Skip to main content

Advertisement

Log in

Kostmann’s Disease and HCLS1-Associated Protein X-1 (HAX1)

  • CME Review
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Severe congenital neutropenia (SCN), originally described by the Swedish pediatrician Rolf Kostmann, constitutes a heterogeneous disorder associated with a dramatic decrease of peripheral neutrophil granulocytes. Patients suffer from life-threatening bacterial infections unless treated by recombinant human granulocyte colony stimulating factor (G-CSF) or allogeneic hematopoietic stem cells. This review is focused on the SCN variant caused by mutations in HCLS1 Associated Protein X-1 (HAX1) (SCN3, “Kostmann Disease”). HAX1 is a ubiquitously expressed protein with pleotropic functions, including control of cellular viability, migration, and cancer progression. Even though scientific evidence on the molecular mechanisms regarding HAX1 accumulates, no unified picture has emerged. This review highlights historical milestones and our current understanding of SCN related to mutations in HAX1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schultze M. Ein heizbarer Objecttisch und seine Verwendung bei Untersuchungen des Blutes. Arch Mikr Anat. 1865;1(1):1–42.

    Article  Google Scholar 

  2. Ehrlich P. Methodologische Beiträge zur Pyysiologie und Pathologie der verschiedenen Formen der Leukozyten. Ztschr f Klin Med. 1880;I(I):553–8.

    Google Scholar 

  3. Schultz W. Über eigenartige Halserkrankungen. Dtsch Med Wochenschr. 1922;48(48):1495–8.

    Google Scholar 

  4. Plum P. Agranulocytosis due to aminopyrine. Lancet. 1935;1(1):15.

    Google Scholar 

  5. Kostmann R. Hereditär reticules—en ny systemsjukdom. Svenska Laekartidningen. 1950;47(47):2861–8.

    Google Scholar 

  6. Kostmann R. Infantile genetic agranulocytosis; agranulocytosis infantilis hereditaria. Acta Paediatr Suppl. 1956;45(Suppl 105):1–78.

    CAS  PubMed  Google Scholar 

  7. Kostman R. Infantile genetic agranulocytosis. A review with presentation of ten new cases. Acta Paediatr Scand. 1975;64(2):362–8.

    Article  CAS  PubMed  Google Scholar 

  8. Carlsson G, Fasth A. Infantile genetic agranulocytosis, morbus Kostmann: presentation of six cases from the original “Kostmann family” and a review. Acta Paediatr. 2001;90(7):757–64.

    Article  CAS  PubMed  Google Scholar 

  9. Dale DC, Person RE, Bolyard AA, Aprikyan AG, Bos C, Bonilla MA, et al. Mutations in the gene encoding neutrophil elastase in congenital and cyclic neutropenia. Blood. 2000;96(7):2317–22.

    CAS  PubMed  Google Scholar 

  10. Horwitz M, Benson KF, Person RE, Aprikyan AG, Dale DC. Mutations in ELA2, encoding neutrophil elastase, define a 21-day biological clock in cyclic haematopoiesis. Nat Genet. 1999;23(4):433–6.

    Article  CAS  PubMed  Google Scholar 

  11. Klein C, Grudzien M, Appaswamy G, Germeshausen M, Sandrock I, Schaffer AA, et al. HAX1 deficiency causes autosomal recessive severe congenital neutropenia (Kostmann disease). Nat Genet. 2007;39(1):86–92.

    Article  CAS  PubMed  Google Scholar 

  12. Melin M, Entesarian M, Carlsson G, Garwicz D, Klein C, Fadeel B, et al. Assignment of the gene locus for severe congenital neutropenia to chromosome 1q22 in the original Kostmann family from Northern Sweden. Biochem Biophys Res Commun. 2007;353(3):571–5.

    Article  CAS  PubMed  Google Scholar 

  13. Suzuki Y, Demoliere C, Kitamura D, Takeshita H, Deuschle U, Watanabe T. HAX-1, a novel intracellular protein, localized on mitochondria, directly associates with HS1, a substrate of Src family tyrosine kinases. J Immunol. 1997;158(6):2736–44.

    CAS  PubMed  Google Scholar 

  14. Cilenti L, Soundarapandian MM, Kyriazis GA, Stratico V, Singh S, Gupta S, et al. Regulation of HAX-1 anti-apoptotic protein by Omi/HtrA2 protease during cell death. J Biol Chem. 2004;279(48):50295–301.

    Article  CAS  PubMed  Google Scholar 

  15. Ortiz DF, Moseley J, Calderon G, Swift AL, Li S, Arias IM. Identification of HAX-1 as a protein that binds bile salt export protein and regulates its abundance in the apical membrane of Madin-Darby canine kidney cells. J Biol Chem. 2004;279(31):32761–70.

    Article  CAS  PubMed  Google Scholar 

  16. Hippe A, Bylaite M, Chen M, von Mikecz A, Wolf R, Ruzicka T, et al. Expression and tissue distribution of mouse Hax1. Gene. 2006;379:116–26.

    Article  CAS  PubMed  Google Scholar 

  17. Gallagher AR, Cedzich A, Gretz N, Somlo S, Witzgall R. The polycystic kidney disease protein PKD2 interacts with Hax-1, a protein associated with the actin cytoskeleton. Proc Natl Acad Sci U S A. 2000;97(8):4017–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li B, Hu Q, Xu R, Ren H, Fei E, Chen D, et al. Hax-1 is rapidly degraded by the proteasome dependent on its PEST sequence. BMC Cell Biol. 2012;13:20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Grzybowska EA, Sarnowska E, Konopinski R, Wilczynska A, Sarnowski TJ, Siedlecki JA. Identification and expression analysis of alternative splice variants of the rat Hax-1 gene. Gene. 2006;371(1):84–92.

    Article  CAS  PubMed  Google Scholar 

  20. Lees DM, Hart IR, Marshall JF. Existence of multiple isoforms of HS1-associated protein X-1 in murine and human tissues. J Mol Biol. 2008;379(4):645–55.

    Article  CAS  PubMed  Google Scholar 

  21. Koontz J, Kontrogianni-Konstantopoulos A. Competition through dimerization between antiapoptotic and proapoptotic HS-1-associated protein X-1 (Hax-1). J Biol Chem. 2014;289(6):3468–77.

    Article  CAS  PubMed  Google Scholar 

  22. Chao JR, Parganas E, Boyd K, Hong CY, Opferman JT, Ihle JN. Hax1-mediated processing of HtrA2 by Parl allows survival of lymphocytes and neurons. Nature. 2008;452(7183):98–102.

    Article  CAS  PubMed  Google Scholar 

  23. Germeshausen M, Grudzien M, Zeidler C, Abdollahpour H, Yetgin S, Rezaei N, et al. Novel HAX1 mutations in patients with severe congenital neutropenia reveal isoform-dependent genotype-phenotype associations. Blood. 2008;111(10):4954–7.

    Article  CAS  PubMed  Google Scholar 

  24. Boztug K, Ding XQ, Hartmann H, Ziesenitz L, Schaffer AA, Diestelhorst J, et al. HAX1 mutations causing severe congenital neuropenia and neurological disease lead to cerebral microstructural abnormalities documented by quantitative MRI. Am J Med Genet A. 2010;152A(12):3157–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Carlsson G, van't Hooft I, Melin M, Entesarian M, Laurencikas E, Nennesmo I, et al. Central nervous system involvement in severe congenital neutropenia: neurological and neuropsychological abnormalities associated with specific HAX1 mutations. J Intern Med. 2008;264(4):388–400.

    Article  CAS  PubMed  Google Scholar 

  26. Matsubara K, Imai K, Okada S, Miki M, Ishikawa N, Tsumura M, et al. Severe developmental delay and epilepsy in a Japanese patient with severe congenital neutropenia due to HAX1 deficiency. Haematologica. 2007;92(12):e123–5.

    Article  CAS  PubMed  Google Scholar 

  27. Ishikawa N, Okada S, Miki M, Shirao K, Kihara H, Tsumura M, et al. Neurodevelopmental abnormalities associated with severe congenital neutropenia due to the R86X mutation in the HAX1 gene. J Med Genet. 2008;45(12):802–7.

    Article  CAS  PubMed  Google Scholar 

  28. Roques G, Munzer M, Barthez MA, Beaufils S, Beaupain B, Flood T, et al. Neurological findings and genetic alterations in patients with Kostmann syndrome and HAX1 mutations. Pediatr Blood Cancer. 2014;61(6):1041–8.

    Article  CAS  PubMed  Google Scholar 

  29. Han J, Goldstein LA, Hou W, Froelich CJ, Watkins SC, Rabinowich H. Deregulation of mitochondrial membrane potential by mitochondrial insertion of granzyme B and direct Hax-1 cleavage. J Biol Chem. 2010;285(29):22461–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kang YJ, Jang M, Park YK, Kang S, Bae KH, Cho S, et al. Molecular interaction between HAX-1 and XIAP inhibits apoptosis. Biochem Biophys Res Commun. 2010;393(4):794–9.

    Article  CAS  PubMed  Google Scholar 

  31. Vafiadaki E, Arvanitis DA, Pagakis SN, Papalouka V, Sanoudou D, Kontrogianni-Konstantopoulos A, et al. The anti-apoptotic protein HAX-1 interacts with SERCA2 and regulates its protein levels to promote cell survival. Mol Biol Cell 2009;20(1):306–318.

  32. Vafiadaki E, Sanoudou D, Arvanitis DA, Catino DH, Kranias EG, Kontrogianni-Konstantopoulos A. Phospholamban interacts with HAX-1, a mitochondrial protein with anti-apoptotic function. J Mol Biol. 2007;367(1):65–79.

    Article  CAS  PubMed  Google Scholar 

  33. Zhao W, Waggoner JR, Zhang ZG, Lam CK, Han P, Qian J, et al. The anti-apoptotic protein HAX-1 is a regulator of cardiac function. Proc Natl Acad Sci U S A. 2009;106(49):20776–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cavnar PJ, Berthier E, Beebe DJ, Huttenlocher A. Hax1 regulates neutrophil adhesion and motility through RhoA. J Cell Biol. 2011;193(3):465–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Burnicka-Turek O, Kata A, Buyandelger B, Ebermann L, Kramann N, Burfeind P, et al. Pelota interacts with HAX1, EIF3G and SRPX and the resulting protein complexes are associated with the actin cytoskeleton. BMC Cell Biol. 2010;11:28.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Al-Maghrebi M, Brule H, Padkina M, Allen C, Holmes WM, Zehner ZE. The 3′ untranslated region of human vimentin mRNA interacts with protein complexes containing eEF-1gamma and HAX-1. Nucleic Acids Res. 2002;30(23):5017–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sarnowska E, Grzybowska EA, Sobczak K, Konopinski R, Wilczynska A, Szwarc M, et al. Hairpin structure within the 3'UTR of DNA polymerase beta mRNA acts as a post-transcriptional regulatory element and interacts with Hax-1. Nucleic Acids Res. 2007;35(16):5499–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Grzybowska EA, Zayat V, Konopinski R, Trebinska A, Szwarc M, Sarnowska E, et al. HAX-1 is a nucleocytoplasmic shuttling protein with a possible role in mRNA processing. FEBS J. 2013;280(1):256–72.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang Y, Zhang XF, Fleming MR, Amiri A, El-Hassar L, Surguchev AA, et al. Kv3.3 channels bind Hax-1 and Arp2/3 to assemble a stable local actin network that regulates channel gating. Cell. 2016;165(2):434–48.

    Article  CAS  PubMed  Google Scholar 

  40. Klein C. Genetic defects in severe congenital neutropenia: emerging insights into life and death of human neutrophil granulocytes. Annu Rev Immunol. 2011;29:399–413.

    Article  CAS  PubMed  Google Scholar 

  41. Peckl-Schmid D, Wolkerstorfer S, Konigsberger S, Achatz-Straussberger G, Feichtner S, Schwaiger E, et al. HAX1 deficiency: impact on lymphopoiesis and B-cell development. Eur J Immunol. 2010;40(11):3161–72.

    Article  CAS  PubMed  Google Scholar 

  42. Wolkerstorfer S, Schwaiger E, Rinnerthaler M, Karina Gratz I, Zoegg T, Brandstetter H, et al. HAX1 deletion impairs BCR internalization and leads to delayed BCR-mediated apoptosis. Cell Mol Immunol. 2015.

  43. Baumann U, Fernandez-Saiz V, Rudelius M, Lemeer S, Rad R, Knorn AM, et al. Disruption of the PRKCD-FBXO25-HAX-1 axis attenuates the apoptotic response and drives lymphomagenesis. Nat Med. 2014;20(12):1401–9.

    Article  CAS  PubMed  Google Scholar 

  44. Yetgin S, Olcay L, Koc A, Germeshausen M. Transformation of severe congenital neutropenia to early acute lymphoblastic leukemia in a patient with HAX1 mutation and without G-CSF administration or receptor mutation. Leukemia. 2008;22(9):1797.

    Article  CAS  PubMed  Google Scholar 

  45. Li X, Jiang J, Yang R, Xu X, Hu F, Liu A, et al. Expression of HAX-1 in colorectal cancer and its role in cancer cell growth. Mol Med Rep. 2015;12(3):4071–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Morishima T, Watanabe K, Niwa A, Hirai H, Saida S, Tanaka T, et al. Genetic correction of HAX1 in induced pluripotent stem cells from a patient with severe congenital neutropenia improves defective granulopoiesis. Haematologica. 2014;99(1):19–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jeyaraju DV, Cisbani G, De Brito OM, Koonin EV, Pellegrini L. Hax1 lacks BH modules and is peripherally associated to heavy membranes: implications for Omi/HtrA2 and PARL activity in the regulation of mitochondrial stress and apoptosis. Cell Death Differ. 2009;16(12):1622–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yap SV, Vafiadaki E, Strong J, Kontrogianni-Konstantopoulos A. HAX-1: a multifaceted antiapoptotic protein localizing in the mitochondria and the sarcoplasmic reticulum of striated muscle cells. J Mol Cell Cardiol. 2010;48(6):1266–79.

    Article  CAS  PubMed  Google Scholar 

  49. Trebinska A, Rembiszewska A, Ciosek K, Ptaszynski K, Rowinski S, Kupryjanczyk J, et al. HAX-1 overexpression, splicing and cellular localization in tumors. BMC Cancer. 2010;10:76.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I am grateful to many past and present members of my laboratory who dedicated their talent and enthusiasm in an effort to understand the molecular pathophysiology of congenital neutropenia; without their commitment, many of the cited studies could not have been done. I apologize to those researchers whose interesting and valuable scientific contributions could not be cited and commented due to space constraints.

I am grateful to many friends and colleagues all over the world who have been great collaborators over many years, from the international SCN registry to the global Care-for-Rare Alliance. I am grateful to Dr. Göran Carlsson for sharing the original photograph of Dr. Kostmann. This paper has been in part enabled by funds from the European Research Council (ERC Explore), DFG, and the BMBF (DZIF, PIDNET). I thank Yanxin Fan for help regarding figures and Natalia Zietara, Marcin Lyszkiewicz, and Henrike Klinker for their critical reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Klein.

Ethics declarations

Conflict of Interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klein, C. Kostmann’s Disease and HCLS1-Associated Protein X-1 (HAX1). J Clin Immunol 37, 117–122 (2017). https://doi.org/10.1007/s10875-016-0358-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-016-0358-2

Keywords

Navigation