 9:183

    Article  PubMed  PubMed Central  Google Scholar 

  87. Banka S, Wynn R, Byers H, Arkwright PD, Newman WG (2013) G6PC3 mutations cause non-syndromic severe congenital neutropenia. Mol Genet Metab 108(2):138–141

    Article  CAS  PubMed  Google Scholar 

  88. Rodrigues JM, Fernandes HD, Caruthers C, Braddock SR, Knutsen AP (2018) Cohen syndrome: review of the literature. Cureus 10(9):e3330

    PubMed  PubMed Central  Google Scholar 

  89. Seifert W, Kuhnisch J, Maritzen T, Horn D, Haucke V, Hennies HC (2011) Cohen syndrome-associated protein, COH1, is a novel, giant Golgi matrix protein required for Golgi integrity. J Biol Chem 286(43):37665–37675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Duplomb L, Duvet S, Picot D, Jego G, El Chehadeh-Djebbar S, Marle N et al (2014) Cohen syndrome is associated with major glycosylation defects. Hum Mol Genet 23(9):2391–2399

    Article  CAS  PubMed  Google Scholar 

  91. Chandler KE, Kidd A, Al-Gazali L, Kolehmainen J, Lehesjoki AE, Black GC et al (2003) Diagnostic criteria, clinical characteristics, and natural history of Cohen syndrome. J Med Genet 40(4):233–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Parri V, Katzaki E, Uliana V, Scionti F, Tita R, Artuso R et al (2010) High frequency of COH1 intragenic deletions and duplications detected by MLPA in patients with Cohen syndrome. Eur J Hum Genet 18(10):1133–1140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Volpi L, Roversi G, Colombo EA, Leijsten N, Concolino D, Calabria A et al (2010) Targeted next-generation sequencing appoints c16orf57 as clericuzio-type poikiloderma with neutropenia gene. Am J Hum Genet 86(1):72–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Colombo EA, Carra S, Fontana L, Bresciani E, Cotelli F, Larizza L (2015) A zebrafish model of Poikiloderma with neutropenia recapitulates the human syndrome hallmarks and traces back neutropenia to the myeloid progenitor. Sci Rep 5:15814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Patil P, Uechi T, Kenmochi N (2015) Incomplete splicing of neutrophil-specific genes affects neutrophil development in a zebrafish model of poikiloderma with neutropenia. RNA Biol 12(4):426–434

    Article  PubMed  PubMed Central  Google Scholar 

  96. Van Hove JL, Jaeken J, Proesmans M, Boeck KD, Minner K, Matthijs G et al (2005) Clericuzio type poikiloderma with neutropenia is distinct from Rothmund-Thomson syndrome. Am J Med Genet A 132a(2):152–158

    Article  PubMed  Google Scholar 

  97. Chen X, Yang Y, Lin Z (2019) Image gallery: Poikiloderma with neutropenia. Br J Dermatol 180(1):e6

    Article  CAS  PubMed  Google Scholar 

  98. Koparir A, Gezdirici A, Koparir E, Ulucan H, Yilmaz M, Erdemir A et al (2014) Poikiloderma with neutropenia: genotype-ethnic origin correlation, expanding phenotype and literature review. Am J Med Genet A 164a(10):2535–2540

    Article  PubMed  CAS  Google Scholar 

  99. Farruggia P, Indaco S, Dufour C, Lanza T, Mosa C, Macaluso A et al (2014) Poikiloderma with neutropenia: a case report and review of the literature. J Pediatr Hematol Oncol 36(4):297–300

    Article  PubMed  Google Scholar 

  100. Haapaniemi EM, Fogarty CL, Keskitalo S, Katayama S, Vihinen H, Ilander M et al (2017) Combined immunodeficiency and hypoglycemia associated with mutations in hypoxia upregulated 1. J Allergy Clin Immunol 139(4):1391–1393.e1311

    Article  PubMed  Google Scholar 

  101. van de Vijver E, van den Berg TK, Kuijpers TW (2013) Leukocyte adhesion deficiencies. Hematol Oncol Clin North Am 27(1):101–116, viii

    Article  PubMed  Google Scholar 

  102. Halbwachs L, Lesavre P (2012) Endothelium-neutrophil interactions in ANCA-associated diseases. J Am Soc Nephrol 23(9):1449–1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ley K, Laudanna C, Cybulsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7(9):678–689

    Article  CAS  PubMed  Google Scholar 

  104. Schmidt S, Moser M, Sperandio M (2013) The molecular basis of leukocyte recruitment and its deficiencies. Mol Immunol 55(1):49–58

    Article  CAS  PubMed  Google Scholar 

  105. Ferreira CP, Cariste LM, Santos Virgilio FD, Moraschi BF, Monteiro CB, Vieira Machado AM et al (2017) LFA-1 mediates cytotoxicity and tissue migration of specific CD8(+) T cells after heterologous prime-boost vaccination against Trypanosoma cruzi infection. Front Immunol 8:1291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Almarza Novoa E, Kasbekar S, Thrasher AJ, Kohn DB, Sevilla J, Nguyen T et al (2018) Leukocyte adhesion deficiency-I: A comprehensive review of all published cases. J Allergy Clin Immunol Pract 6(4):1418–1420.e1410

    Article  PubMed  Google Scholar 

  107. van de Vijver E, Maddalena A, Sanal O, Holland SM, Uzel G, Madkaikar M et al (2012) Hematologically important mutations: leukocyte adhesion deficiency (first update). Blood Cells Mol Dis 48(1):53–61

    Article  PubMed  CAS  Google Scholar 

  108. Cabanillas D, Regairaz L, Deswarte C, Garcia M, Richard ME, Casanova JL et al (2016) Leukocyte adhesion deficiency type 1 (LAD1) with expressed but nonfunctional CD11/CD18. J Clin Immunol 36(7):627–630

    Article  PubMed  Google Scholar 

  109. Dababneh R, Al-Wahadneh AM, Hamadneh S, Khouri A, Bissada NF (2008) Periodontal manifestation of leukocyte adhesion deficiency type I. J Periodontol 79(4):764–768

    Article  PubMed  Google Scholar 

  110. Cox DP, Weathers DR (2008) Leukocyte adhesion deficiency type 1: an important consideration in the clinical differential diagnosis of prepubertal periodontitis. A case report and review of the literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 105(1):86–90

    Article  PubMed  Google Scholar 

  111. Moutsopoulos NM, Konkel J, Sarmadi M, Eskan MA, Wild T, Dutzan N et al (2014) Defective neutrophil recruitment in leukocyte adhesion deficiency type I disease causes local IL-17-driven inflammatory bone loss. Sci Transl Med 6(229):229ra240

    Article  CAS  Google Scholar 

  112. De Rose DU, Giliani S, Notarangelo LD, Lougaris V, Lanfranchi A, Moratto D et al (2018) Long term outcome of eight patients with type 1 leukocyte adhesion deficiency (LAD-1): not only infections, but high risk of autoimmune complications. Clin Immunol 191:75–80

    Article  PubMed  CAS  Google Scholar 

  113. Razvi S, Murphy R, Shlasko E, Cunningham-Rundles C (2001) Delayed separation of the umbilical cord attributable to urachal anomalies. Pediatrics 108(2):493–494

    Article  CAS  PubMed  Google Scholar 

  114. Shigeoka A (1999) Delayed umbilical cord separation is NOT commonly associated with leukocyte adhesion deficiency. Pediatr Res 45(12)

    Google Scholar 

  115. Levy-Mendelovich S, Rechavi E, Abuzaitoun O, Vernitsky H, Simon AJ, Lev A et al (2016) Highlighting the problematic reliance on CD18 for diagnosing leukocyte adhesion deficiency type 1. Immunol Res 64(2):476–482

    Article  CAS  PubMed  Google Scholar 

  116. Cano PM, Vargas A, Lavoie JP (2016) A real-time assay for neutrophil chemotaxis. BioTechniques 60(5):245–251

    Article  CAS  PubMed  Google Scholar 

  117. Qasim W, Cavazzana-Calvo M, Davies EG, Davis J, Duval M, Eames G et al (2009) Allogeneic hematopoietic stem-cell transplantation for leukocyte adhesion deficiency. Pediatrics 123(3):836–840

    Article  PubMed  Google Scholar 

  118. Hamidieh AA, Pourpak Z, Hosseinzadeh M, Fazlollahi MR, Alimoghaddam K, Movahedi M et al (2012) Reduced-intensity conditioning hematopoietic SCT for pediatric patients with LAD-1: clinical efficacy and importance of chimerism. Bone Marrow Transplant 47(5):646–650

    Article  CAS  PubMed  Google Scholar 

  119. Bauer TR Jr, Hickstein DD (2000) Gene therapy for leukocyte adhesion deficiency. Curr Opin Mol Ther 2(4):383–388

    CAS  PubMed  Google Scholar 

  120. Etzioni A, Frydman M, Pollack S, Avidor I, Phillips ML, Paulson JC et al (1992) Brief report: recurrent severe infections caused by a novel leukocyte adhesion deficiency. N Engl J Med 327(25):1789–1792

    Article  CAS  PubMed  Google Scholar 

  121. Marquardt T, Brune T, Luhn K, Zimmer KP, Korner C, Fabritz L et al (1999) Leukocyte adhesion deficiency II syndrome, a generalized defect in fucose metabolism. J Pediatr 134(6):681–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gazit Y, Mory A, Etzioni A, Frydman M, Scheuerman O, Gershoni-Baruch R et al (2010) Leukocyte adhesion deficiency type II: long-term follow-up and review of the literature. J Clin Immunol 30(2):308–313

    Article  CAS  PubMed  Google Scholar 

  123. Phillips ML, Schwartz BR, Etzioni A, Bayer R, Ochs HD, Paulson JC et al (1995) Neutrophil adhesion in leukocyte adhesion deficiency syndrome type 2. J Clin Invest 96(6):2898–2906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Luhn K, Wild MK, Eckhardt M, Gerardy-Schahn R, Vestweber D (2001) The gene defective in leukocyte adhesion deficiency II encodes a putative GDP-fucose transporter. Nat Genet 28(1):69–72

    Article  CAS  PubMed  Google Scholar 

  125. Lubke T, Marquardt T, Etzioni A, Hartmann E, von Figura K, Korner C (2001) Complementation cloning identifies CDG-IIc, a new type of congenital disorders of glycosylation, as a GDP-fucose transporter deficiency. Nat Genet 28(1):73–76

    Article  CAS  PubMed  Google Scholar 

  126. Cagdas D, Yilmaz M, Kandemir N, Tezcan I, Etzioni A, Sanal O (2014) A novel mutation in leukocyte adhesion deficiency type II/CDGIIc. J Clin Immunol 34(8):1009–1014

    Article  CAS  PubMed  Google Scholar 

  127. Marquardt T, Luhn K, Srikrishna G, Freeze HH, Harms E, Vestweber D (1999) Correction of leukocyte adhesion deficiency type II with oral fucose. Blood 94(12):3976–3985

    Article  CAS  PubMed  Google Scholar 

  128. Hidalgo A, Ma S, Peired AJ, Weiss LA, Cunningham-Rundles C, Frenette PS (2003) Insights into leukocyte adhesion deficiency type 2 from a novel mutation in the GDP-fucose transporter gene. Blood 101(5):1705–1712

    Article  CAS  PubMed  Google Scholar 

  129. Luhn K, Marquardt T, Harms E, Vestweber D (2001) Discontinuation of fucose therapy in LADII causes rapid loss of selectin ligands and rise of leukocyte counts. Blood 97(1):330–332

    Article  CAS  PubMed  Google Scholar 

  130. Wild MK, Luhn K, Marquardt T, Vestweber D (2002) Leukocyte adhesion deficiency II: therapy and genetic defect. Cells Tissues Organs 172(3):161–173

    Article  CAS  PubMed  Google Scholar 

  131. Kuijpers TW, van de Vijver E, Weterman MA, de Boer M, Tool AT, van den Berg TK et al (2009) LAD-1/variant syndrome is caused by mutations in FERMT3. Blood 113(19):4740–4746

    Article  CAS  PubMed  Google Scholar 

  132. Malinin NL, Zhang L, Choi J, Ciocea A, Razorenova O, Ma YQ et al (2009) A point mutation in KINDLIN3 ablates activation of three integrin subfamilies in humans. Nat Med 15(3):313–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Svensson L, Howarth K, McDowall A, Patzak I, Evans R, Ussar S et al (2009) Leukocyte adhesion deficiency-III is caused by mutations in KINDLIN3 affecting integrin activation. Nat Med 15(3):306–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Malinin NL, Plow EF, Byzova TV (2010) Kindlins in FERM adhesion. Blood 115(20):4011–4017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Kuijpers TW, Van Lier RA, Hamann D, de Boer M, Thung LY, Weening RS et al (1997) Leukocyte adhesion deficiency type 1 (LAD-1)/variant. A novel immunodeficiency syndrome characterized by dysfunctional beta2 integrins. J Clin Invest 100(7):1725–1733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Gruda R, Brown AC, Grabovsky V, Mizrahi S, Gur C, Feigelson SW et al (2012) Loss of kindlin-3 alters the threshold for NK cell activation in human leukocyte adhesion deficiency-III. Blood 120(19):3915–3924

    Article  CAS  PubMed  Google Scholar 

  137. van de Vijver E, De Cuyper IM, Gerrits AJ, Verhoeven AJ, Seeger K, Gutierrez L et al (2012) Defects in Glanzmann thrombasthenia and LAD-III (LAD-1/v) syndrome: the role of integrin beta1 and beta3 in platelet adhesion to collagen. Blood 119(2):583–586

    Article  PubMed  CAS  Google Scholar 

  138. Bergmeier W, Goerge T, Wang HW, Crittenden JR, Baldwin AC, Cifuni SM et al (2007) Mice lacking the signaling molecule CalDAG-GEFI represent a model for leukocyte adhesion deficiency type III. J Clin Invest 117(6):1699–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Pasvolsky R, Feigelson SW, Kilic SS, Simon AJ, Tal-Lapidot G, Grabovsky V et al (2007) A LAD-III syndrome is associated with defective expression of the Rap-1 activator CalDAG-GEFI in lymphocytes, neutrophils, and platelets. J Exp Med 204(7):1571–1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Canault M, Ghalloussi D, Grosdidier C, Guinier M, Perret C, Chelghoum N et al (2014) Human CalDAG-GEFI gene (RASGRP2) mutation affects platelet function and causes severe bleeding. J Exp Med 211(7):1349–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Kato H, Nakazawa Y, Kurokawa Y, Kashiwagi H, Morikawa Y, Morita D et al (2016) Human CalDAG-GEFI deficiency increases bleeding and delays alphaIIbbeta3 activation. Blood 128(23):2729–2733

    Article  CAS  PubMed  Google Scholar 

  142. Etzioni A (2014) Leukocyte adhesion deficiency III—when integrins activation fails. J Clin Immunol 34(8):900–903

    Article  PubMed  Google Scholar 

  143. Kuijpers TW, van Bruggen R, Kamerbeek N, Tool AT, Hicsonmez G, Gurgey A et al (2007) Natural history and early diagnosis of LAD-1/variant syndrome. Blood 109(8):3529–3537

    Article  CAS  PubMed  Google Scholar 

  144. Schmidt S, Nakchbandi I, Ruppert R, Kawelke N, Hess MW, Pfaller K et al (2011) Kindlin-3-mediated signaling from multiple integrin classes is required for osteoclast-mediated bone resorption. J Cell Biol 192(5):883–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Saultier P, Szepetowski S, Canault M, Falaise C, Poggi M, Suchon P et al (2018) Long-term management of leukocyte adhesion deficiency type III without hematopoietic stem cell transplantation. Haematologica 103(6):e264–e267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Stepensky PY, Wolach B, Gavrieli R, Rousso S, Ben Ami T, Goldman V et al (2015) Leukocyte adhesion deficiency type III: clinical features and treatment with stem cell transplantation. J Pediatr Hematol Oncol 37(4):264–268

    Article  CAS  PubMed  Google Scholar 

  147. Troeger A, Williams DA (2013) Hematopoietic-specific rho GTPases Rac2 and RhoH and human blood disorders. Exp Cell Res 319(15):2375–2383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Roberts AW, Kim C, Zhen L, Lowe JB, Kapur R, Petryniak B et al (1999) Deficiency of the hematopoietic cell-specific Rho family GTPase Rac2 is characterized by abnormalities in neutrophil function and host defense. Immunity 10(2):183–196

    Article  CAS  PubMed  Google Scholar 

  149. Gu Y, Jia B, Yang FC, D’Souza M, Harris CE, Derrow CW et al (2001) Biochemical and biological characterization of a human Rac2 GTPase mutant associated with phagocytic immunodeficiency. J Biol Chem 276(19):15929–15938

    Article  CAS  PubMed  Google Scholar 

  150. Williams DA, Tao W, Yang F, Kim C, Gu Y, Mansfield P et al (2000) Dominant negative mutation of the hematopoietic-specific Rho GTPase, Rac2, is associated with a human phagocyte immunodeficiency. Blood 96(5):1646–1654

    CAS  PubMed  Google Scholar 

  151. Ambruso DR, Knall C, Abell AN, Panepinto J, Kurkchubasche A, Thurman G et al (2000) Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2 mutation. Proc Natl Acad Sci U S A 97(9):4654–4659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kurkchubasche AG, Panepinto JA, Tracy TF Jr, Thurman GW, Ambruso DR (2001) Clinical features of a human Rac2 mutation: a complex neutrophil dysfunction disease. J Pediatr 139(1):141–147

    Article  CAS  PubMed  Google Scholar 

  153. Accetta D, Syverson G, Bonacci B, Reddy S, Bengtson C, Surfus J et al (2011) Human phagocyte defect caused by a Rac2 mutation detected by means of neonatal screening for T-cell lymphopenia. J Allergy Clin Immunol 127(2):535. –538.e531–532

    Article  CAS  PubMed  Google Scholar 

  154. Bogaert DJ, Dullaers M, Lambrecht BN, Vermaelen KY, De Baere E, Haerynck F (2016) Genes associated with common variable immunodeficiency: one diagnosis to rule them all? J Med Genet 53(9):575–590

    Article  CAS  PubMed  Google Scholar 

  155. Alkhairy OK, Rezaei N, Graham RR, Abolhassani H, Borte S, Hultenby K et al (2015) RAC2 loss-of-function mutation in 2 siblings with characteristics of common variable immunodeficiency. J Allergy Clin Immunol 135(5):1380. –1384.e1381–1385

    Article  CAS  PubMed  Google Scholar 

  156. Lougaris V, Chou J, Beano A, Wallace JG, Baronio M, Gazzurelli L et al (2019) A monoallelic activating mutation in RAC2 resulting in a combined immunodeficiency. J Allergy Clin Immunol 143(4):1649–1653.e1643

    Article  CAS  PubMed  Google Scholar 

  157. Hsu AP, Donko A, Arrington ME, Swamydas M, Fink D, Das A et al (2019) Dominant activating RAC2 mutation with lymphopenia, immunodeficiency, and cytoskeletal defects. Blood 133(18):1977–1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Nunoi H, Yamazaki T, Tsuchiya H, Kato S, Malech HL, Matsuda I et al (1999) A heterozygous mutation of beta-actin associated with neutrophil dysfunction and recurrent infection. Proc Natl Acad Sci U S A 96(15):8693–8698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Hundt N, Preller M, Swolski O, Ang AM, Mannherz HG, Manstein DJ et al (2014) Molecular mechanisms of disease-related human beta-actin mutations p.R183W and p.E364K. FEBS J 281(23):5279–5291

    Article  CAS  PubMed  Google Scholar 

  160. Rommelaere H, Waterschoot D, Neirynck K, Vandekerckhove J, Ampe C (2004) A method for rapidly screening functionality of actin mutants and tagged actins. Biol Proced Online 6:235–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Sandestig A, Green A, Jonasson J, Vogt H, Wahlstrom J, Pepler A et al (2019) Could dissimilar phenotypic effects of ACTB missense mutations reflect the actin conformational change? Two novel mutations and literature review. Mol Syndromol 9(5):259–265

    Article  PubMed  CAS  Google Scholar 

  162. Nunoi H, Yamazaki T, Kanegasaki S (2001) Neutrophil cytoskeletal disease. Int J Hematol 74(2):119–124

    Article  CAS  PubMed  Google Scholar 

  163. Kuhns DB, Fink DL, Choi U, Sweeney C, Lau K, Priel DL et al (2016) Cytoskeletal abnormalities and neutrophil dysfunction in WDR1 deficiency. Blood 128(17):2135–2143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Standing AS, Malinova D, Hong Y, Record J, Moulding D, Blundell MP et al (2017) Autoinflammatory periodic fever, immunodeficiency, and thrombocytopenia (PFIT) caused by mutation in actin-regulatory gene WDR1. J Exp Med 214(1):59–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Pfajfer L, Mair NK, Jimenez-Heredia R, Genel F, Gulez N, Ardeniz O et al (2018) Mutations affecting the actin regulator WD repeat-containing protein 1 lead to aberrant lymphoid immunity. J Allergy Clin Immunol 142(5):1589–1604.e1511

    Article  CAS  PubMed  Google Scholar 

  166. Ma Z, Morris SW, Valentine V, Li M, Herbrick JA, Cui X et al (2001) Fusion of two novel genes, RBM15 and MKL1, in the t(1;22)(p13;q13) of acute megakaryoblastic leukemia. Nat Genet 28(3):220–221

    Article  CAS  PubMed  Google Scholar 

  167. Filippi MD (2015) Neutrophil actin regulation: MKL1 is in control. Blood 126(13):1519–1520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Record J, Malinova D, Zenner HL, Plagnol V, Nowak K, Syed F et al (2015) Immunodeficiency and severe susceptibility to bacterial infection associated with a loss-of-function homozygous mutation of MKL1. Blood 126(13):1527–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Toomes C, James J, Wood AJ, Wu CL, McCormick D, Lench N et al (1999) Loss-of-function mutations in the cathepsin C gene result in periodontal disease and palmoplantar keratosis. Nat Genet 23(4):421–424

    Article  CAS  PubMed  Google Scholar 

  170. Hart TC, Hart PS, Michalec MD, Zhang Y, Marazita ML, Cooper M et al (2000) Localisation of a gene for prepubertal periodontitis to chromosome 11q14 and identification of a cathepsin C gene mutation. J Med Genet 37(2):95–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Dalgic B, Bukulmez A, Sari S (2011) Eponym: Papillon-Lefevre syndrome. Eur J Pediatr 170(6):689–691

    Article  PubMed  Google Scholar 

  172. de Haar SF, Hiemstra PS, van Steenbergen MT, Everts V, Beertsen W (2006) Role of polymorphonuclear leukocyte-derived serine proteinases in defense against Actinobacillus actinomycetemcomitans. Infect Immun 74(9):5284–5291

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Ghaffer KA, Zahran FM, Fahmy HM, Brown RS (1999) Papillon-Lefevre syndrome: neutrophil function in 15 cases fron 4 families in Egypt. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 88(3):320–325

    Article  CAS  PubMed  Google Scholar 

  174. Fageeh HN (2018) Papillon-Lefevre Syndrome: a rare case report of two brothers and review of the literature. Int J Clin Pediatr Dent 11(4):352–355

    Article  PubMed  PubMed Central  Google Scholar 

  175. Wiebe CB, Hakkinen L, Putnins EE, Walsh P, Larjava HS (2001) Successful periodontal maintenance of a case with Papillon-Lefevre syndrome: 12-year follow-up and review of the literature. J Periodontol 72(6):824–830

    Article  CAS  PubMed  Google Scholar 

  176. Albandar JM, Khattab R, Monem F, Barbuto SM, Paster BJ (2012) The subgingival microbiota of Papillon-Lefevre syndrome. J Periodontol 83(7):902–908

    Article  CAS  PubMed  Google Scholar 

  177. Dhanawade SS, Shah SD, Kakade GM (2009) Papillon-lefevre syndrome with liver abscess. Indian Pediatr 46(8):723–725

    CAS  PubMed  Google Scholar 

  178. Kanthimathinathan HK, Browne F, Ramirez R, McKaig S, Debelle G, Martin J et al (2013) Multiple cerebral abscesses in Papillon-Lefevre syndrome. Childs Nerv Syst 29(8):1227–1229

    Article  PubMed  Google Scholar 

  179. Morgan RD, Hannon E, Lakhoo K (2011) Renal abscess in Papillion-Lefevre syndrome. Pediatr Surg Int 27(12):1381–1383

    Article  PubMed  Google Scholar 

  180. Hamon Y, Legowska M, Fergelot P, Dallet-Choisy S, Newell L, Vanderlynden L et al (2016) Analysis of urinary cathepsin C for diagnosing Papillon-Lefevre syndrome. FEBS J 283(3):498–509

    Article  CAS  PubMed  Google Scholar 

  181. Tinanoff N, Tempro P, Maderazo EG (1995) Dental treatment of Papillon-Lefevre syndrome: 15-year follow-up. J Clin Periodontol 22(8):609–612

    Article  CAS  PubMed  Google Scholar 

  182. Etoz OA, Ulu M, Kesim B (2010) Treatment of patient with Papillon-Lefevre syndrome with short dental implants: a case report. Implant Dent 19(5):394–399

    Article  PubMed  Google Scholar 

  183. Toygar HU, Kircelli C, Firat E, Guzeldemir E (2007) Combined therapy in a patient with Papillon-Lefevre syndrome: a 13-year follow-up. J Periodontol 78(9):1819–1824

    Article  PubMed  Google Scholar 

  184. Nickles K, Schacher B, Ratka-Kruger P, Krebs M, Eickholz P (2013) Long-term results after treatment of periodontitis in patients with Papillon-Lefevre syndrome: success and failure. J Clin Periodontol 40(8):789–798

    Article  PubMed  Google Scholar 

  185. Kressin S, Herforth A, Preis S, Wahn V, Lenard HG (1995) Papillon-Lefevre syndrome—successful treatment with a combination of retinoid and concurrent systematic periodontal therapy: case reports. Quintessence Int 26(11):795–803

    CAS  PubMed  Google Scholar 

  186. Fine DH, Patil AG, Loos BG (2018) Classification and diagnosis of aggressive periodontitis. J Periodontol 89(Suppl 1):S103–s119

    Article  PubMed  Google Scholar 

  187. Oh TJ, Eber R, Wang HL (2002) Periodontal diseases in the child and adolescent. J Clin Periodontol 29(5):400–410

    Article  PubMed  Google Scholar 

  188. Goncalves PF, Harris TH, Elmariah T, Aukhil I, Wallace MR, Shaddox LM (2018) Genetic polymorphisms and periodontal disease in populations of African descent: a review. J Periodontal Res 53(2):164–173

    Article  CAS  PubMed  Google Scholar 

  189. Hewitt C, McCormick D, Linden G, Turk D, Stern I, Wallace I et al (2004) The role of cathepsin C in Papillon-Lefevre syndrome, prepubertal periodontitis, and aggressive periodontitis. Hum Mutat 23(3):222–228

    Article  CAS  PubMed  Google Scholar 

  190. Seifert R, Wenzel-Seifert K (2001) Defective Gi protein coupling in two formyl peptide receptor mutants associated with localized juvenile periodontitis. J Biol Chem 276(45):42043–42049

    Article  CAS  PubMed  Google Scholar 

  191. Seymour RA, Heasman PA (1995) Pharmacological control of periodontal disease. II. Antimicrobial agents. J Dent 23(1):5–14

    Article  CAS  PubMed  Google Scholar 

  192. Roos D (2019) Chronic granulomatous disease. Methods Mol Biol 1982:531–542

    Article  CAS  PubMed  Google Scholar 

  193. Bridges RA, Berendes H, Good RA (1959) A fatal granulomatous disease of childhood; the clinical, pathological, and laboratory features of a new syndrome. Am J Dis Child 97(4):387–408

    Article  CAS  Google Scholar 

  194. van den Berg JM, van Koppen E, Ahlin A, Belohradsky BH, Bernatowska E, Corbeel L et al (2009) Chronic granulomatous disease: the European experience. PLoS One 4(4):e5234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Liese J, Kloos S, Jendrossek V, Petropoulou T, Wintergerst U, Notheis G et al (2000) Long-term follow-up and outcome of 39 patients with chronic granulomatous disease. J Pediatr 137(5):687–693

    Article  CAS  PubMed  Google Scholar 

  196. Winkelstein JA, Marino MC, Johnston RB Jr, Boyle J, Curnutte J, Gallin JI et al (2000) Chronic granulomatous disease. Report on a national registry of 368 patients. Medicine (Baltimore) 79(3):155–169

    Article  CAS  Google Scholar 

  197. Cale CM, Jones AM, Goldblatt D (2000) Follow up of patients with chronic granulomatous disease diagnosed since 1990. Clin Exp Immunol 120(2):351–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. de Oliveira-Junior EB, Zurro NB, Prando C, Cabral-Marques O, Pereira PV, Schimke LF et al (2015) Clinical and genotypic spectrum of chronic granulomatous disease in 71 Latin American patients: first report from the LASID registry. Pediatr Blood Cancer 62(12):2101–2107

    Article  PubMed  CAS  Google Scholar 

  199. Roos D, Kuhns DB, Maddalena A, Roesler J, Lopez JA, Ariga T et al (2010) Hematologically important mutations: X-linked chronic granulomatous disease (third update). Blood Cells Mol Dis 45(3):246–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Singel KL, Segal BH (2016) NOX2-dependent regulation of inflammation. Clin Sci (Lond) 130(7):479–490

    Article  CAS  Google Scholar 

  201. Thomas DC (2017) The phagocyte respiratory burst: historical perspectives and recent advances. Immunol Lett 192:88–96

    Article  CAS  PubMed  Google Scholar 

  202. Reeves EP, Lu H, Jacobs HL, Messina CG, Bolsover S, Gabella G et al (2002) Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 416(6878):291–297

    Article  CAS  PubMed  Google Scholar 

  203. Bianchi M, Hakkim A, Brinkmann V, Siler U, Seger RA, Zychlinsky A et al (2009) Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood 114(13):2619–2622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Arnadottir GA, Norddahl GL, Gudmundsdottir S, Agustsdottir AB, Sigurdsson S, Jensson BO et al (2018) A homozygous loss-of-function mutation leading to CYBC1 deficiency causes chronic granulomatous disease. Nat Commun 9(1):4447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Thomas DC, Charbonnier LM, Schejtman A, Aldhekri H, Coomber EL, Dufficy ER et al (2019) EROS/CYBC1 mutations: Decreased NADPH oxidase function and chronic granulomatous disease. J Allergy Clin Immunol 143(2):782–785.e781

    Article  CAS  PubMed  Google Scholar 

  206. Ariga T, Furuta H, Cho K, Sakiyama Y (1998) Genetic analysis of 13 families with X-linked chronic granulomatous disease reveals a low proportion of sporadic patients and a high proportion of sporadic carriers. Pediatr Res 44(1):85–92

    Article  CAS  PubMed  Google Scholar 

  207. Roos D, de Boer M, Kuribayashi F, Meischl C, Weening RS, Segal AW et al (1996) Mutations in the X-linked and autosomal recessive forms of chronic granulomatous disease. Blood 87(5):1663–1681

    Article  CAS  PubMed  Google Scholar 

  208. Wolach B, Gavrieli R, de Boer M, Gottesman G, Ben-Ari J, Rottem M et al (2008) Chronic granulomatous disease in Israel: clinical, functional and molecular studies of 38 patients. Clin Immunol 129(1):103–114

    Article  CAS  PubMed  Google Scholar 

  209. Kutukculer N, Aykut A, Karaca NE, Durmaz A, Aksu G, Genel F et al (2019) Chronic granulamatous disease: two decades of experience from a paediatric immunology unit in a country with high rate of consangineous marriages. Scand J Immunol 89(2):e12737

    Article  PubMed  CAS  Google Scholar 

  210. Matute JD, Arias AA, Wright NA, Wrobel I, Waterhouse CC, Li XJ et al (2009) A new genetic subgroup of chronic granulomatous disease with autosomal recessive mutations in p40 phox and selective defects in neutrophil NADPH oxidase activity. Blood 114(15):3309–3315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. van de Geer A, Nieto-Patlan A, Kuhns DB, Tool AT, Arias AA, Bouaziz M et al (2018) Inherited p40phox deficiency differs from classic chronic granulomatous disease. J Clin Invest 128(9):3957–3975

    Article  PubMed  PubMed Central  Google Scholar 

  212. Segal BH, Leto TL, Gallin JI, Malech HL, Holland SM (2000) Genetic, biochemical, and clinical features of chronic granulomatous disease. Medicine (Baltimore) 79(3):170–200

    Article  CAS  Google Scholar 

  213. Kuhns DB, Alvord WG, Heller T, Feld JJ, Pike KM, Marciano BE et al (2010) Residual NADPH oxidase and survival in chronic granulomatous disease. N Engl J Med 363(27):2600–2610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Johnston RB, Newman SL (1977) Chronic granulomatous disease. Pediatr Clin N Am 24(2):365–376

    Article  CAS  Google Scholar 

  215. Cohen MS, Isturiz RE, Malech HL, Root RK, Wilfert CM, Gutman L et al (1981) Fungal infection in chronic granulomatous disease. The importance of the phagocyte in defense against fungi. Am J Med 71(1):59–66

    Article  CAS  PubMed  Google Scholar 

  216. Hitzig WH, Seger RA (1983) Chronic granulomatous disease, a heterogeneous syndrome. Hum Genet 64(3):207–215

    Article  CAS  PubMed  Google Scholar 

  217. Tauber AI, Borregaard N, Simons E, Wright J (1983) Chronic granulomatous disease: a syndrome of phagocyte oxidase deficiencies. Medicine (Baltimore) 62(5):286–309

    Article  CAS  Google Scholar 

  218. Hayakawa H, Kobayashi N, Yata J (1985) Chronic granulomatous disease in Japan: a summary of the clinical features of 84 registered patients. Acta Paediatr Jpn 27(501)

    Google Scholar 

  219. Forrest CB, Forehand JR, Axtell RA, Roberts RL, Johnston RB Jr (1988) Clinical features and current management of chronic granulomatous disease. Hematol Oncol Clin North Am 2(2):253–266

    Article  CAS  PubMed  Google Scholar 

  220. Mouy R, Fischer A, Vilmer E, Seger R, Griscelli C (1989) Incidence, severity, and prevention of infections in chronic granulomatous disease. J Pediatr 114(4 Pt 1):555–560

    Article  CAS  PubMed  Google Scholar 

  221. Bemiller LS, Roberts DH, Starko KM, Curnutte JT (1995) Safety and effectiveness of long-term interferon gamma therapy in patients with chronic granulomatous disease. Blood Cells Mol Dis 21(3):239–247

    Article  CAS  PubMed  Google Scholar 

  222. Marciano BE, Spalding C, Fitzgerald A, Mann D, Brown T, Osgood S et al (2015) Common severe infections in chronic granulomatous disease. Clin Infect Dis 60(8):1176–1183

    Article  CAS  PubMed  Google Scholar 

  223. Bennett N, Maglione PJ, Wright BL, Zerbe C (2018) Infectious complications in patients with chronic granulomatous disease. J Pediatric Infect Dis Soc 7(suppl_1):S12–s17

    Article  PubMed  PubMed Central  Google Scholar 

  224. Greenberg DE, Shoffner AR, Zelazny AM, Fenster ME, Zarember KA, Stock F et al (2010) Recurrent Granulibacter bethesdensis infections and chronic granulomatous disease. Emerg Infect Dis 16(9):1341–1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Meher-Homji Z, Mangalore RP, Johnson DR, Chua YL (2017) Chromobacterium violaceum infection in chronic granulomatous disease: a case report and review of the literature. JMM Case Rep 4(1):e005084

    Article  PubMed  PubMed Central  Google Scholar 

  226. Reichenbach J, Lopatin U, Mahlaoui N, Beovic B, Siler U, Zbinden R et al (2009) Actinomyces in chronic granulomatous disease: an emerging and unanticipated pathogen. Clin Infect Dis 49(11):1703–1710

    Article  PubMed  Google Scholar 

  227. Bustamante J, Aksu G, Vogt G, de Beaucoudrey L, Genel F, Chapgier A et al (2007) BCG-osis and tuberculosis in a child with chronic granulomatous disease. J Allergy Clin Immunol 120(1):32–38

    Article  PubMed  Google Scholar 

  228. Conti F, Lugo-Reyes SO, Blancas Galicia L, He J, Aksu G, Borges de Oliveira E Jr et al (2016) Mycobacterial disease in patients with chronic granulomatous disease: a retrospective analysis of 71 cases. J Allergy Clin Immunol 138(1):241–248.e243

    Article  PubMed  Google Scholar 

  229. Zhou Q, Hui X, Ying W, Hou J, Wang W, Liu D et al (2018) A cohort of 169 chronic granulomatous disease patients exposed to BCG vaccination: a retrospective study from a single center in Shanghai, China (2004-2017). J Clin Immunol 38(3):260–272

    Article  CAS  PubMed  Google Scholar 

  230. Greenberg DE, Goldberg JB, Stock F, Murray PR, Holland SM, Lipuma JJ (2009) Recurrent Burkholderia infection in patients with chronic granulomatous disease: 11-year experience at a large referral center. Clin Infect Dis 48(11):1577–1579

    Article  PubMed  Google Scholar 

  231. Lublin M, Bartlett DL, Danforth DN, Kauffman H, Gallin JI, Malech HL et al (2002) Hepatic abscess in patients with chronic granulomatous disease. Ann Surg 235(3):383–391

    Article  PubMed  PubMed Central  Google Scholar 

  232. Leiding JW, Freeman AF, Marciano BE, Anderson VL, Uzel G, Malech HL et al (2012) Corticosteroid therapy for liver abscess in chronic granulomatous disease. Clin Infect Dis 54(5):694–700

    Article  CAS  PubMed  Google Scholar 

  233. Galluzzo ML, Hernandez C, Davila MT, Perez L, Oleastro M, Zelazko M et al (2008) Clinical and histopathological features and a unique spectrum of organisms significantly associated with chronic granulomatous disease osteomyelitis during childhood. Clin Infect Dis 46(5):745–749

    Article  CAS  PubMed  Google Scholar 

  234. Segal BH, DeCarlo ES, Kwon-Chung KJ, Malech HL, Gallin JI, Holland SM (1998) Aspergillus nidulans infection in chronic granulomatous disease. Medicine (Baltimore) 77(5):345–354

    Article  CAS  Google Scholar 

  235. King J, Henriet SSV, Warris A (2016) Aspergillosis in chronic granulomatous disease. J Fungi (Basel) 2(2)

    Google Scholar 

  236. Dorman SE, Guide SV, Conville PS, DeCarlo ES, Malech HL, Gallin JI et al (2002) Nocardia infection in chronic granulomatous disease. Clin Infect Dis 35(4):390–394

    Article  PubMed  Google Scholar 

  237. Alvarez-Cardona A, Rodriguez-Lozano AL, Blancas-Galicia L, Rivas-Larrauri FE, Yamazaki-Nakashimada MA (2012) Intravenous immunoglobulin treatment for macrophage activation syndrome complicating chronic granulomatous disease. J Clin Immunol 32(2):207–211

    Article  PubMed  Google Scholar 

  238. Schappi MG, Jaquet V, Belli DC, Krause KH (2008) Hyperinflammation in chronic granulomatous disease and anti-inflammatory role of the phagocyte NADPH oxidase. Semin Immunopathol 30(3):255–271

    Article  PubMed  CAS  Google Scholar 

  239. Brown KL, Bylund J, MacDonald KL, Song-Zhao GX, Elliott MR, Falsafi R et al (2008) ROS-deficient monocytes have aberrant gene expression that correlates with inflammatory disorders of chronic granulomatous disease. Clin Immunol 129(1):90–102

    Article  CAS  PubMed  Google Scholar 

  240. Meissner F, Seger RA, Moshous D, Fischer A, Reichenbach J, Zychlinsky A (2010) Inflammasome activation in NADPH oxidase defective mononuclear phagocytes from patients with chronic granulomatous disease. Blood 116(9):1570–1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Fernandez-Boyanapalli RF, Frasch SC, McPhillips K, Vandivier RW, Harry BL, Riches DW et al (2009) Impaired apoptotic cell clearance in CGD due to altered macrophage programming is reversed by phosphatidylserine-dependent production of IL-4. Blood 113(9):2047–2055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Sanmun D, Witasp E, Jitkaew S, Tyurina YY, Kagan VE, Ahlin A et al (2009) Involvement of a functional NADPH oxidase in neutrophils and macrophages during programmed cell clearance: implications for chronic granulomatous disease. Am J Physiol Cell Physiol 297(3):C621–C631

    Article  CAS  PubMed  Google Scholar 

  243. Rosenzweig SD (2008) Inflammatory manifestations in chronic granulomatous disease (CGD). J Clin Immunol 28(Suppl 1):S67–S72

    Article  PubMed  Google Scholar 

  244. Marciano BE, Rosenzweig SD, Kleiner DE, Anderson VL, Darnell DN, Anaya-O’Brien S et al (2004) Gastrointestinal involvement in chronic granulomatous disease. Pediatrics 114(2):462–468

    Article  PubMed  Google Scholar 

  245. Khangura SK, Kamal N, Ho N, Quezado M, Zhao X, Marciano B et al (2016) Gastrointestinal features of chronic granulomatous disease found during endoscopy. Clin Gastroenterol Hepatol 14(3):395–402.e395

    Article  PubMed  Google Scholar 

  246. Uzel G, Orange JS, Poliak N, Marciano BE, Heller T, Holland SM (2010) Complications of tumor necrosis factor-alpha blockade in chronic granulomatous disease-related colitis. Clin Infect Dis 51(12):1429–1434

    Article  PubMed  PubMed Central  Google Scholar 

  247. Walther MM, Malech H, Berman A, Choyke P, Venzon DJ, Linehan WM et al (1992) The urological manifestations of chronic granulomatous disease. J Urol 147(5):1314–1318

    Article  CAS  PubMed  Google Scholar 

  248. Goldblatt D, Butcher J, Thrasher AJ, Russell-Eggitt I (1999) Chorioretinal lesions in patients and carriers of chronic granulomatous disease. J Pediatr 134(6):780–783

    Article  CAS  PubMed  Google Scholar 

  249. Wang Y, Marciano BE, Shen D, Bishop RJ, Park S, Holland SM et al (2013) Molecular identification of bacterial DNA in the chorioretinal scars of chronic granulomatous disease. J Clin Immunol 33(5):917–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Hussain N, Feld JJ, Kleiner DE, Hoofnagle JH, Garcia-Eulate R, Ahlawat S et al (2007) Hepatic abnormalities in patients with chronic granulomatous disease. Hepatology 45(3):675–683

    Article  PubMed  Google Scholar 

  251. Godoy MC, Vos PM, Cooperberg PL, Lydell CP, Phillips P, Muller NL (2008) Chest radiographic and CT manifestations of chronic granulomatous disease in adults. AJR Am J Roentgenol 191(5):1570–1575

    Article  PubMed  Google Scholar 

  252. Khanna G, Kao SC, Kirby P, Sato Y (2005) Imaging of chronic granulomatous disease in children. Radiographics 25(5):1183–1195

    Article  PubMed  Google Scholar 

  253. Salvator H, Mahlaoui N, Catherinot E, Rivaud E, Pilmis B, Borie R et al (2015) Pulmonary manifestations in adult patients with chronic granulomatous disease. Eur Respir J 45(6):1613–1623

    Article  PubMed  Google Scholar 

  254. Jones LB, McGrogan P, Flood TJ, Gennery AR, Morton L, Thrasher A et al (2008) Special article: chronic granulomatous disease in the United Kingdom and Ireland: a comprehensive national patient-based registry. Clin Exp Immunol 152(2):211–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Scully C (1981) Orofacial manifestations of chronic granulomatous disease of childhood. Oral Surg Oral Med Oral Pathol 51(2):148–151

    Article  CAS  PubMed  Google Scholar 

  256. Manzi S, Urbach AH, McCune AB, Altman HA, Kaplan SS, Medsger TA Jr et al (1991) Systemic lupus erythematosus in a boy with chronic granulomatous disease: case report and review of the literature. Arthritis Rheum 34(1):101–105

    Article  CAS  PubMed  Google Scholar 

  257. De Ravin SS, Naumann N, Cowen EW, Friend J, Hilligoss D, Marquesen M et al (2008) Chronic granulomatous disease as a risk factor for autoimmune disease. J Allergy Clin Immunol 122(6):1097–1103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  258. Kobayashi S, Murayama S, Takanashi S, Takahashi K, Miyatsuka S, Fujita T et al (2008) Clinical features and prognoses of 23 patients with chronic granulomatous disease followed for 21 years by a single hospital in Japan. Eur J Pediatr 167(12):1389–1394

    Article  PubMed  Google Scholar 

  259. Buescher ES, Gallin JI (1984) Stature and weight in chronic granulomatous disease. J Pediatr 104(6):911–913

    Article  CAS  PubMed  Google Scholar 

  260. Marsh WL, Oyen R, Nichols ME, Allen FH Jr (1975) Chronic granulomatous disease and the Kell blood groups. Br J Haematol 29(2):247–262

    Article  CAS  PubMed  Google Scholar 

  261. Frey D, Machler M, Seger R, Schmid W, Orkin SH (1988) Gene deletion in a patient with chronic granulomatous disease and McLeod syndrome: fine mapping of the Xk gene locus. Blood 71(1):252–255

    Article  CAS  PubMed  Google Scholar 

  262. Marciano BE, Zerbe CS, Falcone EL, Ding L, DeRavin SS, Daub J et al (2018) X-linked carriers of chronic granulomatous disease: illness, lyonization, and stability. J Allergy Clin Immunol 141(1):365–371

    Article  CAS  PubMed  Google Scholar 

  263. Anderson-Cohen M, Holland SM, Kuhns DB, Fleisher TA, Ding L, Brenner S et al (2003) Severe phenotype of chronic granulomatous disease presenting in a female with a de novo mutation in gp91-phox and a non familial, extremely skewed X chromosome inactivation. Clin Immunol 109(3):308–317

    Article  CAS  PubMed  Google Scholar 

  264. Lewis EM, Singla M, Sergeant S, Koty PP, McPhail LC (2008) X-linked chronic granulomatous disease secondary to skewed X chromosome inactivation in a female with a novel CYBB mutation and late presentation. Clin Immunol 129(2):372–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Rosen-Wolff A, Soldan W, Heyne K, Bickhardt J, Gahr M, Roesler J (2001) Increased susceptibility of a carrier of X-linked chronic granulomatous disease (CGD) to Aspergillus fumigatus infection associated with age-related skewing of lyonization. Ann Hematol 80(2):113–115

    Article  CAS  PubMed  Google Scholar 

  266. Cale CM, Morton L, Goldblatt D (2007) Cutaneous and other lupus-like symptoms in carriers of X-linked chronic granulomatous disease: incidence and autoimmune serology. Clin Exp Immunol 148(1):79–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Brandrup F, Koch C, Petri M, Schiodt M, Johansen KS (1981) Discoid lupus erythematosus-like lesions and stomatitis in female carriers of X-linked chronic granulomatous disease. Br J Dermatol 104(5):495–505

    Article  CAS  PubMed  Google Scholar 

  268. Kragballe K, Borregaard N, Brandrup F, Koch C, Staehrjohansen K (1981) Relation of monocyte and neutrophil oxidative metabolism to skin and oral lesions in carriers of chronic granulomatous disease. Clin Exp Immunol 43(2):390–398

    CAS  PubMed  PubMed Central  Google Scholar 

  269. Yu JE, Azar AE, Chong HJ, Jongco AM 3rd, Prince BT (2018) Considerations in the diagnosis of chronic granulomatous disease. J Pediatric Infect Dis Soc 7(suppl_1):S6–s11

    Article  PubMed  PubMed Central  Google Scholar 

  270. Kim HY, Kim HJ, Ki CS, Kim DW, Yoo KH, Kang ES (2013) Rapid determination of chimerism status using dihydrorhodamine assay in a patient with X-linked chronic granulomatous disease following hematopoietic stem cell transplantation. Ann Lab Med 33(4):288–292

    Article  PubMed  PubMed Central  Google Scholar 

  271. Mauch L, Lun A, O’Gorman MR, Harris JS, Schulze I, Zychlinsky A et al (2007) Chronic granulomatous disease (CGD) and complete myeloperoxidase deficiency both yield strongly reduced dihydrorhodamine 123 test signals but can be easily discerned in routine testing for CGD. Clin Chem 53(5):890–896

    Article  CAS  PubMed  Google Scholar 

  272. Connelly JA, Marsh R, Parikh S, Talano JA (2018) Allogeneic hematopoietic cell transplantation for chronic granulomatous disease: controversies and state of the art. J Pediatr Infect Dis Soc 7(suppl_1):S31–s39

    Article  Google Scholar 

  273. Keller MD, Notarangelo LD, Malech HL (2018) Future of care for patients with chronic granulomatous disease: gene therapy and targeted molecular medicine. J Pediatr Infect Dis Soc 7(suppl_1):S40–s44

    Article  Google Scholar 

  274. Margolis DM, Melnick DA, Alling DW, Gallin JI (1990) Trimethoprim-sulfamethoxazole prophylaxis in the management of chronic granulomatous disease. J Infect Dis 162(3):723–726

    Article  CAS  PubMed  Google Scholar 

  275. Gallin JI, Alling DW, Malech HL, Wesley R, Koziol D, Marciano B et al (2003) Itraconazole to prevent fungal infections in chronic granulomatous disease. N Engl J Med 348(24):2416–2422

    Article  CAS  PubMed  Google Scholar 

  276. Mouy R, Veber F, Blanche S, Donadieu J, Brauner R, Levron JC et al (1994) Long-term itraconazole prophylaxis against Aspergillus infections in thirty-two patients with chronic granulomatous disease. J Pediatr 125(6 Pt 1):998–1003

    Article  CAS  PubMed  Google Scholar 

  277. Alsultan A, Williams MS, Lubner S, Goldman FD (2006) Chronic granulomatous disease presenting with disseminated intracranial aspergillosis. Pediatr Blood Cancer 47(1):107–110

    Article  PubMed  Google Scholar 

  278. Segal BH, Barnhart LA, Anderson VL, Walsh TJ, Malech HL, Holland SM (2005) Posaconazole as salvage therapy in patients with chronic granulomatous disease and invasive filamentous fungal infection. Clin Infect Dis 40(11):1684–1688

    Article  CAS  PubMed  Google Scholar 

  279. A controlled trial of interferon gamma to prevent infection in chronic granulomatous disease (1991) The international chronic granulomatous disease cooperative study group. N Engl J Med 324(8):509–516

    Google Scholar 

  280. Marciano BE, Wesley R, De Carlo ES, Anderson VL, Barnhart LA, Darnell D et al (2004) Long-term interferon-gamma therapy for patients with chronic granulomatous disease. Clin Infect Dis 39(5):692–699

    Article  CAS  PubMed  Google Scholar 

  281. Martire B, Rondelli R, Soresina A, Pignata C, Broccoletti T, Finocchi A et al (2008) Clinical features, long-term follow-up and outcome of a large cohort of patients with chronic granulomatous disease: an Italian multicenter study. Clin Immunol 126(2):155–164

    Article  CAS  PubMed  Google Scholar 

  282. Freeman AF, Marciano BE, Anderson VL, Uzel G, Costas C, Holland SM (2011) Corticosteroids in the treatment of severe nocardia pneumonia in chronic granulomatous disease. Pediatr Infect Dis J 30(9):806–808

    Article  PubMed  PubMed Central  Google Scholar 

  283. Siddiqui S, Anderson VL, Hilligoss DM, Abinun M, Kuijpers TW, Masur H et al (2007) Fulminant mulch pneumonitis: an emergency presentation of chronic granulomatous disease. Clin Infect Dis 45(6):673–681

    Article  CAS  PubMed  Google Scholar 

  284. Marciano BE, Allen ES, Conry-Cantilena C, Kristosturyan E, Klein HG, Fleisher TA et al (2017) Granulocyte transfusions in patients with chronic granulomatous disease and refractory infections: the NIH experience. J Allergy Clin Immunol 140(2):622–625

    Article  PubMed  PubMed Central  Google Scholar 

  285. Parekh C, Hofstra T, Church JA, Coates TD (2011) Hemophagocytic lymphohistiocytosis in children with chronic granulomatous disease. Pediatr Blood Cancer 56(3):460–462

    Article  PubMed  Google Scholar 

  286. Odobasic D, Kitching AR, Holdsworth SR (2016) Neutrophil-mediated regulation of innate and adaptive immunity: the role of Myeloperoxidase. J Immunol Res 2016:2349817

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  287. Pahwa R, Jialal I (2019) Myeloperoxidase deficiency. StatPearls. StatPearls Publishing LLC, Treasure Island, FL

    Google Scholar 

  288. Gazendam RP, van Hamme JL, Tool AT, Hoogenboezem M, van den Berg JM, Prins JM et al (2016) Human neutrophils use different mechanisms to kill Aspergillus fumigatus conidia and hyphae: evidence from phagocyte defects. J Immunol 196(3):1272–1283

    Article  CAS  PubMed  Google Scholar 

  289. Homme M, Tateno N, Miura N, Ohno N, Aratani Y (2013) Myeloperoxidase deficiency in mice exacerbates lung inflammation induced by nonviable Candida albicans. Inflamm Res 62(11):981–990

    Article  CAS  PubMed  Google Scholar 

  290. Cech P, Stalder H, Widmann JJ, Rohner A, Miescher PA (1979) Leukocyte myeloperoxidase deficiency and diabetes mellitus associated with Candida albicans liver abscess. Am J Med 66(1):149–153

    Article  CAS  PubMed  Google Scholar 

  291. Parry MF, Root RK, Metcalf JA, Delaney KK, Kaplow LS, Richar WJ (1981) Myeloperoxidase deficiency: prevalence and clinical significance. Ann Intern Med 95(3):293–301

    Article  CAS  PubMed  Google Scholar 

  292. Weber ML, Abela A, de Repentigny L, Garel L, Lapointe N (1987) Myeloperoxidase deficiency with extensive candidal osteomyelitis of the base of the skull. Pediatrics 80(6):876–879

    Article  CAS  PubMed  Google Scholar 

  293. Okuda T, Yasuoka T, Oka N (1991) Myeloperoxidase deficiency as a predisposing factor for deep mucocutaneous candidiasis: a case report. J Oral Maxillofac Surg 49(2):183–186

    Article  CAS  PubMed  Google Scholar 

  294. Nguyen C, Katner HP (1997) Myeloperoxidase deficiency manifesting as pustular candidal dermatitis. Clin Infect Dis 24(2):258–260

    Article  CAS  PubMed  Google Scholar 

  295. Ludviksson BR, Thorarensen O, Gudnason T, Halldorsson S (1993) Candida albicans meningitis in a child with myeloperoxidase deficiency. Pediatr Infect Dis J 12(2):162–164

    Article  CAS  PubMed  Google Scholar 

  296. Chiang AK, Chan GC, Ma SK, Ng YK, Ha SY, Lau YL (2000) Disseminated fungal infection associated with myeloperoxidase deficiency in a premature neonate. Pediatr Infect Dis J 19(10):1027–1029

    Article  CAS  PubMed  Google Scholar 

  297. Pattison DI, Davies MJ (2006) Reactions of myeloperoxidase-derived oxidants with biological substrates: gaining chemical insight into human inflammatory diseases. Curr Med Chem 13(27):3271–3290

    Article  CAS  PubMed  Google Scholar 

  298. Ndrepepa G (2019) Myeloperoxidase—a bridge linking inflammation and oxidative stress with cardiovascular disease. Clin Chim Acta 493:36–51

    Article  CAS  PubMed  Google Scholar 

  299. Lehners A, Lange S, Niemann G, Rosendahl A, Meyer-Schwesinger C, Oh J et al (2014) Myeloperoxidase deficiency ameliorates progression of chronic kidney disease in mice. Am J Physiol Renal Physiol 307(4):F407–F417

    Article  CAS  PubMed  Google Scholar 

  300. Kisic B, Miric D, Dragojevic I, Rasic J, Popovic L (2016) Role of Myeloperoxidase in patients with chronic kidney disease. Oxidative Med Cell Longev 2016:1069743

    Article  CAS  Google Scholar 

  301. Vinh DC (2011) Insights into human antifungal immunity from primary immunodeficiencies. Lancet Infect Dis 11(10):780–792

    Article  CAS  PubMed  Google Scholar 

  302. Li J, Vinh DC, Casanova JL, Puel A (2017) Inborn errors of immunity underlying fungal diseases in otherwise healthy individuals. Curr Opin Microbiol 40:46–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Weydert CJ, Cullen JJ (2010) Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat Protoc 5(1):51–66

    Article  CAS  PubMed  Google Scholar 

  304. Luzzatto L, Nannelli C, Notaro R (2016) Glucose-6-phosphate dehydrogenase deficiency. Hematol Oncol Clin North Am 30(2):373–393

    Article  PubMed  Google Scholar 

  305. Roos D, van Zwieten R, Wijnen JT, Gomez-Gallego F, de Boer M, Stevens D et al (1999) Molecular basis and enzymatic properties of glucose 6-phosphate dehydrogenase volendam, leading to chronic nonspherocytic anemia, granulocyte dysfunction, and increased susceptibility to infections. Blood 94(9):2955–2962

    CAS  PubMed  Google Scholar 

  306. Siler U, Romao S, Tejera E, Pastukhov O, Kuzmenko E, Valencia RG et al (2017) Severe glucose-6-phosphate dehydrogenase deficiency leads to susceptibility to infection and absent NETosis. J Allergy Clin Immunol 139(1):212–219.e213

    Article  CAS  PubMed  Google Scholar 

  307. Khan TA, Mazhar H, Nawaz M, Kalsoom K, Ishfaq M, Asif H et al (2017) Expanding the clinical and genetic spectrum of G6PD deficiency: the occurrence of BCGitis and novel missense mutation. Microb Pathog 102:160–165

    Article  CAS  PubMed  Google Scholar 

  308. Ristoff E, Mayatepek E, Larsson A (2001) Long-term clinical outcome in patients with glutathione synthetase deficiency. J Pediatr 139(1):79–84

    Article  CAS  PubMed  Google Scholar 

  309. Njalsson R, Ristoff E, Carlsson K, Winkler A, Larsson A, Norgren S (2005) Genotype, enzyme activity, glutathione level, and clinical phenotype in patients with glutathione synthetase deficiency. Hum Genet 116(5):384–389

    Article  PubMed  CAS  Google Scholar 

  310. Spielberg SP, Boxer LA, Oliver JM, Butler EJ, Schulman JD (1978) Altered phagocytosis and microtubule function in leukocytes from a patient with severe glutathione synthase deficiency (5-oxoprolinuria). Monogr Hum Genet 9:90–94

    Article  CAS  PubMed  Google Scholar 

  311. Baehner RL, Boxer LA (1979) Role of membrane vitamin E and cytoplasmic glutathione in the regulation of phagocytic functions of neutrophils and monocytes. Am J Pediatr Hematol Oncol 1(1):71–76

    CAS  PubMed  Google Scholar 

  312. Boxer LA, Oliver JM, Spielberg SP, Allen JM, Schulman JD (1979) Protection of granulocytes by vitamin E in glutathione synthetase deficiency. N Engl J Med 301(17):901–905

    Article  CAS  PubMed  Google Scholar 

  313. Cowland JB, Borregaard N (2016) Granulopoiesis and granules of human neutrophils. Immunol Rev 273(1):11–28

    Article  CAS  PubMed  Google Scholar 

  314. Serwas NK, Huemer J, Dieckmann R, Mejstrikova E, Garncarz W, Litzman J et al (2018) CEBPE-mutant specific granule deficiency correlates with aberrant granule organization and substantial proteome alterations in neutrophils. Front Immunol 9:588

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  315. McIlwaine L, Parker A, Sandilands G, Gallipoli P, Leach M (2013) Neutrophil-specific granule deficiency. Br J Haematol 160(6):735

    Article  PubMed  Google Scholar 

  316. Shiohara M, Gombart AF, Sekiguchi Y, Hidaka E, Ito S, Yamazaki T et al (2004) Phenotypic and functional alterations of peripheral blood monocytes in neutrophil-specific granule deficiency. J Leukoc Biol 75(2):190–197

    Article  CAS  PubMed  Google Scholar 

  317. Rosenberg HF, Gallin JI (1993) Neutrophil-specific granule deficiency includes eosinophils. Blood 82(1):268–273

    Article  CAS  PubMed  Google Scholar 

  318. Parker RI, McKeown LP, Gallin JI, Gralnick HR (1992) Absence of the largest platelet-von Willebrand multimers in a patient with lactoferrin deficiency and a bleeding tendency. Thromb Haemost 67(3):320–324

    Article  CAS  PubMed  Google Scholar 

  319. Lekstrom-Himes JA, Dorman SE, Kopar P, Holland SM, Gallin JI (1999) Neutrophil-specific granule deficiency results from a novel mutation with loss of function of the transcription factor CCAAT/enhancer binding protein epsilon. J Exp Med 189(11):1847–1852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Witzel M, Petersheim D, Fan Y, Bahrami E, Racek T, Rohlfs M et al (2017) Chromatin-remodeling factor SMARCD2 regulates transcriptional networks controlling differentiation of neutrophil granulocytes. Nat Genet 49(5):742–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Priam P, Krasteva V, Rousseau P, D’Angelo G, Gaboury L, Sauvageau G et al (2017) SMARCD2 subunit of SWI/SNF chromatin-remodeling complexes mediates granulopoiesis through a CEBPvarepsilon dependent mechanism. Nat Genet 49(5):753–764

    Article  CAS  PubMed  Google Scholar 

  322. Wynn RF, Sood M, Theilgaard-Monch K, Jones CJ, Gombart AF, Gharib M et al (2006) Intractable diarrhoea of infancy caused by neutrophil specific granule deficiency and cured by stem cell transplantation. Gut 55(2):292–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. Trapnell BC, Nakata K, Bonella F, Campo I, Griese M, Hamilton J et al (2019) Pulmonary alveolar proteinosis. Nat Rev Dis Primers 5(1):16

    Article  PubMed  Google Scholar 

  324. Martinez-Moczygemba M, Doan ML, Elidemir O, Fan LL, Cheung SW, Lei JT et al (2008) Pulmonary alveolar proteinosis caused by deletion of the GM-CSFRalpha gene in the X chromosome pseudoautosomal region 1. J Exp Med 205(12):2711–2716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Suzuki T, Sakagami T, Rubin BK, Nogee LM, Wood RE, Zimmerman SL et al (2008) Familial pulmonary alveolar proteinosis caused by mutations in CSF2RA. J Exp Med 205(12):2703–2710

    Article  PubMed  PubMed Central  Google Scholar 

  326. Suzuki T, Maranda B, Sakagami T, Catellier P, Couture CY, Carey BC et al (2011) Hereditary pulmonary alveolar proteinosis caused by recessive CSF2RB mutations. Eur Respir J 37(1):201–204

    Article  CAS  PubMed  Google Scholar 

  327. Fremond ML, Hadchouel A, Schweitzer C, Berteloot L, Bruneau J, Bonnet C et al (2018) Successful haematopoietisssssc stem cell transplantation in a case of pulmonary alveolar proteinosis due to GM-CSF receptor deficiency. Thorax 73(6):590–592

    Article  PubMed  Google Scholar 

  328. Takaki M, Tanaka T, Komohara Y, Tsuchihashi Y, Mori D, Hayashi K et al (2016) Recurrence of pulmonary alveolar proteinosis after bilateral lung transplantation in a patient with a nonsense mutation in CSF2RB. Respir Med Case Rep 19:89–93

    PubMed  PubMed Central  Google Scholar 

  329. Dinauer MC, Coates TD (2018) Disorders of phagocyte function, chapter 50. In: Hoffman R et al (eds) Hematology: basic principles and practice, 7th edn. Elsevier, pp 691–709, Copyright Elsevier, 2018

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filomeen Haerynck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bogaert, D.J., Haerynck, F. (2021). Congenital Defects of Phagocytes. In: D'Elios, M.M., Baldari, C.T., Annunziato, F. (eds) Cellular Primary Immunodeficiencies. Rare Diseases of the Immune System. Springer, Cham. https://doi.org/10.1007/978-3-030-70107-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70107-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70106-2

  • Online ISBN: 978-3-030-70107-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics