Skip to main content

Multifunctional Restorative Dental Materials: Remineralization and Antibacterial Effect

  • Chapter
  • First Online:
Oral Biofilms and Modern Dental Materials

Abstract

Remineralizing biomaterials have been a long-time pursuit in dentistry as a strategy to prevent or at least postpone the development of caries lesions around existing restorations, fissure sealants, and orthodontic brackets. Glass-ionomer cements, with a track record spanning four decades, have shown good results in situ. However, their low mechanical properties and bond strength to the tooth structure are limiting factors in several clinical situations. In the last decade, calcium orthophosphates (e.g., amorphous calcium phosphate/ACP), bioactive glasses (e.g., 45S5), and calcium silicates (e.g., mineral trioxide aggregate/MTA) have been tested as ion-releasing fillers in dentin bonding systems and resin composites. In vitro testing showed unequivocal evidences of hybrid layer remineralization, which reduces permeability and collagen degradation, therefore contributing to the longevity of bonded interfaces. On enamel, composites containing calcium orthophosphates were shown to promote mineral recovery in vitro and reduce mineral loss in situ. Besides fostering remineralization, some of these particles may also grant antimicrobial activity to resin-based materials, making them “multifunctional restorative materials.” Studies show that bioactive glasses are effective against some bacterial species due to their alkalinity and effect on osmotic gradient. For calcium silicates, however, there seems to be no consensus among authors regarding antimicrobial effect, while calcium orthophosphates and glass-ionomers show no evidence of intrinsic antimicrobial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Antonucci JM, Misra DN, Peckoo RJ. The accelerative and adhesive bonding capabilities of surface-active accelerators. J Dent Res. 1981;60(7):1332–42.

    Article  PubMed  Google Scholar 

  2. Labella R, Braden M, Deb S. Novel hydroxyapatite-based dental composites. Biomaterials. 1994;15(15):1197–200.

    Article  PubMed  Google Scholar 

  3. Antonucci JM, Skrtic D, Eanes ED. Bioactive polymeric dental materials based on amorphous calcium phosphate. Polym Prepr. 1994;35(2):460–1.

    Google Scholar 

  4. Xu HH, Moreau JL. Dental glass-reinforced composite for caries inhibition: calcium phosphate ion release and mechanical properties. J Biomed Mater Res B Appl Biomater. 2010;92(2):332–40.

    PubMed  PubMed Central  Google Scholar 

  5. Alania Y, Chiari MD, Rodrigues MC, Arana-Chavez VE, Bressiani AH, Vichi FM, et al. Bioactive composites containing TEGDMA-functionalized calcium phosphate particles: degree of conversion, fracture strength and ion release evaluation. Dent Mater. 2016;32(12):e374–81.

    Article  PubMed  Google Scholar 

  6. Chiari MD, Rodrigues MC, Xavier TA, de Souza EM, Arana-Chavez VE, Braga RR. Mechanical properties and ion release from bioactive restorative composites containing glass fillers and calcium phosphate nano-structured particles. Dent Mater. 2015;31(6):726–33.

    Article  PubMed  Google Scholar 

  7. Arcis RW, Lopez-Macipe A, Toledano M, Osorio E, Rodriguez-Clemente R, Murtra J, et al. Mechanical properties of visible light-cured resins reinforced with hydroxyapatite for dental restoration. Dent Mater. 2002;18(1):49–57.

    Article  PubMed  Google Scholar 

  8. Rodrigues MC, Hewer TL, Brito GE, Arana-Chavez VE, Braga RR. Calcium phosphate nanoparticles functionalized with a dimethacrylate monomer. Mater Sci Eng C Mater Biol Appl. 2014;45:122–6.

    Article  PubMed  Google Scholar 

  9. Xu HH, Weir MD, Sun L. Nanocomposites with Ca and PO4 release: effects of reinforcement, dicalcium phosphate particle size and silanization. Dent Mater. 2007;23(12):1482–91.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Moreau JL, Weir MD, Giuseppetti AA, Chow LC, Antonucci JM, Xu HH. Long-term mechanical durability of dental nanocomposites containing amorphous calcium phosphate nanoparticles. J Biomed Mater Res B Appl Biomater. 2012;100(5):1264–73.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Souza JG, Tenuta LM, Del Bel Cury AA, Nobrega DF, Budin RR, de Queiroz MX, et al. Calcium prerinse before fluoride rinse reduces enamel demineralization: an in situ caries study. Caries Res. 2016;50(4):372–7.

    Article  PubMed  Google Scholar 

  12. Rodrigues MC, Natale LC, Arana-Chaves VE, Braga RR. Calcium and phosphate release from resin-based materials containing different calcium orthophosphate nanoparticles. J Biomed Mater Res B Appl Biomater. 2015;103(8):1670–8.

    Article  PubMed  Google Scholar 

  13. Xu HH, Weir MD, Sun L, Takagi S, Chow LC. Effects of calcium phosphate nanoparticles on Ca-PO4 composite. J Dent Res. 2007;86(4):378–83.

    Article  PubMed  Google Scholar 

  14. Skrtic D, Antonucci JM. Dental composites based on amorphous calcium phosphate–resin composition/physicochemical properties study. J Biomater Appl. 2007;21(4):375–93.

    Article  PubMed  Google Scholar 

  15. Xu HH, Weir MD, Sun L. Calcium and phosphate ion releasing composite: effect of pH on release and mechanical properties. Dent Mater. 2009;25(4):535–42.

    Article  PubMed  Google Scholar 

  16. Aljabo A, Abou Neel EA, Knowles JC, Young AM. Development of dental composites with reactive fillers that promote precipitation of antibacterial-hydroxyapatite layers. Mater Sci Eng C Mater Biol Appl. 2016;60:285–92.

    Article  PubMed  Google Scholar 

  17. Skrtic D, Antonucci JM, Eanes ED. Improved properties of amorphous calcium phosphate fillers in remineralizing resin composites. Dent Mater. 1996;12(5):295–301.

    Article  PubMed  Google Scholar 

  18. Zhang L, Weir MD, Chow LC, Antonucci JM, Chen J, Xu HH. Novel rechargeable calcium phosphate dental nanocomposite. Dent Mater. 2016;32(2):285–93.

    Article  PubMed  Google Scholar 

  19. Hench LL. An introduction to bioceramics. London: Imperial College Press; 2013.

    Book  Google Scholar 

  20. Skrtic D, Hailer AW, Takagi S, Antonucci JM, Eanes ED. Quantitative assessment of the efficacy of amorphous calcium phosphate/methacrylate composites in remineralizing caries-like lesions artificially produced in bovine enamel. J Dent Res. 1996;75(9):1679–86.

    Article  PubMed  Google Scholar 

  21. Langhorst SE, O’Donnell JN, Skrtic D. In vitro remineralization of enamel by polymeric amorphous calcium phosphate composite: quantitative microradiographic study. Dent Mater. 2009;25(7):884–91.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Weir MD, Chow LC, Xu HH. Remineralization of demineralized enamel via calcium phosphate nanocomposite. J Dent Res. 2012;91(10):979–84.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Melo MA, Weir MD, Rodrigues LK, Xu HH. Novel calcium phosphate nanocomposite with caries-inhibition in a human in situ model. Dent Mater. 2013;29(2):231–40.

    Article  PubMed  Google Scholar 

  24. Dickens SH, Flaim GM, Takagi S. Mechanical properties and biochemical activity of remineralizing resin-based Ca-PO4 cements. Dent Mater. 2003;19(6):558–66.

    Article  PubMed  Google Scholar 

  25. Dickens SH, Flaim GM. Effect of a bonding agent on in vitro biochemical activities of remineralizing resin-based calcium phosphate cements. Dent Mater. 2008;24(9):1273–80.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Peters MC, Bresciani E, Barata TJ, Fagundes TC, Navarro RL, Navarro MF, et al. In vivo dentin remineralization by calcium-phosphate cement. J Dent Res. 2010;89(3):286–91.

    Article  PubMed  Google Scholar 

  27. Weir MD, Ruan J, Zhang N, Chow LC, Zhang K, Chang X, et al. Effect of calcium phosphate nanocomposite on in vitro remineralization of human dentin lesions. Dent Mater. 2017;33(9):1033–44.

    Article  PubMed  Google Scholar 

  28. Moreau JL, Sun L, Chow LC, Xu HH. Mechanical and acid neutralizing properties and bacteria inhibition of amorphous calcium phosphate dental nanocomposite. J Biomed Mater Res B Appl Biomater. 2011;98(1):80–8.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ionescu AC, Hahnel S, Cazzaniga G, Ottobelli M, Braga RR, Rodrigues MC, et al. Streptococcus mutans adherence and biofilm formation on experimental composites containing dicalcium phosphate dihydrate nanoparticles. J Mater Sci Mater Med. 2017;28(7):108.

    Article  PubMed  Google Scholar 

  30. Cheng L, Weir MD, Limkangwalmongkol P, Hack GD, Xu HH, Chen Q, et al. Tetracalcium phosphate composite containing quaternary ammonium dimethacrylate with antibacterial properties. J Biomed Mater Res B Appl Biomater. 2012;100(3):726–34.

    Article  PubMed  Google Scholar 

  31. Chen C, Weir MD, Cheng L, Lin NJ, Lin-Gibson S, Chow LC, et al. Antibacterial activity and ion release of bonding agent containing amorphous calcium phosphate nanoparticles. Dent Mater. 2014;30(8):891–901.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Melo MA, Cheng L, Zhang K, Weir MD, Rodrigues LK, Xu HH. Novel dental adhesives containing nanoparticles of silver and amorphous calcium phosphate. Dent Mater. 2013;29(2):199–210.

    Article  PubMed  Google Scholar 

  33. Cheng L, Weir MD, Xu HH, Antonucci JM, Lin NJ, Lin-Gibson S, et al. Effect of amorphous calcium phosphate and silver nanocomposites on dental plaque microcosm biofilms. J Biomed Mater Res B Appl Biomater. 2012;100(5):1378–86.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cheng L, Weir MD, Xu HH, Kraigsley AM, Lin NJ, Lin-Gibson S, et al. Antibacterial and physical properties of calcium-phosphate and calcium-fluoride nanocomposites with chlorhexidine. Dent Mater. 2012;28(5):573–83.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Melo MA, Cheng L, Weir MD, Hsia RC, Rodrigues LK, Xu HH. Novel dental adhesive containing antibacterial agents and calcium phosphate nanoparticles. J Biomed Mater Res B Appl Biomater. 2013;101(4):620–9.

    Article  PubMed  Google Scholar 

  36. Natale LC, Alania Y, Rodrigues MC, Simoes A, de Souza DN, de Lima E, et al. Synthesis and characterization of silver phosphate/calcium phosphate mixed particles capable of silver nanoparticle formation by photoreduction. Mater Sci Eng C Mater Biol Appl. 2017;76:464–71.

    Article  PubMed  Google Scholar 

  37. Hench LL, Jones JR. Bioactive glasses: frontiers and challenges. Front Bioeng Biotechnol. 2015;3:194.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Oguntebi B, Clark A, Wilson J. Pulp capping with bioglass and autologous demineralized dentin in miniature swine. J Dent Res. 1993;72(2):484–9.

    Article  PubMed  Google Scholar 

  39. Zamet JS, Darbar UR, Griffiths GS, Bulman JS, Bragger U, Burgin W, et al. Particulate bioglass as a grafting material in the treatment of periodontal intrabony defects. J Clin Periodontol. 1997;24(6):410–8.

    Article  PubMed  Google Scholar 

  40. Wefel JS. NovaMin: likely clinical success. Adv Dent Res. 2009;21(1):40–3.

    Article  PubMed  Google Scholar 

  41. Efflandt SE, Magne P, Douglas WH, Francis LF. Interaction between bioactive glasses and human dentin. Journal of materials science. Mater Med. 2002;13(6):557–65.

    Article  Google Scholar 

  42. Greenspan DC, Hench LL. Bioactive glass for tooth remineralization. In: Hench LL, editor. An introduction to bioceramics. London: Impreial College Press; 2013.

    Google Scholar 

  43. Forsback AP, Areva S, Salonen JI. Mineralization of dentin induced by treatment with bioactive glass S53P4 in vitro. Acta Odontol Scand. 2004;62(1):14–20.

    Article  PubMed  Google Scholar 

  44. Vollenweider M, Brunner TJ, Knecht S, Grass RN, Zehnder M, Imfeld T, et al. Remineralization of human dentin using ultrafine bioactive glass particles. Acta Biomater. 2007;3(6):936–43.

    Article  PubMed  Google Scholar 

  45. Sauro S, Osorio R, Watson TF, Toledano M. Influence of phosphoproteins’ biomimetic analogs on remineralization of mineral-depleted resin-dentin interfaces created with ion-releasing resin-based systems. Dent Mater. 2015;31(7):759–77.

    Article  PubMed  Google Scholar 

  46. Wang Z, Jiang T, Sauro S, Wang Y, Thompson I, Watson TF, et al. Dentine remineralization induced by two bioactive glasses developed for air abrasion purposes. J Dent. 2011;39(11):746–56.

    Article  PubMed  Google Scholar 

  47. Profeta AC, Mannocci F, Foxton RM, Thompson I, Watson TF, Sauro S. Bioactive effects of a calcium/sodium phosphosilicate on the resin-dentine interface: a microtensile bond strength, scanning electron microscopy, and confocal microscopy study. Eur J Oral Sci. 2012;120(4):353–62.

    Article  PubMed  Google Scholar 

  48. Osorio R, Yamauti M, Sauro S, Watson TF, Toledano M. Experimental resin cements containing bioactive fillers reduce matrix metalloproteinase-mediated dentin collagen degradation. J Endod. 2012;38(9):1227–32.

    Article  PubMed  Google Scholar 

  49. Tezvergil-Mutluay A, Seseogullari-Dirihan R, Feitosa VP, Cama G, Brauer DS, Sauro S. Effects of composites containing bioactive glasses on demineralized dentin. J Dent Res. 2017;96(9):999–1005.

    Article  PubMed  Google Scholar 

  50. Chatzistavrou X, Velamakanni S, DiRenzo K, Lefkelidou A, Fenno JC, Kasuga T, et al. Designing dental composites with bioactive and bactericidal properties. Mater Sci Eng C Mater Biol Appl. 2015;52:267–72.

    Article  PubMed  Google Scholar 

  51. Yang SY, Kwon JS, Kim KN, Kim KM. Enamel surface with pit and fissure sealant containing 45S5 bioactive glass. J Dent Res. 2016;95(5):550–7.

    Article  PubMed  Google Scholar 

  52. Khvostenko D, Mitchell JC, Hilton TJ, Ferracane JL, Kruzic JJ. Mechanical performance of novel bioactive glass containing dental restorative composites. Dent Mater. 2013;29(11):1139–48.

    Article  PubMed  Google Scholar 

  53. Fernandes JS, Gentile P, Pires RA, Reis RL, Hatton PV. Multifunctional bioactive glass and glass-ceramic biomaterials with antibacterial properties for repair and regeneration of bone tissue. Acta Biomater. 2017;59:2–11.

    Article  PubMed  Google Scholar 

  54. Echezarreta-Lopez MM, Landin M. Using machine learning for improving knowledge on antibacterial effect of bioactive glass. Int J Pharm. 2013;453(2):641–7.

    Article  PubMed  Google Scholar 

  55. Stoor P, Soderling E, Salonen JI. Antibacterial effects of a bioactive glass paste on oral microorganisms. Acta Odontol Scand. 1998;56(3):161–5.

    Article  PubMed  Google Scholar 

  56. Allan I, Newman H, Wilson M. Antibacterial activity of particulate bioglass against supra- and subgingival bacteria. Biomaterials. 2001;22(12):1683–7.

    Article  PubMed  Google Scholar 

  57. Khvostenko D, Hilton TJ, Ferracane JL, Mitchell JC, Kruzic JJ. Bioactive glass fillers reduce bacterial penetration into marginal gaps for composite restorations. Dent Mater. 2016;32(1):73–81.

    Article  PubMed  Google Scholar 

  58. Torabinejad M, Hong CU, McDonald F, Pitt Ford TR. Physical and chemical properties of a new root-end filling material. J Endod. 1995;21(7):349–53.

    Article  PubMed  Google Scholar 

  59. Camilleri J. Hydration mechanisms of mineral trioxide aggregate. Int Endod J. 2007;40(6):462–70.

    Article  PubMed  Google Scholar 

  60. Gandolfi MG, Taddei P, Siboni F, Modena E, De Stefano ED, Prati C. Biomimetic remineralization of human dentin using promising innovative calcium-silicate hybrid “smart” materials. Dent Mater. 2011;27(11):1055–69.

    Article  PubMed  Google Scholar 

  61. Tay FR, Pashley DH, Rueggeberg FA, Loushine RJ, Weller RN. Calcium phosphate phase transformation produced by the interaction of the Portland cement component of white mineral trioxide aggregate with a phosphate-containing fluid. J Endod. 2007;33(11):1347–51.

    Article  PubMed  Google Scholar 

  62. Sarkar NK, Caicedo R, Ritwik P, Moiseyeva R, Kawashima I. Physicochemical basis of the biologic properties of mineral trioxide aggregate. J Endod. 2005;31(2):97–100.

    Article  PubMed  Google Scholar 

  63. Tay FR, Pashley DH. Guided tissue remineralisation of partially demineralised human dentine. Biomaterials. 2008;29(8):1127–37.

    Article  PubMed  Google Scholar 

  64. Tay FR, Pashley DH. Biomimetic remineralization of resin-bonded acid-etched dentin. J Dent Res. 2009;88(8):719–24.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Profeta AC, Mannocci F, Foxton R, Watson TF, Feitosa VP, De Carlo B, et al. Experimental etch-and-rinse adhesives doped with bioactive calcium silicate-based micro-fillers to generate therapeutic resin-dentin interfaces. Dent Mater. 2013;29(7):729–41.

    Article  PubMed  Google Scholar 

  66. Sauro S, Osorio R, Osorio E, Watson TF, Toledano M. Novel light-curable materials containing experimental bioactive micro-fillers remineralise mineral-depleted bonded-dentine interfaces. J Biomater Sci Polym Ed. 2013;24(8):940–56.

    Article  PubMed  Google Scholar 

  67. Osorio R, Yamauti M, Sauro S, Watson TF, Toledano M. Zinc incorporation improves biological activity of beta-tricalcium silicate resin-based cement. J Endod. 2014;40(11):1840–5.

    Article  PubMed  Google Scholar 

  68. Wang Z, Shen Y, Haapasalo M, Wang J, Jiang T, Wang Y, et al. Polycarboxylated microfillers incorporated into light-curable resin-based dental adhesives evoke remineralization at the mineral-depleted dentin. J Biomater Sci Polym Ed. 2014;25(7):679–97.

    Article  PubMed  Google Scholar 

  69. Profeta AC. Preparation and properties of calcium-silicate filled resins for dental restoration. Part II: micro-mechanical behaviour to primed mineral-depleted dentine. Acta Odontol Scand. 2014;72(8):607–17.

    Article  PubMed  Google Scholar 

  70. Torabinejad M, Hong CU, Pitt Ford TR, Kettering JD. Antibacterial effects of some root end filling materials. J Endod. 1995;21(8):403–6.

    Article  PubMed  Google Scholar 

  71. Damlar I, Ozcan E, Yula E, Yalcin M, Celik S. Antimicrobial effects of several calcium silicate-based root-end filling materials. Dent Mater J. 2014;33(4):453–7.

    Article  PubMed  Google Scholar 

  72. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review—part I: chemical, physical, and antibacterial properties. J Endod. 2010;36(1):16–27.

    Article  PubMed  Google Scholar 

  73. Kim RJ, Kim MO, Lee KS, Lee DY, Shin JH. An in vitro evaluation of the antibacterial properties of three mineral trioxide aggregate (MTA) against five oral bacteria. Arch Oral Biol. 2015;60(10):1497–502.

    Article  PubMed  Google Scholar 

  74. Zhang H, Pappen FG, Haapasalo M. Dentin enhances the antibacterial effect of mineral trioxide aggregate and bioaggregate. J Endod. 2009;35(2):221–4.

    Article  PubMed  Google Scholar 

  75. Zehnder M, Waltimo T, Sener B, Soderling E. Dentin enhances the effectiveness of bioactive glass S53P4 against a strain of Enterococcus faecalis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101(4):530–5.

    Article  PubMed  Google Scholar 

  76. Fan W, Wu Y, Ma T, Li Y, Fan B, et al. J Mater Sci Mater Med. 2016;27(1):16.

    Article  PubMed  Google Scholar 

  77. Fan W, Li Y, Sun Q, Ma T, Fan B. Calcium-silicate mesoporous nanoparticles loaded with chlorhexidine for both anti-Enterococcus faecalis and mineralization properties. J Nanobiotechnol. 2016;14(1):72.

    Article  Google Scholar 

  78. Yang Y, Huang L, Dong Y, Zhang H, Zhou W, Ban J, et al. In vitro antibacterial activity of a novel resin-based pulp capping material containing the quaternary ammonium salt MAE-DB and Portland cement. PLoS One. 2014;9(11):e112549.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Cury JA, de Oliveira BH, dos Santos AP, Tenuta LM. Are fluoride releasing dental materials clinically effective on caries control? Dent Mater. 2016;32(3):323–33.

    Article  PubMed  Google Scholar 

  80. Hara AT, Turssi CP, Ando M, Gonzalez-Cabezas C, Zero DT, Rodrigues AL Jr, et al. Influence of fluoride-releasing restorative material on root dentine secondary caries in situ. Caries Res. 2006;40(5):435–9.

    Article  PubMed  Google Scholar 

  81. Cenci MS, Tenuta LM, Pereira-Cenci T, Del Bel Cury AA, ten Cate JM, Cury JA. Effect of microleakage and fluoride on enamel-dentine demineralization around restorations. Caries Res. 2008;42(5):369–79.

    Article  PubMed  Google Scholar 

  82. Ngo HC, Mount G, Mc Intyre J, Tuisuva J, Von Doussa RJ. Chemical exchange between glass-ionomer restorations and residual carious dentine in permanent molars: an in vivo study. J Dent. 2006;34(8):608–13.

    Article  PubMed  Google Scholar 

  83. Bezerra AC, Novaes RC, Faber J, Frencken JE, Leal SC. Ion concentration adjacent to glass-ionomer restorations in primary molars. Dent Mater. 2012;28(11):e259–63.

    Article  PubMed  Google Scholar 

  84. Kim YK, Yiu CK, Kim JR, Gu L, Kim SK, Weller RN, et al. Failure of a glass ionomer to remineralize apatite-depleted dentin. J Dent Res. 2010;89(3):230–5.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Duque C, Negrini Tde C, Hebling J, Spolidorio DM, et al. Oper Dent. 2005;30(5):636–40.

    PubMed  Google Scholar 

  86. Davidovich E, Weiss E, Fuks AB, Beyth N. Surface antibacterial properties of glass ionomer cements used in atraumatic restorative treatment. J Am Dent Assoc (1939). 2007;138(10):1347–52.

    Article  Google Scholar 

  87. van Dijken JW, Kalfas S, Litra V, Oliveby A. Fluoride and mutans streptococci levels in plaque on aged restorations of resin-modified glass ionomer cement, compomer and resin composite. Caries Res. 1997;31(5):379–83.

    Article  PubMed  Google Scholar 

  88. Bradshaw DJ, Marsh PD, Hodgson RJ, Visser JM. Effects of glucose and fluoride on competition and metabolism within in vitro dental bacterial communities and biofilms. Caries Res. 2002;36(2):81–6.

    Article  PubMed  Google Scholar 

  89. Vale GC, Tabchoury CP, Del Bel Cury AA, Tenuta LM, ten Cate JM, Cury JA. APF and dentifrice effect on root dentin demineralization and biofilm. J Dent Res. 2011;90(1):77–81.

    Article  PubMed  Google Scholar 

  90. Wiegand A, Buchalla W, Attin T. Review on fluoride-releasing restorative materials--fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dent Mater. 2007;23(3):343–62.

    Article  PubMed  Google Scholar 

  91. Frencken JE, Imazato S, Toi C, Mulder J, Mickenautsch S, Takahashi Y, et al. Antibacterial effect of chlorhexidine-containing glass ionomer cement in vivo: a pilot study. Caries Res. 2007;41(2):102–7.

    Article  PubMed  Google Scholar 

  92. Yesilyurt C, Er K, Tasdemir T, Buruk K, Celik D. Antibacterial activity and physical properties of glass-ionomer cements containing antibiotics. Oper Dent. 2009;34(1):18–23.

    Article  PubMed  Google Scholar 

  93. Elsaka SE, Hamouda IM, Swain MV. Titanium dioxide nanoparticles addition to a conventional glass-ionomer restorative: influence on physical and antibacterial properties. J Dent. 2011;39(9):589–98.

    Article  PubMed  Google Scholar 

  94. Ibrahim MA, Neo J, Esguerra RJ, Fawzy AS. Characterization of antibacterial and adhesion properties of chitosan-modified glass ionomer cement. J Biomater Appl. 2015;30(4):409–19.

    Article  PubMed  Google Scholar 

  95. Paiva L, Fidalgo TKS, da Costa LP, Maia LC, Balan L, Anselme K, et al. Antibacterial properties and compressive strength of new one-step preparation silver nanoparticles in glass ionomer cements (NanoAg-GIC). J Dent. 2018;69:102–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Ruggiero Braga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Braga, R.R. (2021). Multifunctional Restorative Dental Materials: Remineralization and Antibacterial Effect. In: Ionescu, A.C., Hahnel, S. (eds) Oral Biofilms and Modern Dental Materials . Springer, Cham. https://doi.org/10.1007/978-3-030-67388-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67388-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67387-1

  • Online ISBN: 978-3-030-67388-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics