Skip to main content

Advertisement

Log in

Assessment of the remineralisation induced by contemporary ion-releasing materials in mineral-depleted dentine

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Evaluate the ability of current ion-releasing materials to remineralise bacteria-driven artificial caries lesions.

Materials and methods

Standardised class I cavities were obtained in 60 extracted human molars. Specimens underwent a microbiological cariogenic protocol (28 days) to generate artificial caries lesions and then were randomly divided into four restorative groups: adhesive + composite (negative control); glass ionomer cement (GIC); calcium silicate cement (MTA); and resin-modified calcium silicate cement (RMTA). Microhardness analysis (ΔKHN) was performed on 40 specimens (10/group, t = 30 days, 45 days, 60 days in artificial saliva, AS). Micro-CT scans were acquired (3/group, t = 0 days, 30 days, and 90 days in AS). Confocal microscopy was employed for interfacial ultra-morphology analysis (2/group, t = 0 days and 60 days in AS). Additional specimens were prepared and processed for scanning electron microscopy (SEM) and FTIR (n = 3/group + control) to analyse the ability of the tested materials to induce apatite formation on totally demineralised dentine discs (60 days in AS). Statistical analyses were performed with a significance level of 5%.

Results

Adhesive + composite specimens showed the lowest ΔKHN values and the presence of gaps at the interface when assessed through micro-CT even after storage in AS. Conversely, all the tested ion-releasing materials presented an increase in ΔKHN after storage (p < 0.05), while MTA best reduced the demineralised artificial carious lesions gap at the interface. MTA and RMTA also showed apatite deposition on totally demineralised dentine surfaces (SEM and FTIR).

Conclusions

All tested ion-releasing materials expressed mineral precipitation in demineralised dentine. Additionally, calcium silicate-based materials induced apatite precipitation and hardness recovery of artificial carious dentine lesions over time.

Clinical relevance

Current ion-releasing materials can induce remineralisation of carious dentine. MTA shows enhanced ability of nucleation/precipitation of hydroxyapatite compared to RMTA and GIC, which may be more appropriate to recover severe mineral-depleted dentine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Banerjee A (2013) Minimal intervention dentistry: part 7. Minimally invasive operative caries management: rationale and techniques. Br Dent J 21:107–111. https://doi.org/10.1038/sj.bdj.2013.106

    Article  Google Scholar 

  2. Sauro S, Pashley DH (2016) Strategies to stabilise dentine-bonded interfaces through remineralising operative approaches: state of the art. Int J Adhes Adhes 69:39–57. https://doi.org/10.1016/j.ijadhadh.2016.03.014

    Article  Google Scholar 

  3. Schwendicke F, Frencken JE, Bjørndal L et al (2016) Managing carious lesions: consensus recommendations on carious tissue removal. Adv Dent Res 28:58–67. https://doi.org/10.1177/0022034516639271

    Article  PubMed  Google Scholar 

  4. Banerjee A, Frencken JE, Schwendicke F, Innes NPT (2017) Contemporary operative caries management: consensus recommendations on minimally invasive caries removal. Br Dent 223:215–222. https://doi.org/10.1038/sj.bdj.2017.672

    Article  Google Scholar 

  5. Schwendicke F, Splieth C, Breschi L, Banerjee A, Fontana M, Paris S, Burrow MF, Crombie F, Page LF, Gaton-Hernandez P et al (2019) When to intervene in the caries process? An expert Delphi consensus statement. Clin Oral Investig 23:3691–3703. https://doi.org/10.1007/s00784-019-03058-w

    Article  PubMed  Google Scholar 

  6. Banerjee A, Watson TF (2011) Pickard’s manual of operative dentistry, ed 9. Oxford University Press, Oxford

  7. Pugach MK, Strother J, Darling CL, Fried D, Gansky SA, Marshall SJ, Marshall GW (2009) Dentin caries zones: mineral, structure, and properties. J Dent Res 88:71–76. https://doi.org/10.1177/0022034508327552

    Article  PubMed  PubMed Central  Google Scholar 

  8. Brambilla, E, & Ionescu, AC (2021) Oral biofilms and secondary caries formation. Oral biofilms and modern dental materials: advances toward bioactivity. Springer, Cham

  9. Almahdy A, Downey FC, Sauro S, Cook RJ, Sherriff M, Richards D, Watson TF, Banerjee A, Festy F (2012) Microbiochemical analysis of carious dentine using Raman and fluorescence spectroscopy. Caries Res 46:432–440. https://doi.org/10.1159/000339487

    Article  PubMed  Google Scholar 

  10. Zavgorodniy AV, Rohanizadeh R, Swain MV (2008) Ultrastructure of dentine carious lesions. Arch Oral Bio 53:124–132. https://doi.org/10.1016/j.archoralbio.2007.08.007

    Article  Google Scholar 

  11. Yoshiyama M, Doi J, Nishitani Y, Itota T, Tay FR, Carvalho RM et al (2004) Bonding ability of adhesive resins to caries-affected and caries-infected dentin. J Appl Oral Sci 12:171–176. https://doi.org/10.1590/s1678-77572004000300002

    Article  PubMed  Google Scholar 

  12. Hashem D, Mannocci F, Patel S, Manoharan A, Brown JE, Watson TF, Banerjee A (2015) Clinical and radiographic assessment of the efficacy of calcium silicate indirect pulp capping: a randomised controlled clinical trial. J Dent Res 94:562–568. https://doi.org/10.1177/0022034515571415

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hashem D, Mannocci F, Patel S, Manoharan A, Watson TF, Banerjee A (2019) Evaluation of the efficacy of calcium silicate vs. glass ionomer cement indirect pulp capping and restoration assessment criteria: a randomised controlled clinical trial-2-year results. Clin Oral Investig 23:1931–1939. https://doi.org/10.1007/s00784-018-2638-0

    Article  PubMed  Google Scholar 

  14. Giannini M, Sauro S (2021) “Bioactivity” in restorative dentistry: standing for the use of innovative materials to improve the longevity of restorations in routine dental practice. J Adhes Dent 7(23):176–178. https://doi.org/10.3290/j.jad.b1179733

    Article  Google Scholar 

  15. Carrilho M & D’Alpino PH (2018) Future perspectives for dental composites. In: Miletic V. Dental composite materials for direct restorations. Springer, Switzerland, pp 291–301

  16. Sanz JL, Rodríguez-Lozano FJ, Llena C, Sauro S, Forner L (2019) Bioactivity of bioceramic materials used in the dentin-pulp complex therapy: a systematic review. Materials (Basel) 12:1015. https://doi.org/10.3390/ma12071015

    Article  Google Scholar 

  17. Watson TF, Bartlett DW (1994) Adhesive systems: composites, dentine bonding agents and glass ionomers. Br Dent J 19(176):227–231. https://doi.org/10.1038/sj.bdj.4808410

    Article  Google Scholar 

  18. Van Meerbeek B, De Munck J, Yoshida Y, Inoue S, Vargas M, Vijay P, Van Landuyt K, Lambrechts P, Vanherle G (2003) Buonocore memorial lecture. Adhesion to enamel and dentin: current status and future challenges. Oper Dent 28:215–235

    PubMed  Google Scholar 

  19. Hahnel S, Ionescu AC, Cazzaniga G, Ottobelli M, Brambilla E (2017) Biofilm formation and release of fluoride from dental restorative materials in relation to their surface properties. J Dent 60:14–24. https://doi.org/10.1016/j.jdent.2017.02.005

    Article  PubMed  Google Scholar 

  20. Wiegand A, Buchalla W, Attin T (2007) Review on fluoride-releasing restorative materials—fluoride release and uptake characteristics, antibacterial activity and influence on caries formation. Dent Mater 23:343–362. https://doi.org/10.1016/j.dental.2006.01.022

    Article  PubMed  Google Scholar 

  21. Li X, De Munck J, Van Landuyt K, Pedano M, Chen Z, Van Meerbeek B (2017) How effectively do hydraulic calcium-silicate cements remineralise demineralised dentin. Dent Mater 33:434–445. https://doi.org/10.1016/j.dental.2017.01.015

    Article  PubMed  Google Scholar 

  22. Lee BN, Lee BG, Chang HS, Hwang YC, Hwang IN, Oh WM (2017) Effects of a novel light-curable material on odontoblastic differentiation of human dental pulp cells. Int Endod J 50:464–471. https://doi.org/10.1111/iej.12642

    Article  PubMed  Google Scholar 

  23. Meraji N, Nekoofar MH, Yazdi KA, Sharifian MR, Fakhari N, Camilleri J (2018) Bonding to caries affected dentine. Dent Mater 34:236–245. https://doi.org/10.1016/j.dental.2018.05.017

    Article  Google Scholar 

  24. Pires PM, Santos TP, Fonseca-Goncalves A, Pithon MM, Lopes RT, Neves AA (2018) Mineral density in carious dentine after treatment with calcium silicates and polyacrylic acid based cements. Int Endod J 51:1292–1300. https://doi.org/10.1111/iej.12941

    Article  PubMed  Google Scholar 

  25. Sauro S, Lin CY, Bikker FJ, Cama G, Dubruel P, Soria JM, D’’Onofrio A, Gillam D, (2016) Di-calcium phosphate and phytosphingosine as an innovative acid-resistant treatment to occlude dentine tubules. Caries Res 50:303–309. https://doi.org/10.1159/000445444

    Article  PubMed  Google Scholar 

  26. Profeta AC, Mannocci F, Foxton R, Watson TF, Feitosa VP, De Carlo B, Mongiorgi R, Valdré G, Sauro S (2013) Experimental etch-and-rinse adhesives doped with bioactive calcium silicate-based micro-fillers to generate therapeutic resin-dentin interfaces. Dent Mater 29:729–741. https://doi.org/10.1016/j.dental.2013.04.001

    Article  PubMed  Google Scholar 

  27. Sauro S, Watson T, Moscardó AP, Luzi A, Feitosa VP, Banerjee, (2018) The effect of dentine pre-treatment using bioglass and/or polyacrylic acid on the interfacial characteristics foreskin-modified glass ionomer cements. J Dent 73:32–39. https://doi.org/10.1016/j.jdent.2018.03.014

    Article  PubMed  Google Scholar 

  28. Tezvergil-Mutluay A, Seseogullari-Dirihan R, Feitosa VP, Cama G, Brauer DS, Sauro S (2017) Effects of composites containing bioactive glasses on demineralised dentin. J Dent Res 96:999–1005. https://doi.org/10.1177/0022034517709464

    Article  PubMed  Google Scholar 

  29. Spagnuolo G, Pires PM, Calarco A, Peluso G, Banerjee A, Rengo S, Elias Boneta AR, Sauro S (2021) An in-vitro study investigating the effect of air-abrasion bioactive glasses on dental adhesion, cytotoxicity and odontogenic gene expression. Dent Mater 37:1734–1750. https://doi.org/10.1016/j.dental.2021.09.004

    Article  PubMed  Google Scholar 

  30. Valizadeh S, Kamangar SSH, Nekoofar MH, Behroozibakhsh M, Shahidi Z. (2022) Comparison of dentin caries remineralization with four bioactive cements. Eur J Prosthodont Restor Dent. 4. https://doi.org/10.1922/EJPRD_2363Valizadeh07. Epub ahead of print.

  31. Pires PM, Neves AA, Makeeva IM, Schwendicke F, Faus-Matoses V, Yoshihara K, Banerjee A, Sauro S (2020) Contemporary restorative ion-releasing materials: current status, interfacial properties and operative approaches. Br Dent J 229:450–458. https://doi.org/10.1038/s41415-020-2169-3

    Article  PubMed  Google Scholar 

  32. Sauro S, Babbar A, Gharibi B, Feitosa VP, Carvalho RM, Azevedo Rodrigues LK, Banerjee A, Watson T (2018) Cellular differentiation, bioactive and mechanical properties of experimental light-curing pulp protection materials. Dent Mater 34:868–878. https://doi.org/10.1016/j.dental.2018.02.008

    Article  PubMed  Google Scholar 

  33. Kasraei S, Haghi S, Valizadeh S, Panahandeh N, Nejadkarimi S (2021) Phosphate ion release and alkalizing potential of three bioactive dental materials in comparison with composite resin. Int J Dent 7:5572569. https://doi.org/10.1155/2021/5572569

    Article  Google Scholar 

  34. Babaie E, Bacino M, White J, Nurrohman H, Marshall GW, Saeki K, Habelitz S (2021) Polymer-Induced Liquid Precursor (PILP) remineralisation of artificial and natural dentin carious lesions evaluated by nanoindentation and microcomputed tomography. J Dent 109:103659. https://doi.org/10.1016/j.jdent.2021.103659

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liu Y, Tjäderhane L, Breschi L, Mazzoni A, Li N, Mao J, Pashley DH, Tay FR (2011) Limitations in bonding to dentin and experimental strategies to prevent bond degradation. J Dent Res 90:953–968. https://doi.org/10.1177/0022034510391799

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tjäderhane L, Nascimento FD, Breschi L, Mazzoni A, Tersariol IL, Geraldeli S, Tezvergil-Mutluay A, Carrilho MR, Carvalho RM, Tay FR, Pashley DH (2013) Optimising dentin bond durability: control of collagen degradation by matrix metalloproteinases and cysteine cathepsins. Dent Mater 29:116–135. https://doi.org/10.1016/j.dental.2012.08.004

    Article  PubMed  Google Scholar 

  37. Kim YK, Yiu CK, Kim JR, Gu L, Kim SK, Weller RN, Pashley DH, Tay FR (2010) Failure of a glass ionomer to remineralise apatite-depleted dentin. J Dent Res 89:230–235. https://doi.org/10.1177/0022034509357172

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fathy SM (2019) Remineralisation ability of two hydraulic calcium-silicate based dental pulp capping materials: cell-independent model. J Clin Exp Dent 11:360–366. https://doi.org/10.4317/jced.55689

    Article  Google Scholar 

  39. Daneshpoor N, Pishevar L (2020) Comparative evaluation of bioactive cements on biomimetic remineralisation of dentin. J Clin Exp Dent 12:291–299. https://doi.org/10.4317/jced.56500

    Article  Google Scholar 

  40. Owens B (2018) Bioactivity, biocompatibility and biomimetic properties for dental materials: clarifying the confusion? Mod. App Dent Oral Health 2. https://doi.org/10.32474/MADOHC.2018.02.000132

  41. Atmeh AR, Chong EZ, Richard G, Boyde A, Festy F, Watson TF (2015) Calcium silicate cement-induced remineralisation of totally demineralised dentine in comparison with glass ionomer cement: tetracycline labelling and two-photon fluorescence microscopy. J Microsc 257:151–160. https://doi.org/10.1111/jmi.12197

    Article  PubMed  Google Scholar 

  42. Nakajima M, Sano H, Urabe I, Tagami J, Pashley DH (2000) Bond strengths of single-bottle dentin adhesives to caries-affected dentin. Oper Dent 25:2–10

    PubMed  Google Scholar 

  43. Erhardt MC, Toledano M, Osorio R, Pimenta LA (2008) Histomorphologic characterisation and bond strength evaluation of caries-affected dentin/resin interfaces: effects of long-term water exposure. Dent Mater 24(6):786–798. https://doi.org/10.1016/j.dental.2007.09.007

    Article  PubMed  Google Scholar 

  44. Pashley DH, Tay FR, Yiu C, Hashimoto M, Breschi L, Carvalho RM, Ito S (2004) Collagen degradation by host-derived enzymes during aging. J Dent Res 83:216–221. https://doi.org/10.1177/154405910408300306

    Article  PubMed  Google Scholar 

  45. Rahn BA, Perren SM (1971) Xylenol orange, a fluorochrome useful in polychrome sequential labelling of calcifying tissues. Stain Technol 46:125–129. https://doi.org/10.3109/10520297109067836

    Article  PubMed  Google Scholar 

  46. Atmeh AR, Chong EZ, Richard G, Festy F, Watson TF (2012) Dentin-cement interfacial interaction: calcium silicates and polyalkenoates. J Dent Res 91:454–459. https://doi.org/10.1177/0022034512443068

    Article  PubMed  PubMed Central  Google Scholar 

  47. Qi YP, Li N, Niu LN, Primus CM, Ling JQ, Pashley DH, Tay FR (2012) Remineralisation of artificial dentinal caries lesions by biomimetically modified mineral trioxide aggregate. Acta Biomater 8:836–842. https://doi.org/10.1016/j.actbio.2011.10.033

    Article  PubMed  Google Scholar 

Download references

Funding

Research facilities were supported by grants “Ministerio de Ciencia, Innovación y Universidades (PID2020-120346 GB-I00)” (PI: SS). Paula Maciel Pires undertook a PhD exchange programme at Cardenal Herrera University during part of the experimental assay and was supported by a CAPES grant from Brazil (grant numbers 88882.424807/2018–01 and 88881.188518/2018–01).

Author information

Authors and Affiliations

Authors

Contributions

All authors gave their final approval and agreed to be accountable for all aspects of the work. Paula Maciel Pires1: Investigation, Formal Analysis, Data curation, Writing-Original Draft. Andrei Cristian Ionescu: Formal Analysis, Data curation, Writing-Review & Editing. Salvatore Sauro: Funding Acquisition, Conceptualization, Formal analysis, Methodology, Writing-Review & Editing, Project administration. Maria Teresa Pérez-Gracia: Investigation. Elena Vezzoli: Investigation, Data curation, Formal analysis. Igor Paulino Mendes Soares: Investigation, Data curation. Eugenio Brambilla: Writing-Review & Editing. Aline de Almeida Neves: Conceptualization, Methodology, Writing -Review & Editing, Project administration.

Corresponding author

Correspondence to Salvatore Sauro.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

For this type of study, formal consent is not required. Human molars used in this study were collected according to the guidelines of the local Ethics Committee (Universidade Federal Do Rio de Janeiro, 54941416.9.0000.5257).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maciel Pires, P., Ionescu, A.C., Pérez-Gracia, M.T. et al. Assessment of the remineralisation induced by contemporary ion-releasing materials in mineral-depleted dentine. Clin Oral Invest 26, 6195–6207 (2022). https://doi.org/10.1007/s00784-022-04569-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-022-04569-9

Keywords

Navigation