Skip to main content
Log in

A multiscale power spectrum for the analysis of the lithospheric magnetic field

  • Original Paper
  • Published:
GEM - International Journal on Geomathematics Aims and scope Submit manuscript

Abstract

Degree variances and the corresponding power spectrum form an important tool in analyzing the geomagnetic field. While they describe the contribution of a fixed spherical harmonic degree (i.e, the contribution of a certain “wavelength/frequency”) to the total power of the magnetic field, the aim of this paper is to introduce multiscale variances as a spatially oriented generalization. Multiscale variances can be designed such that they represent the contribution of features of a certain scale-dependent spatial extend to the total power. We present different examples to illustrate their interpretation and capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Augustin, M., Bauer, M., Blick, C., Eberle, S., Freeden, W., Gerhards, C., Ilyasov, M., Kahnt, R., Klug, M., Mhringer, S., Neu, T., Nutz, H., Ostermann, I., Punzi, A.: Modeling deep geothermal reservoirs: recent advances and future perspectives. In: Freeden, W., Nashed, Z., Sonar, T. (eds.) Handbook of Geomathematics, 2nd edn. Springer, Berlin (to appear)

  • Bayer, M., Freeden, W., Maier, T.: A vector wavelet approach to iono- and magnetospheric geomagnetic satellite data. J. Atmos. Solar Terr. Phys. 63, 581–597 (2001)

    Article  Google Scholar 

  • Beggan, C.D., Saarimäki, J., Whaler, K.A., Simons, F.J.: Spectral and spatial decomposition of lithospheric magnetic field models using spherical Slepian functions. Geophys. J. Int. 193, 136–148 (2013)

    Article  Google Scholar 

  • Chambodut, A., Panet, I., Mandea, M., Diament, M., Holschneider, M., James, O.: Wavelet frames: an alternative to spherical harmonic representation of potential fields. Geophys. J. Int. 163, 875–899 (2005)

    Article  Google Scholar 

  • CHAOS-4.: A high-resolution geomagnetic field model derived from low-altitude CHAMP data. http://www.spacecenter.dk/files/magnetic-models/CHAOS-4

  • Driscoll, J.R., Healy, M.H. Jr.: Computing Fourier transforms and convolutions on the 2-sphere. Adv. Appl. Math. 15, 202–250 (1994)

    Google Scholar 

  • Freeden, W.: On approximation by harmonic splines. Manuscr. Geod. 6, 193–244 (1981)

    MATH  Google Scholar 

  • Freeden, W., Gerhards, C.: Poloidal and toroidal field modeling in terms of locally supported vector wavelets. Math. Geosci. 42, 817–838 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  • Freeden, W., Maier, T.: Spectral and multiscale signal-to-noise thresholding for spherical vector fields. Comput. Geosci. 7, 215–250 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Freeden, W., Schreiner, M.: Local multiscale modeling of geoidal undulations from deflections of the vertical. J. Geod. 78, 641–651 (2006)

    Article  Google Scholar 

  • Freeden, W., Windheuser, U.: Combined spherical harmonics and wavelet expansion: a future concept in Earth’s gravitational potential determination. Appl. Comput. Harm. Anal. 4, 1–37 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Freeden, W., Gervens, T., Schreiner, M.: Constructive Approximation on the Sphere - With Application to Geomathematics. Oxford Science Publication, Clarendon Press, Oxford (1998)

  • Freeden, W., Groten, E., Michel, V., Kaboodvand, A.: Geopotential reconstruction, decomposition, fast computation, and noise cancellation by harmonic wavelets. Stud. Geophys. Geod. 47, 37–72 (2003)

    Article  Google Scholar 

  • Freeden, W., Fehlinger, T., Klug, M., Mathar, D., Wolf, K.: Classical globally reflected gravity field determination in modern locally oriented multiscale framework. J. Geod. 83, 1171–1191 (2009)

    Article  Google Scholar 

  • Gerhards, C.: Locally supported wavelets for the separation of spherical vector fields with respect to their sources. Int. J. Wavel. Multires. Inf. Process. 10 (2012). doi:10.1142/S0219691312500348

  • Haines, G.V.: Spherical cap harmonic analysis. J. Geophys. Res. 90, 2583–2591 (1985)

    Article  Google Scholar 

  • Holschneider, M., Chambodut, A., Mandea, M.: From global to regional analysis of the magnetic field on the sphere using wavelet frames. Phys. Earth Planet. Int. 135, 107–124 (2003)

    Article  Google Scholar 

  • Klees, R., Wittwer, T.: Local gravity field modeling with multipole wavelets. In: Tregoning, P., Rizos, C. (eds.) Dynamic Planet, International Association of Geodesy Symposia, vol. 130. Springer, Berlin (2007)

  • Langel, R.A., Estes, R.H.: A geomagnetic field spectrum. Geophys. Res. Lett. 9, 250–253 (1982)

    Article  Google Scholar 

  • Lowes, F.J.: Spatial power spectrum of the main geomagnetic field, and extrapolation to the core. Geophys. J. R. Astr. Soc. 36, 717–730 (1974)

    Article  Google Scholar 

  • Magnetic Field Model MF7. http://www.geomag.us/models/MF7.html

  • Maier, T., Mayer, C.: Multiscale downward continuation of CHAMP FGM-data for crustal field modelling. In: Reigber, C., Lühr, H., Schwintzer, P. (eds.) First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies. Springer, Berlin (2003)

  • Mauersberger, P.: Das Mittel der Energiedichte des Geomagnetischen Hauptfeldes an der Erdoberfläche und seine sekuläre Änderung. Gerl. Beitr. Geophys. 65, 207–215 (1956)

    Google Scholar 

  • Maus, S.: The geomagnetic power spectrum. Geophys. J. Int. 174, 135–142 (2008)

    Article  Google Scholar 

  • Mayer, C., Maier, T.: Separating inner and outer Earth’s magnetic field from CHAMP satellite measurements by means of vector scaling functions and wavelets. Geophys. J. Int. 167, 1188–1203 (2006)

    Article  Google Scholar 

  • Michel, V.: Regularized wavelet-based multiresolution recovery of the harmonic mass density distribution from data of the Earth’s gravitational field at satellite height. Inverse Probl 21, 997–1025 (2005)

    Article  MATH  Google Scholar 

  • Simons, F.J.: Slepian functions and their use in signal estimation and spectral analysis. In: Freeden, W., Nashed, Z., Sonar, T. (eds.) Handbook of Geomathematics, pp. 891–924. Springer, Berlin (2010)

  • Simons, F.J., Dahlen, F.A., Wieczorek, M.A.: Spatiospectral concentration on a sphere. SIAM Rev. 48, 504–536 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Shure, L., Parker, R.L., Backus, G.E.: Harmonic splines for geomagnetic modeling. Phys. Earth Planet. Int. 28, 215–229 (1982)

    Article  Google Scholar 

  • Thébault, E., Schott, J.J., Mandea, M.: Revised spherical cap harmonic analysis (R-SCHA): validation and properties. J. Geophys. Res. 111 (2006). doi:10.1029/2005JB003836

Download references

Acknowledgments

This work was supported by a fellowship within the Postdoc-program of the German Academic Exchange Service (DAAD). Moreover, the author thanks Frederik Simons (Princeton University) for providing the continental shelf boundary data used in Beggan et al. (2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Gerhards.

Additional information

Dedicated to Willi Freeden’s 65th Birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerhards, C. A multiscale power spectrum for the analysis of the lithospheric magnetic field. Int J Geomath 5, 63–79 (2014). https://doi.org/10.1007/s13137-013-0053-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13137-013-0053-x

Keywords

Mathematics Subject Classification

Navigation