Skip to main content

Decorrelative Dipole Potential-Based Magnetometry

  • Chapter
  • First Online:
Decorrelative Mollifier Gravimetry

Part of the book series: Geosystems Mathematics ((GSMA))

  • 271 Accesses

Abstract

Chapters 1215 make some general remarks on mollifier potential methodologies for different exploration purposes. Chapter 13 goes over decorrelative magnetometry in a dipole-reflected framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Backus, G.E.: Poloidal and toroidal fields in geomagnetic field modeling. Rev. Geophys. 24, 75–109 (1986)

    Article  MathSciNet  Google Scholar 

  • Backus, G.E., Parker, R., Constable, C.: Foundations of Geomagnetism. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  • Bayer, M.: Geomagnetic field modeling from satellite data by first and second generation wavelets. Ph.D. thesis, University of Kaiserslautern, Geomathematics Group (1999)

    Google Scholar 

  • Bayer, M., Beth, S., Freeden, W.: Geophysical field modeling by multiresolution analysis. Acta Geod. Geoph. Hung. 33, 289–319 (1998)

    Google Scholar 

  • Bayer, M., Freeden, W., Maier, T.: A vector wavelet approach to iono- and magnetospheric geomagnetic satellite data. J. Atmos. Solar-Terrest. Phys. 63, 581–597 (2001)

    Article  Google Scholar 

  • Blakely, R.J.: Potential Theory in Gravity and Magnetic Application. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  • Bosch, M., McGaughey, J.: Joint inversion of gravity and magnetic data under lithologic constraints. Leading Edge 20, 877–881 (2001)

    Article  Google Scholar 

  • Bossavit, A., Computational Electromagnetism. Academic, San Diego (1998)

    MATH  Google Scholar 

  • Clark, D.A., Emerson, J.B.: Notes on rock magnetization characteristics in applied geophysical studies. Exploration Geophys. 22, 448–455 (1991)

    Article  Google Scholar 

  • Davis, K., Li, Y.: Fast solution of geophysical inversion using adaptive mesh, space-filling curves and wavelet compression. Geophys. J. Int. 185, 157–166 (2011)

    Article  Google Scholar 

  • Farquharson, C.G., Oldenburg, D.W.: Non-linear inversions general measures of data misfit and model structure. Geophys. J. Int. 134, 213–227 (1998)

    Article  Google Scholar 

  • Freeden, W., Gerhards, C.: Poloidal and toroidal modeling in terms of locally supported vector wavelets. Math. Geosci. 42, 817–838 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Freeden, W., Gerhards, C.: Geomathematically Oriented Potential Theory. CRC Press/Taylor & Francis, Boca Raton (2013)

    MATH  Google Scholar 

  • Freeden, W., Maier, T.: On multiscale denoising of spherical functions: basic theory and numerical aspects. Electron. Trans. Numer. Anal. 14, 40–62 (2002)

    MathSciNet  MATH  Google Scholar 

  • Freeden, W., Maier, T.: Spectral and multiscale signal-to-noise thresholding of spherical vector fields. Comput. Geosci. 7, 215–250 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Freeden, W., Mayer, C.: Wavelets generated by layer potentials. Appl. Comput. Harm. Anal. 14, 195–237 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Freeden, W., Schreiner, M.: Spherical Functions of Mathematical Geosciences: A Scalar, Vectorial, and Tensorial Setup. Springer, Heidelberg (2009)

    Book  MATH  Google Scholar 

  • Gerhards, C.: Spherical multiscale methods in terms of locally supported wavelets: Theory and application to geomagnetic modeling. Ph.D. thesis, University of Kaiserslautern, Geomathematics Group (2011)

    Google Scholar 

  • Gerhards, C.: Spherical decompositions in a global and local framework: Theory and an application to geomagnetic modeling. GEM Int. J. Gemath. 1, 205–256 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Gerhards, C.: Locally supported wavelets for the separation of spherical vector fields with respect to their sources. Int. J. Wavel. Multires. Inf. Process. 10, 1250034 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Gerhards, C.: A multiscale power spectrum for the analysis of the lithospheric magnetic field. GEM Int. J. Geomath. 2, 63–79 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Gerhards, C.: Multiscale modeling of the geomagnetic field and ionospheric currents. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 2, 2nd edn., pp. 539–563. Springer, New York (2015)

    Google Scholar 

  • Gubbins, D., Herrero-Bervera, E. (eds.): Encyclopedia of Geomagnetism and Paleomagnetism. Springer, Dordrecht (2007)

    Google Scholar 

  • Hauser, W.: Introduction to the Principles of Electromagnetism. Addison-Wesley, Boston (1971)

    Google Scholar 

  • Hulot, G., Finlay, C.C., Constable, C., Olsen, N., Mandea, M.: The magnetic field of planet Earth. Space Sci. Rev. 152, 159–222 (2010)

    Article  Google Scholar 

  • Hulot, G., Olsen, N., Sabaka, T.J., Fournier, A.: The present and future geomagnetic field (2015). https://doi.org/10.1016/B978-0-444-53802-4.00096-8

  • Jackson, J.D.: Classical Electrodynamics. Wiley, New York (1998)

    MATH  Google Scholar 

  • Jacobs, F., Meyer, H., Geophysik - Signale aus der Erde. Teubner Verlag, Leipzig (1992)

    Book  Google Scholar 

  • Kono, M. (ed.): Geomagnetism, Treatise on Geophysics, vol. 5. Elsevier, Amsterdam (2009)

    Google Scholar 

  • Langel, R.A., Hinze, W.J.: The Magnetic Field of the Earth’s Lithosphere: The Satellite Perspective. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  • Leliévre, P.G.: Integrating geologic and geophysical data through advanced constrained inversions. Ph.D. thesis, The University of British Columbia, Vancouver (2009)

    Google Scholar 

  • Leliévre, P.G., Farquharson, C.G.: Gradient and smoothness regularization operators for geophysical inversion on unstructured meshes. Geophys. J. Int. 195, 330–341 (2013)

    Article  Google Scholar 

  • Leliévre, P.G., Oldenburg, D.W.: Magnetic forward modeling and inversion for high susceptibility. Geophys. J. Int. 166, 79–90 (2006)

    Article  Google Scholar 

  • Leweke, S., Michel, V., Telschow, R.: On the uniqueness of gravitational and magnetic field data inversion. In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy, Geosystems Mathematics, pp. 883–920. Springer International Publishing, Birkhäuser (2018)

    Chapter  MATH  Google Scholar 

  • Lima, E.A., Irimia, A., Wikswo, J.P.: The magnetic inverse problem. In: Clarke, J., Braginski, A.E. (eds.) The SQUID Handbook, vol. II. Wiley-VCH Verlag, Weinheim (2006)

    Google Scholar 

  • Lowes, F.J.: Spatial power spectrum of the main geomagnetic field, and extrapolation to the core. Geophys. J. R. Astron. Soc. 36, 717–730 (1974)

    Article  Google Scholar 

  • Lukyanenko, D., Yagola, A.: Some methods for solving of 3D inverse problem of magnetometry. Eurasian J. Math. Comput. Appl. 4, 4–14 (2016)

    Google Scholar 

  • Maier, T.: Multiscale geomagnetic field modeling from satellite data: theoretical aspects and numerical applications. Ph.D. thesis, University of Kaiserslautern, Geomathematics Group (2002)

    Google Scholar 

  • Maier, T.: Wavelet-Mie-representation for solenoidal vector fields with applications to ionospheric geomagnetic data. SIAM J. Appl. Math. 65, 1888–1912 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Mares̆, S., Tvrdý, M.: Introduction to Applied Geophysics. Kluwer, Dordrecht (1984)

    Google Scholar 

  • Martensen, E.: Potentialtheorie. Leitfäden der Angewandten Mathematik und Mechanik, Bd. 12, Teubner, Leipzig (1968)

    Google Scholar 

  • Mauersberger, P.: Das Mittel der Energiedichte des geomagnetischen Hauptfeldes an der Erdoberfläche und seine säkulare Änderung. Gerlands Beiträge zur Geophysik 65, 207–215 (1956)

    Google Scholar 

  • Mayer, T.: Wavelet modeling of ionospheric currents and induced magnetic fields from satellite data. Ph.D. thesis, University of Kaiserslautern, Geomathematics Group (2003)

    Google Scholar 

  • Mayer, C., Maier, T.: Separating inner and outer Earth’s magnetic field from CHAMP satellite measurements by means of vector scaling functions and wavelets. Geophys. J. Int. 167, 1188–1203 (2006)

    Article  Google Scholar 

  • Menke, W.: Geophysical Data Analysis: Discrete Inverse Theory. Academic, Orlando (1984)

    MATH  Google Scholar 

  • Morse, P.M., Feshbach, H.: Methods of Theoretical Physics. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  • Müller, C.: Foundations of the Mathematical Theory of Electromagnetic Waves. Springer, Berlin (1969)

    Book  MATH  Google Scholar 

  • Olsen, N., Hulot, G., Sabaka, T.J.: Sources of the geomagnetic field and the modern data that enable their investigation. In: Freeden, W., Nashed, Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 1, 1st edn., pp. 106–124. Springer, Reference, Heidelberg (2010) Geothermics 30, 395–429 (2001)

    Google Scholar 

  • Rivas, J.: Gravity and magnetic methods. In: Short Course on Surface Exploration for Geothermal Resources, organized by UNU-GTP and LaGeo, in Ahuachapan and Santa Tecla, El Salvador, 1–13, October 2009

    Google Scholar 

  • Saltus, R.W., Blakely, R.J.: Unique geologic insights from “non-unique” gravity and magnetic interpretation. GSA Today 21, 4–11 (2011)

    Article  Google Scholar 

  • Strakhov, V.N.: Solution of linear inverse problems of gravimetry and magnetometry. Dokl. Akad. Nauk SSSR 310, 1358–1352 (1990)

    MathSciNet  Google Scholar 

  • Turcotte, D.L., Schubert, G.: Geodynamics. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  • Valenta, J.: Introduction to Geophysics – Lecture Notes. Czech Republic Development Cooperation, Prague (2015)

    Google Scholar 

  • Walter, W.: Einführung in die Potentialtheorie. BI Hochschulskripten, 765/765a (1971)

    Google Scholar 

  • Wapler, C., Leupold, J., Dragonu, I., von Elverfeld, D., Zaitsev, M., Wallrabea, U.: Magnetic properties of materials for MR engineering, micro-MR and beyond. J. Magn. Reson. 242, 233–242 (2014)

    Article  Google Scholar 

  • Wikswo, J.P.: The magnetic inverse problem for NDE. In: Weinstock, H. (ed.) SQUID Sensors: Fundamentals, Fabrication and Applications. NATO ASI Series (Series E: Applied Sciences), vol. 329, pp. 629–695. Springer, Dordrecht (1996)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Freeden, W. (2021). Decorrelative Dipole Potential-Based Magnetometry. In: Decorrelative Mollifier Gravimetry. Geosystems Mathematics. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-69909-3_13

Download citation

Publish with us

Policies and ethics