Skip to main content

Chapter 5 Trichome Responses to Elevated Atmospheric CO2 of the Future

  • Chapter
  • First Online:
Photosynthesis, Respiration, and Climate Change

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 48))

Abstract

Leaf hairs (trichomes) are small and rigid epidermal structures that serve in herbivore defense, temperature regulation, boundary layer fortification, and UV-B protection, and can even act as mechanosensory switches indicating insect herbivore presence (Zhou et al. 2016; Xiao et al. 2017). As such, leaf trichomes have impacts on overall plant physiology, photosynthetic efficiency, fitness, and plant-environment interactions (Calo et al. 2006; Løe et al. 2007; Sletvold et al. 2010; Nguyen et al. 2016; Xiao et al. 2017; Imboden et al. 2018; Kergunteuil et al. 2018; Kim 2019). Elevated [CO2] affects plants across multiple scales, ranging from the molecular and physiological levels to the ecosystem level (Masle 2000; Bidart-Bouzat et al. 2005; Teng et al., 2006; Medeiros and Ward 2013; Becklin et al. 2016; Dong et al. 2018).

Abbreviations: CPC – CAPRICE; ET – Ethylene; FDH – FIDDLEHEAD; GA – Gibberellic acid; GFP – Green fluorescent protein; GL1 – GLABROUS1; GL2 – GLABROUS2; GL3 – GLABROUS3; GO – gene ontology; HIC – HIGH CARBON DIOXIDE; IAA – Indole-3-acetic acid; JA – Jasmonic acid; JAZ – JASMONATE-ZIM DOMAIN; KCS – Ketoacyl-CoA synthase; miR156 – MicroRNA156; PAP1 – PRODUCTION OF ANTHOCYANIN PIGMENT 1; PS II – Photosystem II; SA – Salicylic acid; SIM – SIAMESE; SlIAA15 – Solanum lycopersicum indole-3-acetic acid 15; SPL – SQUAMOSA PROMOTER BINDING-LIKE; TCL1 – TRICHOMELESS1; TRY – TRYPTYCHON; TTG1 – TRANSPARENT TESTA GLABRA 1; UPL3 – UBIQUITIN PROTEIN LIGASE 3; VLCFA – Very long chain fatty acids; WER – WEREWOLF; WUE – Water use efficiency

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ 30:258–270

    Article  CAS  PubMed  Google Scholar 

  • Amada G, Onoda Y, Ichie T, Kitayama K (2017) Influence of leaf trichomes on boundary layer conductance and gas-exchange characteristics in Metrosideros polymorpha (Myrtaceae). Biotropica 49:482–492

    Article  Google Scholar 

  • Balkunde R, Pesch M, Hülskamp M (2010) Trichome patterning in Arabidopsis thaliana: from genetic to molecular models. Curr Top Dev Biol 91:299–321

    Article  CAS  PubMed  Google Scholar 

  • Becklin KM, Anderson JT, Gerhart LM, Wadgymar SM, Wessinger CA, Ward JK (2016) Examining plant physiological responses to climate change through an evolutionary lens. Plant Physiol 172:635–649

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bergau N, Bennewitz S, Syrowatka F, Hause G, Tissier A (2015) The development of type VI glandular trichomes in the cultivated tomato Solanum lycopersicum and a related wild species S habrochaites. BMC Plant Biol:15

    Google Scholar 

  • Bickford CP (2016) Ecophysiology of leaf trichomes. Funct Plant Biol 43:807–814

    Article  PubMed  Google Scholar 

  • Bidart-Bouzat MG (2004) Herbivory modifies the lifetime fitness response of Arabidopsis thaliana to elevated CO2. Ecology 85:297–303

    Article  Google Scholar 

  • Bidart-Bouzat M, Mithen R, Berenbaum M (2005) Elevated CO2 influences herbivory-induced defense responses of Arabidopsis thaliana. Oecologia 145:415–424

    Article  PubMed  Google Scholar 

  • Bird SM, Gray JE (2002) Signals from the cuticle affect epidermal cell differentiation. New Phytol 157:9–23

    Article  Google Scholar 

  • Bouyer D, Geier F, Kragler F, Schnittger A, Pesch M, Wester K, Balkunde R, Timmer J, … Hülskamp M (2008) Two-dimensional patterning by a trapping/depletion mechanism: the role of TTG1 and GL3 in Arabidopsis trichome formation. PLoS Biol 6:1166–1177

    Google Scholar 

  • Calo L, García I, Gotor C, Romero LC (2006) Leaf hairs influence phytopathogenic fungus infection and confer an increased resistance when expressing a Trichoderma alpha-1,3-glucanase. J Exp Bot 57:3911–3920

    Article  CAS  PubMed  Google Scholar 

  • Chien JC, Sussex IM (1996) Differential regulation of trichome formation on the adaxial and abaxial leaf surfaces by gibberellins and photoperiod in Arabidopsis thaliana (L.) Heynh. Plant Physiol 111:1321–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coupe SA, Palmer BG, Lake JA, Overy SA, Oxborough K, Woodward FI, Gray JE, Quick WP (2006) Systemic signalling of environmental cues in Arabidopsis leaves. J Exp Bot 57:329–341

    Article  CAS  PubMed  Google Scholar 

  • Digiuni S, Schellmann S, Geier F, Greese B, Pesch M, Wester K, Dartan B, Mach V, … Hülskamp M (2008) A competitive complex formation mechanism underlies trichome patterning on Arabidopsis leaves. Mol Syst Biol 4:1–11

    Google Scholar 

  • Dong J, Gruda N, Lam SK, Li X, Duan Z (2018) Effects of elevated CO2 on nutritional quality of vegetables: a review. Front Plant Sci 9

    Google Scholar 

  • Ehleringer JR (1988) Comparative ecophysiology of Encelia farinosa and Encelia frutescens. I Energy Balance Consider Oecol 76:553–561

    Google Scholar 

  • Ehleringer J, Björkman O (1978) Pubescence and leaf spectral characteristics in a desert shrub, Encelia farinosa. Oecologia 36:151–162

    Article  CAS  PubMed  Google Scholar 

  • Ehleringer JR, Mooney HA (1978) Leaf hairs: effects on physiological activity and adaptive value to a desert shrub. Oecologia 37:183–200

    Article  CAS  PubMed  Google Scholar 

  • Engineer C, Hashimoto-Sugimoto M, Negi J, Israelsson-Nordström M, Azoulay-Shemer T, Wouter-Jan R, Iba K, Schroeder J (2016) CO2 sensing and CO2 regulation of stomatal conductance: advances and open questions. Trends Plant Sci 21:16–30

    Article  CAS  PubMed  Google Scholar 

  • Ferris R, Sabatti M, Miglietta F, Mills RF, Taylor G (2001) Leaf area is stimulated in Populus by free air CO2 enrichment (POPFACE), through increased cell expansion and production. Plant Cell Environ 24:305–315

    Article  CAS  Google Scholar 

  • Galdon-Armero J, Fullana-Pericas M, Mulet PA, Conesa MA, Martin C, Galmes J (2018) The ratio of trichomes to stomata is associated with water use efficiency in Solanum lycopersicum (tomato). Plant J 96:607–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glas JJ, Schimmel BCJ, Alba JM, Escobar-Bravo R, Schuurink RC, Kant MR (2012) Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. Int J Mol Sci 13:17077–17103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gou J, Felippes FF, Liu C, Weigel D, Wang J (2011) Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell 23:1512–1522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray J, Holroyd G, van der Lee F, Bahrami A, Sijmons P, Woodward F, Schuch W, Hetherington A (2000) The HIC signalling pathway links CO2 perception to stomatal development. Nature 408:713–716

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Sun Y, Li Y, Liu X, Zhang W, Ge F (2013) Elevated CO2 decreases the response of the ethylene signaling pathway in Medicago truncatula and increases the abundance of the pea aphid. New Phytol 201:279–291

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Sun Y, Li Y, Liu X, Wang P, Zhu-Salzman K, Ge F (2014) Elevated CO2 alters the feeding behavior of the pea aphid by modifying the physical and chemical resistance of Medicago truncatula. Plant Cell Environ 37:2158–2168

    Article  CAS  PubMed  Google Scholar 

  • Hanley ME, Lamont BB, Fairbanks MM, Rafferty CM (2007) Plant structural traits and their role in anti-herbivore defence. Perspect Plant Ecol Evol System 8:157–178

    Article  Google Scholar 

  • Haus MJ, Li M, Chitwood DH, Jacobs TW (2018) Long-distance and trans-generational stomatal patterning by CO2 across Arabidopsis organs. Front Plant Sci 9

    Google Scholar 

  • Hegebarth D, Buschhaus C, Wu M, Bird D, Jetter R (2016) The composition of surface wax on trichomes of Arabidopsis thaliana differs from wax on other epidermal cells. Plant J 88:762–774

    Article  CAS  PubMed  Google Scholar 

  • Hülskamp M (2004) Plant trichomes: a model for cell differentiation. Mol Cell Biol 5:471–480

    Google Scholar 

  • Hülskamp M, Misera S, Jurgens G (1994) Genetic dissection of trichome cell development in Arabidopsis. Cell 76:555–556

    Article  PubMed  Google Scholar 

  • Imboden L, Afton D, Trail F (2018) Surface interactions of Fusarium graminearum on barley. Mol Plant Pathol 19:1332–1342

    Article  CAS  PubMed  Google Scholar 

  • Ioannidi E, Rigas S, Tsitsekian D, Daras G, Alatzas A, Makris A, Tanou G, Argiriou A, … Kanellis AK (2016) Trichome patterning control involves TTG1 interaction with SPL transcription factors. Plant Mol Biol 92: 675–687

    Google Scholar 

  • Ivakov A, Persson S (2013) Plant cell shape: modulators and measurements. Front Plant Sci 4:439

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson HB (1975) Plant pubescence: An ecological perspective. Bot Rev 41:233–258

    Article  Google Scholar 

  • Johnson CS, Kolevski B, Smyth DR (2002) TRANSPARENT TESTA GLABRA2, a Trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell 14:1359–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joubes J, Raffaele S, Bourdenx B, Garcia C, Laroche-Traineau J, Moreau P, Domergue F, Lessire R (2008) The VLCFA elongase gene family in Arabidopsis thaliana: phylogenetic analysis, 3D modelling, and expression profiling. Plant Mol Biol 67:547–566

    Article  CAS  PubMed  Google Scholar 

  • Karowe D, Grubb C (2011) Elevated CO2 increases constitutive phenolics and trichomes, but decreases inducibility of phenolics in Brassica rapa (Brassicaceae). J Chem Ecol 37:1332–1340

    Article  CAS  PubMed  Google Scholar 

  • Kergunteuil A, Descombes P, Glauser G, Pellissier L, Rasmann S (2018) Plant physical and chemical defence variation along elevation gradients: a functional trait-based approach. Oecologia 187:561–571

    Article  PubMed  Google Scholar 

  • Kim KW (2019) Plant trichomes as microbial habitats and infection sites. Eur J Plant Pathol 154:157–169

    Article  CAS  Google Scholar 

  • Konrad W, Burkhardt J, Ebner M, Roth-Nebelsick A (2015) Leaf pubescence as a possibility to increase water use efficiency by promoting condensation. Ecohydrology 8:480–492

    Article  Google Scholar 

  • Krimmel BA, Pearse IS (2013) Sticky plant traps insects to enhance indirect defence. Ecol Lett 16:219–224

    Article  CAS  PubMed  Google Scholar 

  • Kryvych S, Nikiforova V, Herzog M, Perazza D, Fisahn J (2008) Gene expression profile of the different stages of Arabidopsis thaliana trichome development on the single cell level. Plant Physiol Biochem 46:160–173

    Article  CAS  PubMed  Google Scholar 

  • Lake JA, Wade RN (2009) Plant-pathogen interactions and elevated CO2: morphological changes in favour of pathogens. J Exp Bot 60:3123–3131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lake J, Woodward F (2008) Response of stomatal numbers to CO2 and humidity: control by transpiration rate and abscisic acid. New Phytol 179:397–404

    Article  CAS  PubMed  Google Scholar 

  • Lake JA, Quick WP, Beerling DJ, Woodward FI (2001) Signals from mature to new leaves. Nature 411

    Google Scholar 

  • Larkin JC, Oppenheimer DG, Pollock S, Marks MD (1993) Arabidopsis GLABROUS1 gene requires downstream sequences for function. Plant Cell 5:1739–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larkin JC, Brown ML, Schiefelbein J (2003) How do cells know what they want to be when they grow up? Lessons from epidermal patterning in Arabidopsis. Annu Rev Plant Biol 54:403–430

    Article  CAS  PubMed  Google Scholar 

  • Li P, Ainsworth EA, Leakey ADB, Ulanov A, Lozovaya V, Ort DR, Bohnert HJ (2008) Arabidopsis transcript and metabolite profiles: ecotype-specific responses to open-air elevated [CO2]. Plant Cell Environ:1673–1687

    Google Scholar 

  • Lloyd AM, Schena M, Walbot V, Davis RW (1994) Epidermal cell fate determination in Arabidopsis: patterns defined by a steroid-inducible regulator. Science 266:436–439

    Article  CAS  PubMed  Google Scholar 

  • Løe G, Toräng P, Gaudeul M, Ågren J (2007) Trichome production and spatiotemporal variation in herbivory in the perennial herb Arabidopsis lyrata. Oikos 116:134–142

    Article  Google Scholar 

  • Lolle SJ, Berlyn GP, Engstrom EM, Krolikowski KA, Reiter W, Pruitt RE (1997) Developmental regulation of cell interactions in the Arabidopsis fiddlehead-1 mutant: a role for the epidermal cell wall and cuticle. Dev Biol 189:311–321

    Article  CAS  PubMed  Google Scholar 

  • Maes L, Inzé D, Goossens A (2008) Functional specialization of the TRANSPARENT TESTA GLABRA1 network allows differential hormonal control of laminal and marginal trichome initiation in Arabidopsis rosette leaves. Plant Physiol 148:1453–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manetas Y (2003) The importance of being hairy: the adverse effects of hair removal on stem photosynthesis of Verbascum speciosum are due to solar UV-B radiation. New Phytol 158:503–508

    Article  Google Scholar 

  • Masle J (2000) The effects of elevated CO2 concentrations on cell division rates, growth patterns, and blade anatomy in young wheat plants are modulated by factors related to leaf position, vernalization, and genotype. Plant Physiol 122:1399–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matias-Hernandez L, Aguilar-Jaramillo AE, Cigliano RA, Sanseverino W, Pelaz S (2016) Flowering and trichome development share hormonal and transcription factor regulation. J Exp Bot 67:1209–1219

    Article  CAS  PubMed  Google Scholar 

  • Mauricio R (1998) Costs of resistance to natural enemies in field populations of the annual plant Arabidopsis thaliana. Am Soc Natural 151:20–28

    Article  CAS  Google Scholar 

  • May P, Liao W, Wu Y, Shuai B, McCombie W, Zhang M, Liu Q (2013) The effects of carbon dioxide and temperature on microRNA expression in Arabidopsis development. Nat Commun 4:2145

    Article  PubMed  CAS  Google Scholar 

  • Medeiros JS, Ward JK (2013) Increasing atmospheric [CO2] from glacial through future levels affects drought tolerance via impacts on leaves, xylem, and their integrated function. New Phytol 199:738–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morohashi K, Grotewold E (2009) A systems approach reveals regulatory circuitry for Arabidopsis trichome initiation by the GL3 and GL1 selectors. PLoS Genet 5

    Google Scholar 

  • Nguyen TTX, Dehne H, Steiner U (2016) Maize leaf trichomes represent an entry point of infection for Fusarium species. Fungal Biol 120:895–903

    Article  CAS  PubMed  Google Scholar 

  • Ning P, Wang J, Zhou Y, Gao L, Wang J, Gong C (2016) Adaptional evolution of trichome in Caragana korshinskii to natural drought stress on the Loess Plateau, China. Ecol Evol 6:3786–3795

    Article  PubMed  PubMed Central  Google Scholar 

  • Niu Y, Jin C, Jin G, Zhou Q, Lin X, Tang C, Zhang Y (2011) Auxin modulates the enhanced development of root hairs in Arabidopsis thaliana (L.) Heynh. Under elevated CO2. Plant Cell Environ 34:1304–1317

    Article  CAS  PubMed  Google Scholar 

  • NOAA (2016). https://www.esrl.noaa.gov/gmd/ccgg/trends/. Accessed 30 Sept 2018

  • Noguchi K, Watanabe CK, Terashima I (2015) Effects of elevated atmospheric CO2 on primary metabolite levels in Arabidopsis thaliana Col-0 leaves: an examination of metabolome data. Plant Cell Physiol 56:2069–2078

    CAS  PubMed  Google Scholar 

  • Ohashi Y, Oka A, Ruberti I, Morelli G, Aoyama T (2002) Entopically additive expression of GLABRA2 alters the frequency and spacing of trichome initiation. Plant J 29:359–369

    Article  CAS  PubMed  Google Scholar 

  • Patra B, Pattanaik S, Yuan L (2013) Ubiquitin protein ligase 3 mediates the proteasomal degradation of GLABROUS 3 and ENHANCER OF GLABROUS 3, regulators of trichome development and flavonoid biosynthesis in Arabidopsis. Plant J 74:435–447

    Article  CAS  PubMed  Google Scholar 

  • Pattanaik S, Patra B, Singh SK, Yuan L (2014) An overview of the gene regulatory network controlling trichome development in the model plant, Arabidopsis. Front Plant Sci 5

    Google Scholar 

  • Payne CT, Zhang F, Lloyd AM (2000) GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics:1349–1362

    Google Scholar 

  • Peng D, Niu Y, Song B, Chen J, Li Z, Yang Y, Sun H (2015) Wooly and overlapping leaves dampen temperature fluctuations in reproductive organ of an alpine Himalayan forb. J Plant Ecol 8:159–165

    Article  Google Scholar 

  • Peraldi A, Beccari G, Steed A, Nicholson P (2011) Brachypodium distachyon: a new pathosystem to study Fusarium head blight and other Fusarium diseases of wheat. BMC Plant Biol 11

    Google Scholar 

  • Perazza D, Vachon G, Herzog M (1998) Gibberellins promote trichome formation by up-regulating GLABROUS1 in Arabidopsis. Plant Physiol 117:375–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pesch M, Hülskamp M (2009) One, two, three…models for trichome patterning in Arabidopsis? Curr Opin Plant Biol 12:587–592

    Article  CAS  PubMed  Google Scholar 

  • Pesch M, Schultheiß I, Klopffleisch K, Uhrig JF, Koegl M, Clemen CS, Simon R, Weidtkamp-Peters S, Hülskamp M (2015) TRANSPARENT TESTA GLABRA1 and GLABRA1 compete for binding to GLABRA3 in Arabidopsis. Plant Physiol 168:584–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi T, Song S, Ren Q, Wu D, Huang H, Chen Y, Fan M, Peng W, … Xie D (2011) The jasmonate-ZIM-domain proteins interact with the WD-repeat/bHLH/MYB complexes to regulate jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell 23: 1795–1814

    Google Scholar 

  • Qi T, Huang H, Wu D, Yan J, Qi Y, Song S, Xie D (2014) Arabidopsis DELLA and JAZ proteins bind the WD-repeat/bHLH/MYB complex to modulate gibberellin and jasmonate signaling synergy. Plant Cell 26:1118–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsay NA, Glover BJ (2005) MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci 10:63–70

    Article  CAS  PubMed  Google Scholar 

  • Riederer M, Schreiber L (2001) Protecting against water loss: analysis of the barrier properties of plant cuticles. J Exp Bot 52:2023–2032

    Article  CAS  PubMed  Google Scholar 

  • Schiefelbein J (2003) Cell-fate specification in the epidermis: a common patterning mechanism in the root and shoot. Curr Opin Plant Biol 6:74–78

    Article  CAS  PubMed  Google Scholar 

  • Schnittger A, Folkers U, Schwab B, Jurgens G, Hülskamp M (1999) Generation of a spacing pattern: the role of TRIPTYCHON in trichome patterning in Arabidopsis. Plant Cell 11:1105–1116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreuder MDJ, Brewer CA, Heine C (2001) Modelled influences of non-exchanging trichomes on leaf boundary layers and gas exchange. J Theor Biol 210:23–32

    Article  CAS  PubMed  Google Scholar 

  • Shi M, Xie D (2014) Biosynthesis and metabolic engineering of anthocyanins in Arabidopsis thaliana. Recent Pat Biotechnol 8:47–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sletvold N, Huttunen P, Handley R, Karkkainen K, Agren J (2010) Cost of trichome production and resistance to a specialist insect herbivore in Arabidopsis lyrata. Evol Ecol 24:1307–1319

    Article  Google Scholar 

  • Springer CJ, Ward JK (2007) Flowering time and elevated atmospheric CO2. New Phytol 176:243–255

    Article  CAS  PubMed  Google Scholar 

  • Springer CJ, Orozco RA, Kelly JK, Ward JK (2008) Elevated CO2 influences the expression of floral-initiation genes in Arabidopsis thaliana. New Phytol 178:63–67

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Guo H, Zhu-Salzman K, Ge F (2013) Elevated CO2 increases the abundance of the peach aphid on Arabidopsis by reducing jasmonic acid defenses. Plant Sci 210:128–140

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Guo H, Ge F (2016) Plant-aphid interactions under elevated CO2: some cues from aphid feeding behavior. Front Plant Sci 7:1–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Szymanski DB, Marks MD (1998) GLABROUS1 overexpression and TRYPTYCHON alter the cell cycle and trichome cell fate in Arabidopsis. Plant Cell 10:2047–2062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takatani N, Ito T, Kiba T, Mori M, Miyamoto T, Maeda S, Omata T (2014) Effects of high CO2 on growth and metabolism of Arabidopsis seedlings during growth with a constantly limited supply of nitrogen. Plant Cell Physiol 55:281–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng N, Wang J, Tong C, Wu X, Wang Y, Lin J (2006) Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana. New Phytol 172:92–103

    Article  CAS  PubMed  Google Scholar 

  • Tian H, Qi T, Li Y, Wang C, Ren C, Song S, Huang H (2016) Regulation of the WD-repeat/bHLH/MYB complex by gibberellin and jasmonate. Plant Signal Behav 11

    Google Scholar 

  • Tohge T, Nishiyama Y, Hirai MY, Yano M, Nakajima J, Awazuhara M, Inoue E, Takahashi H, … Saito K (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42: 218–235

    Google Scholar 

  • Traw MB, Bergelson J (2003) Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Plant Physiol 133:1367–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuji J, Coe L (2013) The glabra1 mutation affects the stomatal patterning of Arabidopsis thaliana rosette leaves. Bios 84:92–97

    Article  CAS  Google Scholar 

  • Van Der Kooij TAW, De Kok LJ (1996) Impact on elevated CO2 on growth and development of Arabidopsis thaliana L. Phyton 36:173–184

    Google Scholar 

  • Wada T, Tachibana T, Shimura Y, Okada K (1997) Epidermal cell differentiation in Arabidopsis determined by a Myb homolog, CPC. Science 277:1113–1116

    Article  CAS  PubMed  Google Scholar 

  • Walker JD, Oppenheimer DG, Concienne J, Larkin JC (2000) SIAMESE, a gene controlling the endoreduplication cell cycle in Arabidopis thaliana trichomes. Development 127:3931–3940

    Article  CAS  PubMed  Google Scholar 

  • Walter W, Sanchez-Cabo F, Ricote M (2015) GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics 31:2912–2914

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Chen J (2008) Arabidopsis transient expression analysis reveals that activation of GLABRA2 may require concurrent binding of GLABRA1 and GLABRA3 to the promoter of GLABRA2. Plant Cell Physiol 49:1792–1804

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Chen J (2014) Regulation of cell fate determination by single-repeat R3 MYB transcription factors in Arabidopsis. Front Plant Sci 5

    Google Scholar 

  • Wang X, Wang, X., Hu, Q., Dai, X., Tian, H., Zheng, K., Wang, X., Mao, T., …, Wang, S. (2015) Characterization of an activation-tagged mutant uncovers a role of GLABRA2 in anthocyanin biosynthesis in Arabidopsis. Plant J: 300-311

    Google Scholar 

  • Werker E (2000) Trichome diversity and development. Adv Bot Res 31:1–35

    Article  Google Scholar 

  • Woodward F, Kelly C (1995) The influence of CO2 concentration on stomatal density. New Phytol 131:311–327

    Article  Google Scholar 

  • Xiao K, Mao X, Lin Y, Xu H, Zhu Y, Cai Q, Xie H, Zhang J (2017) Trichome, a functional diversity phenotype in plant. Mol Biol 6

    Google Scholar 

  • Xu M, Hu T, Zhao J, Park M, Earley KW, Wu G, Yang L, Poethig RS (2016a) Developmental functions of miR156-regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes in Arabidopsis thaliana. PLoS Genet 12:1–29

    Article  CAS  Google Scholar 

  • Xu Z, Jiang Y, Jia B, Zhou G (2016b) Elevated-CO2 response of stomata and its dependence on environmental factors. Front Plant Sci 7

    Google Scholar 

  • Xue X, Zhao B, Chao L, Chen D, Cui W, Mao Y, Wang LJ, Chen X (2014) Interaction between two timing microRNAs controls trichome distribution in Arabidopsis. PLoS Genet 10

    Google Scholar 

  • Yan A, Pan J, An L, Gan Y, Feng H (2012) The responses of trichome mutants to enhanced ultraviolet-B radiation in Arabidopsis thaliana. J Photochem Photobiol B Biol 113:29–35

    Article  CAS  Google Scholar 

  • Yan L, Cheng X, Jia R, Qin Q, Guan L, Du H, Hou S (2014) New phenotypic characteristics of three tmm alleles in Arabidopsis thaliana. Plant Cell Rep 33:719–731

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Ye Z (2012) Trichomes as models for studying plant cell differentiation. Cell Mol Life Sci 70:1937–1948

    Article  PubMed  CAS  Google Scholar 

  • Yephremov A (1999) Characterization of the FIDDLEHEAD gene of Arabidopsis reveals a link between adhesion response and cell differentiation. Plant Cell 11:2187–2202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida Y, Sano R, Wada T, Takabayashi J, Okada K (2009) Jasmonic acid control of GLABRA3 links inducible defense and trichome patterning in Arabidopsis. Development 136:1039–1048

    Article  CAS  PubMed  Google Scholar 

  • Yu N, Cai W, Wang S, Shan C, Wang L, Chen X (2010) Temporal control of trichome distribution by microRNA156-targeted SPL genes in Arabidopsis thaliana. Plant Cell 22:2322–2335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue W, Shao-Ting D, Ling-Ling L, Li-Dong H, Ping F, Xian-Yong L, Yong-Song Z, Hai-Long W (2009) Effect of CO2 elevated on root growth and its relationship with indole acetic acid and ehtylene in tomato seedlings. Pedosphere 19:570–576

    Article  Google Scholar 

  • Zavala JA, Nabity PD, DeLucia EH (2012) An emerging understanding of mechanisms governing insect herbivory under elevated CO2. Annu Rev Entomol 58:79–97

    Article  PubMed  CAS  Google Scholar 

  • Zhang B (2018) Evolutionary analysis of MYBs-bHLH-WD40 complexes formation and their functional relationship in Planta. (Doctoral Dissertation) Retrieved from https://www.kupsubuni-koelnde/8367/1/Bipei%20Zhang-PhD%20Dissertationpdf

  • Zhang F, Gonzalez A, Zhao M, Payne CT, Lloyd A (2003) A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 130:4859–4869

    Article  CAS  PubMed  Google Scholar 

  • Zhou LH, Liu SB, Wang PF, Lu TJ, Xu F, Genin GM, Pickard BG (2016) The Arabidopsis trichome is an active mechanosensory switch. Plant Cell Environ 40:611–621

    Article  PubMed  CAS  Google Scholar 

  • Zhu H, Fitzsimmons K, Khandelwal A, Kranz RG (2009) CPC, a single-repeat R3 MYB, is a negative regulator of anthocyanin biosynthesis in Arabidopsis. Epigenet Plant Dev 2:790–802

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fischer, J.M., Ward, J.K. (2021). Chapter 5 Trichome Responses to Elevated Atmospheric CO2 of the Future. In: Becklin, K.M., Ward, J.K., Way, D.A. (eds) Photosynthesis, Respiration, and Climate Change . Advances in Photosynthesis and Respiration, vol 48. Springer, Cham. https://doi.org/10.1007/978-3-030-64926-5_5

Download citation

Publish with us

Policies and ethics