Skip to main content

Applications of Nanozymes in Wastewater Treatment

  • Chapter
  • First Online:
Nanozymes for Environmental Engineering

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 63))

  • 635 Accesses

Abstract

Hazardous waste containing wastewaters should be treated with efficient and economically feasible methods for sustainable water management. Adaptations of novel wastewater treatment methods are required to protect the environment and to provide a high level of health protection. Conventional methods need to be combined with advanced methods to remove the toxic contaminants from wastewater. Treatment of wastewater with enzymes has been shown to improve the treatment efficiency with reduced sludge volume and reduced odour. High cost and stability of the enzymes are major limitations for the implications of enzymes in wastewater treatment. Nanomaterials with an enzyme-like activity, which are called nanozymes, are emerging as potential alternatives for natural enzymes in wastewater treatment.

Nanozymes have been shown oxidase, peroxidase, superoxide dismutase and catalase enzymes like activity. Nanozymes are highly stable than natural enzymes and can exhibit the activity at a wide range of pH and temperatures. Production cost is less than that of natural enzymes, and nanozymes can be stored for longer periods. Multi functionalization and reusability are some of the important properties for wider applications of nanozymes in different types of wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABTS:

2, 2′-Azino-bis (3-ethylbenzothiazoline-6-sulphonic acid)

BSA-Pt:

bovine serum albumin – platinum

ELISA:

Enzyme-linked immunosorbent assay

HRP:

Horseradish peroxidase

Km:

Michaelis–Menten constant

OPD:

o-phenylenediamine

PANI:

Polyaniline

SOD:

Superoxide dismutase

TMB:

3,3′,5,5′-tetramethylbenzidine

References

  • Abu-Elsaoud AM, Abdel-Azeem AM (2020) Light, electromagnetic spectrum, and photostimulation of microorganisms with special reference to Chaetomium. In: Recent developments on Genus Chaetomium. Springer, Cham, pp 377–393

    Chapter  Google Scholar 

  • Aitken MD (1993) Waste treatment applications of enzymes: opportunities and obstacles. Chem Eng J 52(2):B49–B58

    Article  CAS  Google Scholar 

  • Aitken MD, Massey IJ, Chen T, Heck PE (1994) Characterization of reaction products from the enzyme catalyzed oxidation of phenolic pollutants. Water Res 28(9):1879–1889

    Article  CAS  Google Scholar 

  • Al-Saydeh SA, El-Naas MH, Zaidi SJ (2017) Copper removal from industrial wastewater: A comprehensive review. J Ind Eng Chem 56:35–44

    Article  CAS  Google Scholar 

  • Bohdziewicz J (1998) Biodegradation of phenol by enzymes from Pseudomonas sp. immobilized onto ultrafiltration membranes. Process Biochem 33(8):811–818

    Article  Google Scholar 

  • Bolong N, Ismail AF, Salim MR, Matsuura T (2009) A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination 239(1–3):229–246

    Article  CAS  Google Scholar 

  • Burgess JE, Pletschke BI (2008) Hydrolytic enzymes in sewage sludge treatment: a mini-review. Water SA 34(3):343–350

    Article  CAS  Google Scholar 

  • Burton SG, Boshoff A, Edwards W, Rose PD (1998) Biotransformation of phenols using immobilized polyphenol oxidase. J Mol Catal B Enzym 5(1–4):411–416

    Article  CAS  Google Scholar 

  • Cai K, Lv Z, Chen K, Huang L, Wang J, Shao F et al (2013) Aqueous synthesis of porous platinum nanotubes at room temperature and their intrinsic peroxidase-like activity. Chem Commun 49(54):6024–6026

    Article  CAS  Google Scholar 

  • Capeness MJ, Echavarri-Bravo V, Horsfall LE (2019) Production of biogenic nanoparticles for the reduction of 4-nitrophenol and oxidative laccase-like reactions. Front Microbiol 10:997

    Article  Google Scholar 

  • Chen W, Chen J, Liu AL, Wang LM, Li GW, Lin XH (2011) Peroxidase-like activity of cupric oxide nanoparticle. ChemCatChem 3(7):1151–1154

    Article  CAS  Google Scholar 

  • Chen W, Li S, Wang J, Sun K, Si Y (2019) Metal and metal-oxide nanozymes: bioenzymatic characteristics, catalytic mechanism, and eco-environmental applications. Nanoscale 11(34):15783–15793

    Article  CAS  Google Scholar 

  • Chivukula M, Renganathan V (1995) Phenolic azo dye oxidation by laccase from Pyricularia oryzae. Appl Environ Microbiol 61(12):4374–4377

    Article  CAS  Google Scholar 

  • Dec J, Bollag JM (1994) Use of plant material for the decontamination of water polluted with phenols. Biotechnol Bioeng 44(9):1132–1139

    Article  CAS  Google Scholar 

  • Dhir B (2014) Potential of biological materials for removing heavy metals from wastewater. Environ Sci Pollut Res 21(3):1614–1627

    Article  CAS  Google Scholar 

  • Duran N, Esposito E (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B Environ 28(2):83–99

    Article  CAS  Google Scholar 

  • Edwards W, Bownes R, Leukes WD, Jacobs EP, Sanderson R, Rose PD, Burton SG (1999) A capillary membrane bioreactor using immobilized polyphenol oxidase for the removal of phenols from industrial effluents. Enzym Microb Technol 24(3–4):209–217

    Article  CAS  Google Scholar 

  • Fan J, Yin JJ, Ning B, Wu X, Hu Y, Ferrari M et al (2011) Direct evidence for catalase and peroxidase activities of ferritin–platinum nanoparticles. Biomaterials 32(6):1611–1618

    Article  CAS  Google Scholar 

  • Ferrer I, Dezotti M, Durán N (1991) Decolorization of Kraft effluent by free and immobilized lignin peroxidases and horseradish peroxidase. Biotechnol Lett 13(8):577–582

    Article  CAS  Google Scholar 

  • Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N et al (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583

    Article  CAS  Google Scholar 

  • Ghernaout D, Ghernaout B (2012) Sweep flocculation as a second form of charge neutralization—a review. Desalin Water Treat 44(1–3):15–28

    Article  CAS  Google Scholar 

  • Gianfreda L, Sannino F, Filazzola MT, Leonowicz A (1998) Catalytic behavior and detoxifying ability of a laccase from the fungal strain Cerrena unicolor. J Mol Catal B Enzym 4(1–2):13–23

    Article  CAS  Google Scholar 

  • Grabski AC, Burgess RR, Rasmussen JK, Coleman PL (1996) Immobilization of manganese peroxidase from Lentinula edodes on alkylaminated Emphaze (TM) AB 1 polymer for generation of Mn3+ as an oxidizing agent. Appl Biochem Biotechnol 60(1):1–17

    Google Scholar 

  • Gramss G, Voigt KD, Kirsche B (1999) Oxidoreductase enzymes liberated by plant roots and their effects on soil humic material. Chemosphere 38(7):1481–1494

    Article  CAS  Google Scholar 

  • Grey R, Höfer C, Schlosser D (1998) Degradation of 2-chlorophenol and formation of 2-chloro-1, 4-benzoquinone by mycelia and cell-free crude culture liquids of Trametes versicolor in relation to extracellular laccase activity. J Basic Microbiol 38(5–6):371–382

    Article  CAS  Google Scholar 

  • He W, Wu X, Liu J, Hu X, Zhang K, Hou S et al (2010) Design of AgM bimetallic alloy nanostructures (M= Au, Pd, Pt) with tunable morphology and peroxidase-like activity. Chem Mater 22(9):2988–2994

    Article  CAS  Google Scholar 

  • He W, Jia H, Li X, Lei Y, Li J, Zhao H et al (2012) Understanding the formation of CuS concave superstructures with peroxidase-like activity. Nanoscale 4(11):3501–3506

    Article  CAS  Google Scholar 

  • He W, Zhou YT, Wamer WG, Hu X, Wu X, Zheng Z et al (2013) Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging. Biomaterials 34(3):765–773

    Article  CAS  Google Scholar 

  • Hofrichter M, Vares K, Scheibner K, Galkin S, Sipilä J, Hatakka A (1999) Mineralization and solubilization of synthetic lignin by manganese peroxidases from Nematoloma frowardii and Phlebia radiata. J Biotechnol 67(2–3):217–228

    Article  CAS  Google Scholar 

  • Hollender J, Hopp J, Dott W (1997) Degradation of 4-Chlorophenol via the meta cleavage pathway by Comamonas testosteroni JH5. Appl Environ Microbiol 63(11):4567–4572

    Article  CAS  Google Scholar 

  • Hu X, Saran A, Hou S, Wen T, Ji Y, Liu W et al (2013) Au@ PtAg core/shell nanorods: tailoring enzyme-like activities via alloying. RSC Adv 3(17):6095–6105

    Article  CAS  Google Scholar 

  • Huang Y, Ren J, Qu X (2019) Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev 119(6):4357–4412

    Article  CAS  Google Scholar 

  • Islam MA, Morton DW, Johnson BB, Mainali B, Angove MJ (2018) Manganese oxides and their application to metal ion and contaminant removal from wastewater. J Water Process Eng 26:264–280

    Article  Google Scholar 

  • Jiao X, Song H, Zhao H, Bai W, Zhang L, Lv Y (2012) Well-redispersed ceria nanoparticles: promising peroxidase mimetics for H2O2 and glucose detection. Anal Methods 4(10):3261–3267

    Article  CAS  Google Scholar 

  • Johjima T, Itoh N, Kabuto M, Tokimura F, Nakagawa T, Wariishi H, Tanaka H (1999) Direct interaction of lignin and lignin peroxidase from Phanerochaete chrysosporium. Proc Natl Acad Sci 96(5):1989–1994

    Article  CAS  Google Scholar 

  • Karam J, Nicell JA (1997) Potential applications of enzymes in waste treatment. J Chem Technol Biotechnol 69(2):141–153

    Article  CAS  Google Scholar 

  • Kim JE, Wang CJJ, Bollag JM (1997) Interaction of reactive and inert chemicals in the presence of oxidoreductases: Reaction of the herbicide bentazon and its metabolites with humic monomers. Biodegradation 8(6):387–392

    Article  CAS  Google Scholar 

  • Kuo MY, Hsiao CF, Chiu YH, Lai TH, Fang MJ, Wu JY et al (2019) Au@ Cu2O core@ shell nanocrystals as dual-functional catalysts for sustainable environmental applications. Appl Catal B Environ 242:499–506

    Article  CAS  Google Scholar 

  • Lapworth DJ, Baran N, Stuart ME, Ward RS (2012) Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ Pollut 163:287–303

    Article  CAS  Google Scholar 

  • Li W, Chen B, Zhang H, Sun Y, Wang J, Zhang J, Fu Y (2015) BSA-stabilized Pt nanozyme for peroxidase mimetics and its application on colorimetric detection of mercury (II) ions. Biosens Bioelectron 66:251–258

    Article  CAS  Google Scholar 

  • Liang M, Yan X (2019) Nanozymes: from new concepts, mechanisms, and standards to applications. Acc Chem Res 52(8):2190–2200

    Article  CAS  Google Scholar 

  • Liu S, Lu F, Xing R, Zhu JJ (2011) Structural effects of Fe3O4 nanocrystals on peroxidase-like activity. Chem Eur J 17(2):620–625

    Article  CAS  Google Scholar 

  • Lu XF, Bian XJ, Li ZC, Chao DM, Wang C (2013) A facile strategy to decorate Cu 9 S 5 nanocrystals on polyaniline nanowires and their synergetic catalytic properties. Sci Rep 3:2955

    Article  Google Scholar 

  • Ma F, Zheng L, Chi Y (2008) Applications of biological flocculants (BFs) for coagulation treatment in water purification: turbidity elimination. Chem Biochem Eng Q 22(3):321–326

    Google Scholar 

  • Ma M, Zhang Y, Gu N (2011) Peroxidase-like catalytic activity of cubic Pt nanocrystals. Colloids Surf A Physicochem Eng Asp 373(1–3):6–10

    Article  CAS  Google Scholar 

  • Machuca A, Aoyama H, Durán N (1999) Isolation and partial characterization of an extracellular low-molecular mass component with high Phenoloxidase activity from Thermoascus aurantiacus. Biochem Biophys Res Commun 256(1):20–26

    Article  CAS  Google Scholar 

  • Mansilla HD, Rodriguez J, Ferraz A, Duran N (1997) Biodegradation of acidolysis lignins from Chilean hardwoods by the ascomycete Chrysonilia sitophila. World J Microbiol Biotechnol 13(5):545–548

    Article  CAS  Google Scholar 

  • Mohapatra M, Anand S (2010) Synthesis and applications of nano-structured iron oxides/hydroxides–a review. Int J Eng Sci Technol 2(8):127–146

    Google Scholar 

  • Mu J, Wang Y, Zhao M, Zhang L (2012) Intrinsic peroxidase-like activity and catalase-like activity of Co 3 O 4 nanoparticles. Chem Commun 48(19):2540–2542

    Article  CAS  Google Scholar 

  • Oturan MA, Aaron JJ (2014) Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Crit Rev Environ Sci Technol 44(23):2577–2641

    Article  CAS  Google Scholar 

  • Pickard MA, Kadima TA, Carmichael RD (1991) Chloroperoxidase, a peroxidase with potential. J Ind Microbiol 7(4):235–241

    Article  CAS  Google Scholar 

  • Prakash NB, Sockan V, Jayakaran P (2014) Waste water treatment by coagulation and flocculation. Int J Eng Sci Innov Technol 3(2):479–484

    Google Scholar 

  • Qin T, Ma R, Yin Y, Miao X, Chen S, Fan K et al (2019) Catalytic inactivation of influenza virus by iron oxide nanozyme. Theranostics 9(23):6920

    Article  CAS  Google Scholar 

  • Qin L, Hu Y, Wei H (2020) Nanozymes: preparation and characterization. In: Yan (ed) Nanozymology. Springer, Singapore, pp 79–101

    Chapter  Google Scholar 

  • Rama R, Mougin C, Boyer FD, Kollmann A, Malosse C, Sigoillot JC (1998) Biotransformation of bezo [a] pyrene in bench scale reactor using laccase of Pycnoporus cinnabarinus. Biotechnol Lett 20(12):1101–1104

    Article  CAS  Google Scholar 

  • Rodriguez E, Pickard MA, Vazquez-Duhalt R (1999) Industrial dye decolorization by laccases from ligninolytic fungi. Curr Microbiol 38(1):27–32

    Article  CAS  Google Scholar 

  • Saby C, Luong JH (1998) A biosensor system for chlorophenols using chloroperoxidase and a glucose oxidase based amperometric electrode. Electroanalysis 10(1):7–11

    Article  CAS  Google Scholar 

  • Shen LH, Bao JF, Wang D, Wang YX, Chen ZW, Ren L et al (2013) One-step synthesis of monodisperse, water-soluble ultra-small Fe3 O4 nanoparticles for potential bio-application. Nanoscale 5(5):2133–2141

    Article  CAS  Google Scholar 

  • Shin HY, Park TJ, Kim MI (2015) Recent research trends and future prospects in nanozymes. J Nanomater 2015: 1–11 

    Google Scholar 

  • Siddique MH, St Pierre CC, Biswas N, Bewtra JK, Taylor KE (1993) Immobilized enzyme catalyzed removal of 4-chlorophenol from aqueous solution. Water Res 27(5):883–890

    Article  CAS  Google Scholar 

  • Stasinakis AS (2008) Use of selected advanced oxidation processes (AOPs) for wastewater treatment–a mini review. Global NEST J 10(3):376–385

    Google Scholar 

  • Vernekar AA, Das T, Ghosh S, Mugesh G (2016) A remarkably efficient MnFe2O4-based oxidase nanozyme. Chem Asian J 11(1):72–76

    Article  CAS  Google Scholar 

  • Wan Y, Qi P, Zhang D, Wu J, Wang Y (2012) Manganese oxide nanowire-mediated enzyme-linked immunosorbent assay. Biosens Bioelectron 33(1):69–74

    Article  CAS  Google Scholar 

  • Wang W, Jiang X, Chen K (2012a) Iron phosphate microflowers as peroxidase mimic and superoxide dismutase mimic for biocatalysis and biosensing. Chem Commun 48(58):7289–7291

    Article  CAS  Google Scholar 

  • Wang S, Chen W, Liu AL, Hong L, Deng HH, Lin XH (2012b) Comparison of the peroxidase-like activity of unmodified, amino-modified, and citrate-capped gold nanoparticles. ChemPhysChem 13(5):1199–1204

    Article  CAS  Google Scholar 

  • Wang X, Liu J, Qu R, Wang Z, Huang Q (2017) The laccase-like reactivity of manganese oxide nanomaterials for pollutant conversion: rate analysis and cyclic voltammetry. Sci Rep 7(1):1–10

    CAS  Google Scholar 

  • Wang Q, Wei H, Zhang Z, Wang E, Dong S (2018) Nanozyme: an emerging alternative to natural enzyme for biosensing and immunoassay. TrAC Trends Anal Chem 105:218–224

    Article  CAS  Google Scholar 

  • Wang J, Huang R, Qi W, Su R, Binks BP, He Z (2019) Construction of a bioinspired laccase-mimicking nanozyme for the degradation and detection of phenolic pollutants. Appl Catal B Environ 254:452–462

    Article  CAS  Google Scholar 

  • Wei H, Wang E (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42(14):6060–6093

    Article  CAS  Google Scholar 

  • Wu L, Wan G, Hu N, He Z, Shi S, Suo Y et al (2018) Synthesis of porous CoFe2O4 and its application as a peroxidase mimetic for colorimetric detection of H2O2 and organic pollutant degradation. Nano 8(7):451

    Google Scholar 

  • Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH et al (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10

    Article  CAS  Google Scholar 

  • Zhang Y, Tian J, Liu S, Wang L, Qin X, Lu W et al (2012) Novel application of CoFe layered double hydroxide nanoplates for colorimetric detection of H2O2 and glucose. Analyst 137(6):1325–1328

    Article  CAS  Google Scholar 

  • Zhang X, He S, Chen Z, Huang Y (2013) CoFe2O4 nanoparticles as oxidase mimic-mediated chemiluminescence of aqueous luminol for sulfite in white wines. J Agric Food Chem 61(4):840–847

    Article  CAS  Google Scholar 

  • Zhang S, Li H, Wang Z, Liu J, Zhang H, Wang B, Yang Z (2015) A strongly coupled Au/Fe3O4/GO hybrid material with enhanced nanozyme activity for highly sensitive colorimetric detection, and rapid and efficient removal of Hg2+ in aqueous solutions. Nanoscale 7(18):8495–8502

    Article  CAS  Google Scholar 

  • Zinicovscaia I (2016) Conventional methods of wastewater treatment. In: Cyanobacteria for bioremediation of wastewaters. Springer, Cham, pp 17–25

    Chapter  Google Scholar 

Download references

Acknowledgements

The author would like to thank Department of Biotechnology, Government of in India for financial support and ICAR-National Dairy Research Institute, Karnal, India, for providing lab space. The author would like to express his sincere thanks to Dr. A K Mohanty for his valuable suggestions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yata, V.K. (2021). Applications of Nanozymes in Wastewater Treatment. In: Daima, H.K., PN, N., Lichtfouse, E. (eds) Nanozymes for Environmental Engineering. Environmental Chemistry for a Sustainable World, vol 63. Springer, Cham. https://doi.org/10.1007/978-3-030-68230-9_4

Download citation

Publish with us

Policies and ethics