Skip to main content

UV–Vis Spectroscopy for Food Analysis

  • Chapter
  • First Online:
Techniques to Measure Food Safety and Quality

Abstract

Detection of food quality, authenticity, and adulteration is a great concern among consumers in the current market. Given the inherent complexity of food products, most instrumental techniques employed for quality and authenticity evaluation are time-consuming, expensive, and labor-intensive. Therefore, there has been an increasing interest in simple, fast, and reliable analytical techniques for assessing food quality attributes. One of these techniques is the absorption spectroscopy in the Ultraviolet and Visible (UV–Vis) region, which is used for qualitative and quantitative characterization of sample compounds. Due to simplicity and reliability, this technique has already been used in several research areas of food science and food processing industries. This chapter briefly discusses the effectiveness and relevance of using UV–Vis technique in food analysis. This chapter presents specific applications of UV–Vis technique to analyze different food matrices (e.g., meat, milk, coffee, wine, vegetables, fruits, drinks, and olive oil) with respect to food composition, authentication, adulteration, and quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McGorrin, R. J. (2006). Food analysis techniques: Introduction. In Encyclopedia of Analytical Chemistry. Hoboken, NJ: John Wiley & Sons.

    Google Scholar 

  2. Egan, H., Kirk, R. S., Sawyer, R., & Pearson, D. (1981). Pearson’s chemical analysis of foods. Edinburgh; New York: Churchill Livingstone.

    Google Scholar 

  3. Pomeranz, Y., & Meloan, C. E. (2000). Food analysis : Theory and practice. New York: Springer US.

    Google Scholar 

  4. Joslyn, M. A. (1970). Methods in food analysis: physical, chemical, and instrumental methods of analysis. London: Academic Press.

    Google Scholar 

  5. Bosch-Ojeda, C., & Sanchez Rojas, F. (2004). Recent developments in derivative ultraviolet/visible absorption spectrophotometry. Analytica Chimica Acta, 518(1–2), 1–24.

    Article  CAS  Google Scholar 

  6. Danezis, G. P., Tsagkaris, A. S., Camin, F., Brusic, V., & Georgiou, C. A. (2016). Food authentication: Techniques, trends & emerging approaches. TrAC Trends in Analytical Chemistry, 85, 123–132.

    Article  CAS  Google Scholar 

  7. Thoroddsen, S. T., & Takehara, K. (2000). The coalescence cascade of a drop. Physics of Fluids, 12(6), 1265–1267.

    Article  CAS  Google Scholar 

  8. Worsfold, P. J. (2005). Spectrophotometry | Overview. p. 318–321.

    Google Scholar 

  9. Silverstein, R. M., & Bassler, G. C. (1962). Spectrometric identification of organic compounds. Journal of Chemical Education, 39(11), 546.

    Article  CAS  Google Scholar 

  10. Saakov, V. S. (2013). Derivative spectrophotometry and electron spin resonance (ESR) spectroscopy for ecological and biological questions. http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=511380.

  11. Owen, T. (1996). Fundamentals of UV-visible spectroscopy. Germany: Hewlett Packard.

    Google Scholar 

  12. De Caro, C., & Haller, C. (2015). UV/VIS spectrophotometry - Fundamentals and applications. Columbus, OH: Mettler-Toledo Publication.

    Google Scholar 

  13. Peroxidase from Horseradish (HRP), in Product Information. Sigma Aldrich. www.sigmaaldrich.com.

  14. Wen, X., Yang, Q., Yan, Z., & Deng, Q. (2011). Determination of cadmium and copper in water and food samples by dispersive liquid–liquid microextraction combined with UV-vis spectrophotometry. Microchemical Journal, 97(2), 249–254.

    Article  CAS  Google Scholar 

  15. Li, K., Li, N., Chen, X., & Tong, A. (2012). A ratiometric fluorescent chemodosimeter for Cu(II) in water with high selectivity and sensitivity. Analytica Chimica Acta, 712, 115–119.

    Article  CAS  PubMed  Google Scholar 

  16. Darabi-zadeh, S. (2001). The importance of nuclear analytical techniques in the determination of mineral micronutrients in Iranian daily diets. Journal of Radioanalytical and Nuclear Chemistry, 249(3), 551–563.

    Article  Google Scholar 

  17. Shemirani, F., & Behgozin, S. M. (2018). Combination of dispersive liquid–liquid microextraction and flame atomic absorption spectrometry for simultaneous preconcentration and determination of manganese and nickel in water and food samples. Journal of the Iranian Chemical Society, 15(9), 1907–1912.

    Article  CAS  Google Scholar 

  18. Jahromi, E. Z., Bidari, A., Assadi, Y., Hosseini, M. R. M., & Jamali, M. R. (2007). Dispersive liquid–liquid microextraction combined with graphite furnace atomic absorption spectrometry: Ultra trace determination of cadmium in water samples. Analytica Chimica Acta, 585(2), 305–311.

    Article  Google Scholar 

  19. Farajzadeh, M. A., Bahram, M., Mehr, B. G., & Jönsson, J. Å. (2008). Optimization of dispersive liquid–liquid microextraction of copper (II) by atomic absorption spectrometry as its oxinate chelate: Application to determination of copper in different water samples. Talanta, 75(3), 832–840.

    Article  CAS  PubMed  Google Scholar 

  20. Anthemidis, A. N., & Ioannou, K.-I. G. (2009). On-line sequential injection dispersive liquid–liquid microextraction system for flame atomic absorption spectrometric determination of copper and lead in water samples. Talanta, 79(1), 86–91.

    Article  CAS  PubMed  Google Scholar 

  21. Ashkenazi, P., Yarnitzky, C., & Cais, M. (1991). Determination of synthetic food colors by means of a novel sample preparation system. Analytica Chimica Acta, 248, 289–299.

    Article  CAS  Google Scholar 

  22. Combes, R., & Haveland-Smith, R. B. (1982). A review of the genotoxicity of food, drug and cosmetic colours and other azo. Triphenylmethane and Xanthene Dyes, 98, 101–248.

    CAS  Google Scholar 

  23. Toral, M., Lara, N., Richter, P., Tassara, A., Tapia, A. E., & Rodriguez, C. (2001). Simultaneous determination of ascorbic acid and acetylsalicylic acid in pharmaceutical formulations. Journal of AOAC International, 84, 37–42.

    Article  CAS  PubMed  Google Scholar 

  24. Berzas Nevado, J., Guiberteau, C., & Salinas, F. (1992). Spectrophotometric resolution of ternary mixtures of salicylaldehyde, 3-hydroxybenzaldehyde and 4-hydroxybenzaldehyde by the derivative ratio spectrum-zero crossing method. Talanta, 39, 547–553.

    Article  CAS  PubMed  Google Scholar 

  25. Altınöz, S., & Toptan, S. (2003). Simultaneous determination of Indigotin and Ponceau-4R in food samples by using Vierordt’s method, ratio spectra first order derivative and derivative UV spectrophotometry. Journal of Food Composition and Analysis, 16, 517–530.

    Article  Google Scholar 

  26. Shahidi, F. (2000). Antioxidants in food and food antioxidants. Food/Nahrung, 44(3), 158–163.

    Article  CAS  PubMed  Google Scholar 

  27. Leopold, L. F., Leopold, N., Diehl, H. A., & Socaciu, C. (2012). Prediction of Total antioxidant capacity of fruit juices using FTIR spectroscopy and PLS regression. Food Analytical Methods, 5(3), 405–407.

    Article  Google Scholar 

  28. Sariburun, E., Sahin, S., Demir, C., Türkben, C., & Uylaşer, V. (2010). Phenolic content and antioxidant activity of raspberry and blackberry cultivars. Journal of Food Science, 75, C328–C335.

    Article  CAS  PubMed  Google Scholar 

  29. Appel, H. (1993). Phenolics in ecological interactions: The importance of oxidation. Journal of Chemical Ecology, 19, 1521–1552.

    Article  CAS  PubMed  Google Scholar 

  30. Nicholson, R. L., & Hammerschmidt, R. (1992). Phenolic compounds and their role in disease resistance. Annual Review of Phytopathology, 30(1), 369–389.

    Article  CAS  Google Scholar 

  31. Shahidi, F., & Naczk, M. (2003). Phenolics in food and nutraceuticals. Boca Raton, FL: CRC Press.

    Book  Google Scholar 

  32. Tian, R.-R., Pan, Q.-H., Zhan, J.-C., Li, J.-M., Wan, S.-B., Zhang, Q.-H., et al. (2009). Comparison of phenolic acids and flavan-3-ols during wine fermentation of grapes with different harvest times. Molecules, 14, 827–838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tounsi, M., Ouerghemmi, I., Wannes, W. A., Riadh, K., Zemni, H., Marzouk, B., et al. (2009). Valorization of three varieties of grape. Industrial Crops and Products, 30, 292–296.

    Article  CAS  Google Scholar 

  34. Spacil, Z., Nováková, L., & Solich, P. (2008). Analysis of phenolic compounds by high performance liquid chromatography and ultra performance liquid chromatography. Talanta, 76, 189–199.

    Article  CAS  PubMed  Google Scholar 

  35. Nantitanon, W., Yotsawimonwat, S., & Okonogi, S. (2010). Factors influencing antioxidant activities and total phenolic content of guava leaf extract. LWT- Food Science and Technology, 43, 1095–1103.

    Article  CAS  Google Scholar 

  36. Lee, M. L., Novotny, M. V., & Bartle, K. D. (1981). 9 - Ultraviolet absorption and luminescence spectroscopy. In M. L. Lee, M. V. Novotny, & K. D. Bartle (Eds.), Analytical chemistry of polycyclic aromatic compounds (pp. 290–338). London: Academic Press.

    Chapter  Google Scholar 

  37. Dost, K., & İdeli, C. (2012). Determination of polycyclic aromatic hydrocarbons in edible oils and barbecued food by HPLC/UV-vis detection. Food Chemistry, 133(1), 193–199.

    Article  CAS  Google Scholar 

  38. Esslinger, S., Riedl, J., & Fauhl-Hassek, C. (2014). Potential and limitations of non-targeted fingerprinting for authentication of food in official control. Food Research International, 60, 189–204.

    Article  CAS  Google Scholar 

  39. Reid, L. M., O'donnell, C. P., & Downey, G. (2006). Recent technological advances for the determination of food authenticity. Trends in Food Science & Technology, 17(7), 344–353.

    Article  CAS  Google Scholar 

  40. Elmasry, G., Barbin, D. F., Sun, D.-W., & Allen, P. (2012). Meat quality evaluation by hyperspectral imaging technique: An overview. Critical Reviews in Food Science and Nutrition, 52, 689–711.

    Article  PubMed  Google Scholar 

  41. Schubring, R. (2008). Use of “filtered smoke” and carbon monoxide with fish. Journal für Verbraucherschutz und Lebensmittelsicherheit, 3, 31–44.

    Article  CAS  Google Scholar 

  42. Bruzewicz, D. A., Reches, M., & Whitesides, G. M. (2008). Low-cost printing of poly(dimethylsiloxane) barriers to define microchannels in paper. Analytical Chemistry, 80(9), 3387–3392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Droghetti, E., Focardi, C., Nocentini, M., & Smulevich, G. (2013). A spectrophotometric method for the detection of carboxymyoglobin in beef drip. International Journal of Food Science & Technology, 48.

    Google Scholar 

  44. Abernethy, G. A., Bendall, J. G., & Holroyd, S. E. (2016). 17 - Advances in testing for adulteration and authenticity of dairy products. In G. Downey (Ed.), Advances in food authenticity testing (pp. 461–490). Duxford: Woodhead Publishing.

    Chapter  Google Scholar 

  45. Kasemsumran, S., Thanapase, W., & Kiatsoonthon, A. (2007). Feasibility of near-infrared spectroscopy to detect and to quantify adulterants in cow milk. Analytical Sciences, 23(7), 907–910.

    Article  CAS  PubMed  Google Scholar 

  46. Santos, P. M., Pereira-Filho, E. R., & Rodriguez-Saona, L. E. (2013). Rapid detection and quantification of milk adulteration using infrared microspectroscopy and chemometrics analysis. Food Chemistry, 138(1), 19–24.

    Article  CAS  PubMed  Google Scholar 

  47. Jawaid, S., Talpur, F. N., Sherazi, S. T. H., Nizamani, S. M., & Khaskheli, A. A. (2013). Rapid detection of melamine adulteration in dairy milk by SB-ATR-Fourier transform infrared spectroscopy. Food Chemistry, 141, 3066–3071.

    Article  CAS  PubMed  Google Scholar 

  48. Sun, F., Ma, W., Xu, L., Zhu, Y., Liu, L., Peng, C., et al. (2010). Analytical methods and recent developments in the detection of melamine. TrAC Trends in Analytical Chemistry, 29(11), 1239–1249.

    Article  CAS  Google Scholar 

  49. Domingo, E., Tirelli, A. A., Nunes, C. A., Guerreiro, M. C., Pinto, S. M., et al. (2014). Melamine detection in milk using vibrational spectroscopy and chemometrics analysis: A review. Food Research International, 60, 131–139.

    Article  CAS  Google Scholar 

  50. Niraimathi, T., Suresh, A. J., & Niraimathi, V. (2015). Detection of melamine residue in raw milk and milk related products by UV spectrophotometry. International Journal of Advances in Scientific Research, 6, 2.

    Google Scholar 

  51. Jiang, L., Zheng, H., & Lu, H. (2015). Application of UV spectrometry and chemometric models for detecting olive oil-vegetable oil blends adulteration. Journal of Food Science and Technology, 52(1), 479–485.

    Article  CAS  Google Scholar 

  52. Wang, L., Sun, D.-W., Pu, H., & Cheng, J.-H. (2017). Quality analysis, classification, and authentication of liquid foods by near-infrared spectroscopy: A review of recent research developments. Critical Reviews in Food Science and Nutrition, 57(7), 1524–1538.

    Article  CAS  PubMed  Google Scholar 

  53. Popkin, B. M., Bray, G. M., Caballero, B., Frei, B., & Willett, W. C. (2009). 18 - The role of beverages in a healthy diet: key issues and guidelines. In P. Paquin (Ed.), Functional and speciality beverage technology (pp. 451–483). Cambridge: Woodhead Publishing.

    Chapter  Google Scholar 

  54. Contreras-Loera, U., Barbosa-García, O., Ramos-Ortíz, G., Pichardo-Molina, J. L., Meneses-Nava, M. A., & Maldonado, J. L. (2014). Identificación y discriminación de tequilas reposados in situ para la protección de marca. Natural Sciences and Engineering, 1(2), 11.

    Google Scholar 

  55. Contreras, U., Barbosa-García, O., Pichardo-Molina, J. L., Ramos-Ortíz, G., Maldonado, J. L., Meneses-Nava, M. A., et al. (2010). Screening method for identification of adulterate and fake tequilas by using UV-VIS spectroscopy and chemometrics. Food Research International, 43(10), 2356–2362.

    Article  CAS  Google Scholar 

  56. Nehlig, A., Daval, J. L., & Debry, G. (1992). Caffeine and the central nervous system: Mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Research. Brain Research Reviews, 17(2), 139–170.

    Article  CAS  PubMed  Google Scholar 

  57. Andrews, K. W., Schweitzer, A., Zhao, C., Holden, J. M., Roseland, J. M., Brandt, M., et al. (2007). The caffeine contents of dietary supplements commonly purchased in the US: Analysis of 53 products with caffeine-containing ingredients. Analytical and Bioanalytical Chemistry, 389(1), 231–239.

    Article  CAS  PubMed  Google Scholar 

  58. Ahmad, S., & Ahmad, S. (2016). Determination of caffeine in soft and energy drinks available in market by using U.V/Visible spectrophotometer. Family Medicine & Medical Science Research, 58, 14–20.

    Google Scholar 

  59. López-Martı́nez, L., Lopez-de-Alba, P. L., Garcia-Campos, R., & De Leon-Rodrı́guez, L. M. (2003). Simultaneous determination of methylxanthines in coffees and teas by UV-Vis spectrophotometry and partial least squares. Analytica Chimica Acta, 493, 83–94.

    Article  Google Scholar 

  60. de Carvalho Polari Souto, U. T., Barbosa, M. F., Dantas, H. V., de Pontes, A. S., da Silva Lyra, W., Diniz, P. H. G. D., et al. (2015). Identification of adulteration in ground roasted coffees using UV-Vis spectroscopy and SPA-LDA. LWT - Food Science and Technology, 63, 1037–1041.

    Article  Google Scholar 

  61. Braga, L., Shupp, J. W., Cummings, C., Jett, M., Takahashi, J. A., Carmo, L. S., et al. (2005). Pomegranate extract inhibits Staphylococcus aureus growth and subsequent enterotoxins production. Journal of Ethnopharmacology, 96, 335–339.

    Article  CAS  PubMed  Google Scholar 

  62. P Lansky, E., & Newman, R. (2007). Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer. Journal of Ethnopharmacology, 109, 177–206.

    Article  Google Scholar 

  63. Gil, M., Tomás-Barberán, F. A., Hess-Pierce, B., Holcroft, D. M., & Kader, A. A. (2000). Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. Journal of Agricultural and Food Chemistry, 48, 4581–4589.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang, Y., Krueger, D., Durst, R., Lee, R., Wang, D., Seeram, N., & Heber, D. (2009). International multidimensional authenticity specification (IMAS) algorithm for detection of commercial pomegranate juice adulteration. Journal of Agricultural and Food Chemistry, 57, 2550.

    Article  CAS  PubMed  Google Scholar 

  65. Besler, M., Steinhart, H., & Paschke-Kratzin, A. (2001). Stability of food allergens and allergenicity of processed foods. Journal of Chromatography B: Biomedical Sciences and Applications, 756, 207–228.

    Article  CAS  PubMed  Google Scholar 

  66. Pedrosa-Menabrito, A., & Regenstein, J. (2007). Shelf-extension of fresh fish. A review part III. Fish quality and methods of assessment. Journal of Food Quality, 13, 209–223.

    Article  Google Scholar 

  67. Cheng, J.-H., Sun, D.-W., Pu, H., & Zhu, Z. (2015). Development of hyperspectral imaging coupled with chemometric analysis to monitor K value for evaluation of chemical spoilage in fish fillets. Food Chemistry, 185, 245–253.

    Article  CAS  PubMed  Google Scholar 

  68. Saito, T., Arai, K.-i., & Matsuyoshi, M. (1959). A new method for estimating the freshness of fish. Nippon Suisan Gakkaishi, 24(9), 749–750.

    Article  CAS  Google Scholar 

  69. Rahman, A., Kondo, N., Ogawa, Y., Suzuki, T., Shirataki, Y., & Wakita, Y. (2015). Prediction of K value for fish flesh based on ultraviolet–visible spectroscopy of fish eye fluid using partial least squares regression. Computers and Electronics in Agriculture, 117, 149–153.

    Article  Google Scholar 

  70. Kalyankar, S., Khedkar, C. D., Patil, A. M., & Deosarkar, S. (2016). Milk: Sources and composition

    Google Scholar 

  71. Otunola, G., Adebayo, G., & Olufemi, O. G. (2009). Evaluation of some physicochemical parameters of selected brands of vegetable oils sold in Ilorin metropolis. International Journal of Physical Sciences, 4, 327.

    CAS  Google Scholar 

  72. Kandhro, A., Tufail, S., Sherazi, S. T. H., Mahesar, S. A., Talpur, M. Y., Aijaz, A., et al. (2010). GC-MS evaluation of fatty acid profile and lipid bioactive of partially hydrogenated cooking oil consumed in Pakistan. Pakistan Journal of Scientific and Industrial Research, 53, 316–322.

    CAS  Google Scholar 

  73. Savelli, J. L., Narce, M., Fustier, V., & Poisson, J.-P. (2002). Desaturase activities are depleted before and after weaning in liver microsomes of spontaneously hypertensive rats. Prostaglandins, Leukotrienes and Essential Fatty Acids, 66(5), 541–547.

    Article  CAS  Google Scholar 

  74. Gonçalves, R. P., Março, P. H., & Valderrama, P. (2014). Thermal edible oil evaluation by UV-vis spectroscopy and chemometrics. Food Chemistry, 163, 83–86.

    Article  PubMed  Google Scholar 

  75. Almajidi, M., & Algubury, H. (2016). Determination of Vitamin C(ascorbic acid) Contents in various fruit and vegetable by UV-spectrophotometry and titration methods. Journal of Chemical and Pharmaceutical Sciences, 9, 2972–2974.

    CAS  Google Scholar 

  76. Ben Mussa, S., & El Sharaa, I. (2014). Analysis of vitamin C (ascorbic acid) contents packed fruit juice by UV-spectrophotometry and redox titration methods. IOSR Journal of Applied Physics, 6, 46–52.

    Article  Google Scholar 

  77. Bhattarai, R., & Prasad Acharya, P. (2013). Preparation and quality evaluation of mozzarella cheese from different milk sources. Journal of Food Science and Technology Nepal, 6.

    Google Scholar 

  78. Murtaza, M. A., Ur-Rehman, S., Anjum, F. M., Huma, N., & Hafiz, I. (2014). Cheddar cheese ripening and flavor characterization: A review. Critical Reviews in Food Science and Nutrition, 54(10), 1309–1321.

    Article  CAS  PubMed  Google Scholar 

  79. Murtaza, M., Rehman, S.-u., Anjum, F. M., Huma, N., Tarar, O., & Mueen-Ud-Din, G. (2012). Organic acid contents of buffalo milk cheddar cheese as influenced by accelerated ripening and sodium salt. Journal of Food Biochemistry, 36, 1.

    Article  Google Scholar 

  80. Sameen, A., Anjum, F. M., Huma, N., & Khan, M. I. (2010). Comparison of locally isolated culture from yoghurt (Dahi) with commercial culture for the production of mozzarella cheese. International Journal of Agriculture and Biology, 12, 1560–853012.

    Google Scholar 

  81. Akalin, A. S., Gönç, S., & Akbaş, Y. (2002). Variation in organic acids content during ripening of pickled white cheese. Journal of Dairy Science, 85(7), 1670–1676.

    Article  CAS  PubMed  Google Scholar 

  82. Murtaza, M. A., Huma, N., Sameen, A., Saeed, M., & Murtaza, M. S. (2014). Minerals and lactic acid contents in buffalo milk cheddar cheese; a comparison with cow. Journal of Food and Nutrition Research, 2(8), 465–468.

    Article  Google Scholar 

  83. Kobayashi, T., Kato, I., Ohmiya, K., & Shimizu, S. (1980). Recovery of foam stability of yolk-contaminated egg white by immobilized lipase. Agricultural and Biological Chemistry, 44(2), 413–418.

    CAS  Google Scholar 

  84. Liu, M., Yao, L., Wang, T., Li, J., & Yu, C. (2014). Rapid determination of egg yolk contamination in egg white by VIS spectroscopy. Journal of Food Engineering, 124, 117–121.

    Article  CAS  Google Scholar 

  85. Murtaza, M., Rehman, S. U., Anjum, F. M., Huma, N., Tarar, O. M., & Mueen‐Ud‐Din, G. (2012). Organic acid contents of buffalo milk cheddar cheese as influenced by accelerated ripening and sodium salt. Journal of Food Biochemistry, 36, 99.

    Article  CAS  Google Scholar 

  86. Aliakbarian, B., Bagnasco, L., Perego, P., Leardi, R., & Casale, M. (2016). UV-VIS spectroscopy for monitoring yogurt stability during storage time. Analytical Methods, 8(30), 5962–5969.

    Article  Google Scholar 

  87. Akalın, A., Gönç, S., & Akbas, Y. (2002). Variation in organic acids content during ripening of pickled white cheese. Journal of Dairy Science, 85, 1670–1676.

    Article  PubMed  Google Scholar 

  88. Droghetti, E., Focardi, C., Nocentini, M., & Smulevich, G. (2013). A spectrophotometric method for the detection of carboxymyoglobin in beef drip. International Journal of Food Science & Technology, 48(2), 429–436.

    Article  CAS  Google Scholar 

  89. Brown, P. N., & Shipley, P. R. (2011). Determination of anthocyanins in cranberry fruit and cranberry fruit products by high-performance liquid chromatography with ultraviolet detection: Single-laboratory validation. Journal of AOAC International, 94(2), 459–466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tounsi, M. S., Ouerghemmi, I., Wannes, W. A., Ksouri, R., Zemni, H., Marzouk, B., et al. (2009). Valorization of three varieties of grape. Industrial Crops and Products, 30(2), 292–296.

    Article  CAS  Google Scholar 

  91. Mussa, S. B., & Sharaa, I. (2014). Analysis of vitamin C (ascorbic acid) contents packed fruit juice by UV-spectrophotometry and redox titration methods. IOSR Journal of Applied Physics, 6(5), 46–52.

    Article  Google Scholar 

  92. Majidi, M., & AlQubury, H. (2016). Determination of vitamin C (ascorbic acid) contents in various fruit and vegetable by UV-spectrophotometry and titration methods. Journal of Chemical and Pharmaceutical Sciences, 9(4), 2972–2974.

    Google Scholar 

  93. Lao, R. C., et al. (1973). Application of a gas chromatograph-mass spectrometer-data processor combination to the analysis of the polycyclic aromatic hydrocarbon content of airborne pollutants. Analytical Chemistry, 45(6), 908–915.

    Article  CAS  PubMed  Google Scholar 

  94. Altunay, N., & Gürkan, R. (2016). A new simple UV-vis spectrophotometric method for determination of sulfite species in vegetables and dried fruits using a preconcentration process. Analytical Methods, 8(2), 342–352.

    Article  CAS  Google Scholar 

  95. Martelo-Vidal, M. J., & Vazquez, M. (2014). Evaluation of ultraviolet, visible, and near infrared spectroscopy for the analysis of wine compounds. Czech Journal of Food Sciences, 32(1), 37–47.

    Article  Google Scholar 

  96. Khalid, A., & Ahmad, S. (2016). Determination of caffeine in soft and energy drinks available in market by using UV/Visible spectrophotometer. Family Medicine & Medical Science Research, 5(4), 1000206.

    Article  Google Scholar 

  97. Souto, U. T., Barbosa, M. F., Dantas, H. V., de Pontes, A. S., da Silva Lyra, W., Diniz, P. H. G. D., et al. (2015). Identification of adulteration in ground roasted coffees using UV-vis spectroscopy and SPA-LDA. LWT-Food Science and Technology, 63(2), 1037–1041.

    Article  CAS  Google Scholar 

  98. Thanasekaran, J., Thomas, P., & Geraldine, P. (2009). In-vitro antioxidant activities of an ethanolic extract of the oyster mushroom, Pleurotus ostreatus. Innovative Food Science & Emerging Technologies, 10, 228–234.

    Article  Google Scholar 

  99. Zgórka, G., & Kawka, S. (2001). Application of conventional UV, photodiode array (PDA) and fluorescence (FL) detection to analysis of phenolic acids in plant material and pharmaceutical preparations. Journal of Pharmaceutical and Biomedical Analysis, 24, 1065–1072.

    Article  PubMed  Google Scholar 

  100. Boban, N., Tonkic, M., Modun, D., Budimir, D., Mudnic, I., Sutlovic, D., et al. (2010). Thermally treated wine retains antibacterial effects to food-born pathogens. Food Control, 21, 1161–1165.

    Article  CAS  Google Scholar 

  101. Fang, F., Li, J.-M., Pan, Q.-H., & Huang, W.-D. (2007). Determination of red wine flavonoids by HPLC and effect of aging. Food Chemistry, 101, 428–433.

    Article  CAS  Google Scholar 

  102. Zhang, Y., Li, M., Deng, X., & Ji, R. (2015). Predicting apple sugar content based on spectral characteristics of apple tree leaf in different phenological phases. Computers and Electronics in Agriculture, 112, 20.

    Article  Google Scholar 

  103. Levaj, B., Verica, D.-U., Kovačević, D. B., & Krasnići, N. (2009). Determination of flavonoids in pulp and Peel of mandarin. Fruits, 74, 3.

    Google Scholar 

  104. Aguilar, K., Garvín, A., & Ibarz, A. (2018). Effect of UV-vis processing on enzymatic activity and the physicochemical properties of peach juices from different varieties. Innovative Food Science & Emerging Technologies, 48, 83–89.

    Article  CAS  Google Scholar 

  105. Sârbu, C., Naşcu-Briciu, R. D., Kot-Wasik, A., Gorinstein, S., Wasik, A., & Namieśnik, J. (2012). Classification and fingerprinting of kiwi and pomelo fruits by multivariate analysis of chromatographic and spectroscopic data. Food Chemistry, 130, 994–1002.

    Article  Google Scholar 

  106. Xie, Y., Wu, L. C., Hua, L. Q., & You, H. G. (2014). Determination of chlorophyll and mangiferin content in mango leaves by using UV-VIS spectrum. Journal of Southern Agriculture, 45(3), 463–468.

    CAS  Google Scholar 

  107. Wang, A., Hu, D., & Xie, L. (2014). Comparison of detection modes in terms of the necessity of visible region (VIS) and influence of the peel on soluble solids content (SSC) determination of navel orange using VIS–SWNIR spectroscopy. Journal of Food Engineering, 126, 126–132.

    Article  CAS  Google Scholar 

  108. Tafese, T., & Kebede, E. (2015). UV -Visible spectrophotometric quantification of total polyphenol in selected fruits. Journal of Nutrition and Food Science, 4, 397–401.

    Google Scholar 

  109. Power, A., Chapman, J., Chandra, S., & Cozzolino, D. (2019). Ultraviolet-visible spectroscopy for food quality analysis. In Evaluation technologies for food quality (pp. 91–104). Amsterdam: Elsevier.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohidus Samad Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haque, F., Bubli, S.Y., Khan, M.S. (2021). UV–Vis Spectroscopy for Food Analysis. In: Khan, M.S., Shafiur Rahman, M. (eds) Techniques to Measure Food Safety and Quality. Springer, Cham. https://doi.org/10.1007/978-3-030-68636-9_8

Download citation

Publish with us

Policies and ethics