Skip to main content
Log in

Plant trichomes as microbial habitats and infection sites

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Trichomes, also simply referred to as hairs, are fine outgrowths of epidermal cells in many organisms including plants and bacteria. Plant trichomes have long been known for their multiple beneficial roles, ranging from protection against insect herbivores and ultraviolet light to the reduction of transpiration. However, there is increasing evidence that the presence of trichomes may have detrimental consequences for plants. For example, plant pathogenic bacteria can enter hosts through the open bases or broken stalks of damaged trichomes. Similarly, trichomes are considered a preferred site for fungal infection, and in this regard, the colonization and penetration of trichomes by fungi and oomycetes have been visualized using light, fluorescence, and scanning electron microscopy in a variety of plants from grasses to shrubs and trees. In addition to parasitic interactions, trichomes also form a host site for endophytic relationships with fungi, thereby serving as an unusual fungal niche. The replication and presence of plant viruses in trichomes have also been confirmed after inoculation. In contrast, the well-known beneficial AzollaAnabaena symbiosis is facilitated through epidermal trichomes of the seedless vascular plant Azolla. These observations indicate that plant trichomes are involved in multiple interactions in terms of providing microbial habitats and infection sites as well as functioning as protective structures. Trichome-related microbial parasitism and endophytism can, in many ways, be considered comparable to those associated with root hairs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andrews, J. H., & Harris, R. F. (2000). The ecology and biogeography of microorganisms on plant surfaces. Annual Review of Phytopathology, 38, 145–180.

    Article  PubMed  Google Scholar 

  • Angell, S. M., & Baulcombe, D. C. (1995). Cell-to-cell movement of potato virus X revealed by micro-injection of a viral vector tagged with the ß-glucuronidase gene. The Plant Journal, 7, 135–140.

    Article  CAS  PubMed  Google Scholar 

  • Bailey, B. A., Strem, M. D., & Wood, D. (2009). Trichoderma species form endophytic associations within Theobroma cacao trichomes. Mycological Research, 113, 1365–1376.

    Article  PubMed  Google Scholar 

  • Bang, C., & Schmitz, R. A. (2018). Archaea: forgotten players in the microbiome. Emerging Topics in Life Sciences, ETLS20180035.

  • Beattie, G. A., & Lindow, S. E. (1995). The secret life of foliar bacterial pathogens on leaves. Annual Review of Phytopathology, 33, 145–172.

    Article  CAS  PubMed  Google Scholar 

  • Bogs, J., Bruchmüller, I., Erbar, C., & Geider, K. (1998). Colonization of host plants by the fire blight pathogen Erwinia amylovora marked with genes for bioluminescence and fluorescence. Phytopathology, 88, 416–421.

    Article  CAS  PubMed  Google Scholar 

  • Calo, L., Garcia, I., Gotor, C., & Romero, L. C. (2006). Leaf hairs influence phytopathogenic fungus infection and confer an increased resistance when expressing a Trichoderma α-1,3-glucanase. Journal of Experimental Botany, 57, 3911–3920.

    Article  CAS  PubMed  Google Scholar 

  • Calvert, H. E., Pence, M. K., & Peters, G. A. (1985). Ultrastructural ontogeny of leaf cavity trichomes in Azolla implies a functional role in metabolite exchange. Protoplasma, 129, 10–27.

    Article  Google Scholar 

  • Cantrell, S. A., Dianese, J. C., Fell, J., Gunde-Cimerman, N., & Zalar, P. (2011). Unusual fungal niches. Mycologia, 103, 1161–1174.

    Article  CAS  PubMed  Google Scholar 

  • Chalupowicz, L., Barash, I., Reuven, M., Dror, O., Sharabani, G., Gartemann, K.-H., Eichenlaub, R., Sessa, G., & Manulis-Sasson, S. (2017). Differential contribution of Clavibacter michiganensis ssp. michiganensis virulence factors to systemic and local infection in tomato. Molecular Plant Pathology, 18, 336–346.

    Article  CAS  PubMed  Google Scholar 

  • Danovaro, R., Canals, M., Tangherlini, M., Dell’Anno, A., Gambi, C., Lastras, G., … Corinaldesi, C. (2017). A submarine volcanic eruption leads to a novel microbial habitat. Nature Ecology & Evolution, 1, 144.

  • Dornelo-Silva, D., & Dianese, J. C. (2004). New hyphomycete genera on Qualea species from the Brazilian cerrado. Mycologia, 96, 879–884.

    Article  PubMed  Google Scholar 

  • Engering, A., Hogerwerf, L., & Slingenbergh, J. (2013). Pathogen-host-environment interplay and disease emergence. Emerging Infectious Diseases, 2, e5.

    CAS  Google Scholar 

  • Ensikat, H.-J., Geisler, T., & Weigend, M. (2016). A first report of hydroxylated apatite as structural biomineral in Loasacease-plant’s teeth against herbivores. Scientific Reports, 6, 26073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fortunati, E., & Balestra, G. M. (2018). Overview of novel and sustainable antimicrobial nanomaterials for agri-food applications. Nanomedicine And Nanotechnology Journal, 2, 115.

    Google Scholar 

  • Getz, S., Fulbright, D. W., & Stephens, C. T. (1983). Scanning electron microscopy of infection sites and lesion development on tomato fruit infected with Pseudomonas syringae pv. tomatao. Phytopathology, 73, 39–43.

    Article  Google Scholar 

  • Hamaya, E. (1982). Trichome infection of the tea anthracnose fungus Gloeosporium theae-sinensis. Japan Agricultural Research Quarterly, 16, 114–118.

    Google Scholar 

  • Hampton, J. G., Kabeere, F., & Hill, M. J. (1997). Transmission of Fusarium graminearum (Schwabe) from maize seeds to seedlings. Seed Science and Technology, 25, 245–252.

    Google Scholar 

  • Huang, J.-S. (1986). Ultrastructure of bacterial penetration in plants. Annual Review of Phytopathology, 24, 141–157.

    Article  Google Scholar 

  • Hülskamp, M. (2004). Plant trichomes: a model for cell differentiation. Nature Reviews. Molecular Cell Biology, 5, 471–480.

    Article  CAS  PubMed  Google Scholar 

  • Imboden, L., Afton, D., & Trail, F. (2018). Surface interactions of Fusarium graminearum on barley. Molecular Plant Pathology, 19, 1332–1342.

    Article  CAS  PubMed  Google Scholar 

  • Ivanoff, S. S. (1961). Injuries on cantaloupe leaves associated with laminal guttation away from marginal hydathodes. Phytopathology, 51, 584–585.

    Google Scholar 

  • Jones, J. H. (1986). Evolution of the Fagaceae: the implications of foliar features. Annals of the Missouri Botanical Garden, 73, 228–275.

    Article  Google Scholar 

  • Karamanoli, K., Thalassinos, G., Karpouzas, D., Bosabalidis, A. M., Vokou, D., & Constantinidou, H.-I. (2012). Are leaf glandular trichomes of oregano hospitable habitats for bacterial growth? Journal of Chemical Ecology, 38, 476–485.

    Article  CAS  PubMed  Google Scholar 

  • Kim, K. W. (2013). Ambient variable pressure field emission scanning electron microscopy for trichome profiling of Plectranthus tomentosa by secondary electron imaging. Applied Microscopy, 42, 194–199.

    Article  Google Scholar 

  • Kim, K. W. (2018). Peltate trichomes on biogenic silvery leaves of Elaeagnus umbellata. Microscopy Research and Technique, 81, 789–795.

    Article  PubMed  Google Scholar 

  • Kim, S. H., Kantzes, J. G., & Weaver, L. O. (1974). Infection of aboveground parts of bean by Pythium aphanidermatum. Phytopathology, 64, 373–380.

    Article  Google Scholar 

  • Kim, K. W., Park, E. W., & Ahn, K.-K. (1999). Pre-penetration behavior of Botryosphaeria dothidea on apple fruits. Plant Pathology Journal, 15, 223–227.

    Google Scholar 

  • Koga, H. (1995). An electron microscopic study of the infection of spikelets of rice by Pyricularia oryzae. Journal of Phytopathology, 143, 439–445.

    Article  Google Scholar 

  • Kogovšek, P., Kladnik, A., Mlakar, J., Žnidarič, M. T., Dermastia, M., Ravnikar, M., & Pompe-Novak, M. (2011). Distribution of Potato virus Y in potato plant organs, tissues, and cells. Phytopathology, 101, 1292–1300.

    Article  CAS  PubMed  Google Scholar 

  • Kontaxis, D. G., & Schlegel, D. E. (1962). Basal septa of broken trichomes in Nicotiana as possible infection sites for Tobacco Mosaic Virus. Virology, 16, 244–247.

    Article  CAS  PubMed  Google Scholar 

  • Layne, R. E. C. (1967). Foliar trichomes and their importance as infection sites for Corynebacterium michiganense on tomato. Phytopathology, 57, 981–985.

    Google Scholar 

  • Łaźniewska, J., Macioszek, V. K., & Kononowicz, A. K. (2012). Plant-fungus interface: the role of surface structures in plant resistance and susceptibility to pathogenic fungi. Physiological and Molecular Plant Pathology, 78, 24–30.

    Article  CAS  Google Scholar 

  • Leben, C., & Daft, G. C. (1964). Characteristics of bacteria isolated from leaves of cucumber seedlings. Canadian Journal of Microbiology, 10, 919–923.

    Article  Google Scholar 

  • Lindsey, B. I., & Pugh, G. J. F. (1976). Distribution of microfungi over the surfaces of attached leaves of Hippophaë rhamnoides. Transactions of the British Mycological Society, 67, 427–433.

    Article  Google Scholar 

  • Liu, P., Xue, S., He, R., Hu, J., Wang, X., Jia, B., Gallipoli, L., Balestra, G. M., & Zhu, L. (2016). Pseudomonas syringae pv. actinidiae isolated from non-kiwifruit plant species in China. European Journal of Plant Pathology, 145, 743–754.

    Article  CAS  Google Scholar 

  • Ma, Z.-Y., Wen, J., Ickert-Bond, S. M., Chen, L.-Q., & Liu, X.-Q. (2016). Morphology, structure, and ontogeny of trichomes of the grape genus (Vitis, Vitaceae). Frontiers in Plant Science, 7, 704.

    PubMed  PubMed Central  Google Scholar 

  • Mansvelt, E. L., & Hattingh, M. J. (1987). Scanning electron microscopy of colonization of pear leaves by Pseudomonas syringae pv. syringae. Canadian Journal of Botany, 65, 2517–2522.

    Article  Google Scholar 

  • Mansvelt, E. L., & Hattingh, M. J. (1989). Scanning electron microscopy of invasion of apple leaves and blossoms by Pseudomonas syringae pv. syringae. Applied and Environmental Microbiology, 55, 533–538.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marinho, C. R., Oliveira, R. B., & Teixeira, S. P. (2016). The uncommon cavitated secretory trichomes in Bauhinia s.s. (Fabaceae): the same roles in different organs. Botanical Journal of the Linnean Society, 180, 104–122.

    Article  Google Scholar 

  • Moissl-Eichinger, C., Pausan, M., Taffner, J., Berg, G., Bang, C., & Schmitz, R. A. (2018). Archaea are interactive components of complex microbiomes. Trends in Microbiology, 26, 70–85.

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, T. T. X., Dehne, H.-W., & Steiner, U. (2016). Maize leaf trichomes represent an entry point of infection for Fusarium species. Fungal Biology, 120, 895–903.

    Article  CAS  PubMed  Google Scholar 

  • Nishino, M., Fukui, M., & Nakajima, T. (1998). Dense mats of Thioploca, gliding filamentous sulfur-oxidizing bacteria in Lake Biwa, Central Japan. Water Research, 32, 953–957.

    Article  CAS  Google Scholar 

  • Pereira-Carvalho, R. C., Sepúlveda-Chavera, Armando, E. A. S., Inácio, C. A., & Dianese, J. C. (2009). An overlooked source of fungal diversity: novel hyphomycete genera on trichomes of cerrado plants. Mycological Research, 113, 261–274.

    Article  PubMed  Google Scholar 

  • Perkins, S. K., & Peters, G. A. (1993). The Azolla-Anabaena symbiosis: endophyte continuity in the Azolla life-cycle is facilitated by epidermal trichomes. I. Partitioning of the endophytic Ananaena into developing sporocarps. The New Phytologist, 123, 53–64.

    Article  Google Scholar 

  • Petkar, A., & Ji, P. (2017). Infection courts in watermelon plants leading to seed infestation by Fusarium oxysporum f. sp. niveum. Phytopathology, 107, 828–833.

    Article  PubMed  Google Scholar 

  • Pietrarelli, L., Balestra, G. M., & Varvaro, L. (2006). Effects of simulated rain on Pseudomonas syringae pv. tomato populations on tomato plants. Journal of Plant Pathology, 88, 245–251.

    Google Scholar 

  • Reisberg, E. E., Hildebrandt, U., Riederer, M., & Hentschel, U. (2012). Phyllosphere bacterial communities of trichome-bearing and trichomeless Arabidopsis thaliana leaves. Antonie van Leeuwenhoek, 101, 551–560.

    Article  PubMed  Google Scholar 

  • Renzi, M., Copini, P., Taddei, A. R., Rossetti, A., Gallipoli, L., Mazzaglia, A., & Balestra, G. M. (2012). Bacterial canker on kiwifruit in Italy: anatomical changes in the wood and in the primary infection sites. Phytopathology, 102, 827–840.

    Article  PubMed  Google Scholar 

  • Sarria, G. A., Martinez, G., Varon, F., Drenth, A., & Guest, D. I. (2016). Histopathological studies of the process of Phytophthora palmivora infection in oil palm. European Journal of Plant Pathology, 145, 39–51.

    Article  Google Scholar 

  • Schönherr, J. (2006). Characterization of aqueous pores in plant cuticles and permeation of ionic solutes. Journal of Experimental Botany, 57, 2471–2491.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, R. W., & Grogan, R. G. (1977). Tomato leaf trichomes, a habitat for resident populations of Pseudomonas tomato. Phytopathology, 67, 898–902.

    Article  Google Scholar 

  • Skadsen, R. W., & Hohn, T. M. (2004). Use of Fusarium graminearum transformed with gfp to follow infection patterns in barley and Arabidopsis. Physiological and Molecular Plant Pathology, 64, 45–53.

    Article  CAS  Google Scholar 

  • Taffner, J., Erlacher, A., Bragina, A., Berg, C., Moissl-Eichinger, C., & Berg, G. (2018). What is the role of Archaea in plants? New insights from the vegetation of alpine bogs. mSphere, 3, e00122–e00118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tucker, S. C., Rugenstein, S. R., & Derstine, K. (1984). Inflated trichomes in flowers of Bauhinia (Leguminosae: Caesalpinioideae). Botanical Journal of the Linnean Society, 88, 291–301.

  • Vacher, C., Hampe, A., Porté, A. J., Sauer, U., Compant, S., & Morris, C. E. (2016). The phyllosphere: microbial jungle at the plant-climate interface. Annual Review of Ecology, Evolution, and Systematics, 47, 1–24.

    Article  Google Scholar 

  • Van de Graaf, P., Joseph, M. E., Chartier-Hollis, J. M., & O’Neill, T. M. (2002). Prepenetration stages in infection of clematis by Phoma clematidina. Plant Pathology, 51, 331–337.

    Article  Google Scholar 

  • Wagner, G. J. (1991). Secreting glandular trichomes: more than just hairs. Plant Physiology, 96, 675–679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner, G. J., Wang, E., & Shepherd, R. W. (2004). New approaches for studying and exploiting an old protuberance, the plant trichome. Annals of Botany, 93, 3–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waigmann, E., Turner, A., Peart, J., Roberts, K., & Zambryski, P. (1997). Ultrastructural analysis of leaf trichome plasmodesmata reveals major differences from mesophyll plasmodesmata. Planta, 203, 75–84.

    Article  CAS  PubMed  Google Scholar 

  • Warner, C. A., Biedrzycki, M. L., Jacobs, S. S., Wisser, R. J., Caplan, J. L., & Sherrier, D. J. (2014). An optical clearing technique for plant tissues allowing deep imaging and compatible with fluorescence microscopy. Plant Physiology, 166, 1684–1687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werker, E. (2000). Trichome diversity and development. Advances in Botanical Research, 31, 1–35.

    Article  Google Scholar 

  • Yamada, K., & Sonoda, R. (2014). A fluorescence microscopic study of the infection process of Discula theae-sinensis in tea. Japan Agricultural Research Quarterly, 48, 399–402.

    Article  Google Scholar 

  • Yu, T., Qi, Y., Gong, H., Luo, Q., & Zhu, D. (2018). Optical clearing for multiscale biological tissues. Journal of Biophotonics, 11, e201700187.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by Kyungpook National University Bokhyeon Research Fund, 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki Woo Kim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Study of human participants and animals

This study does not contain any studies with human participants or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K.W. Plant trichomes as microbial habitats and infection sites. Eur J Plant Pathol 154, 157–169 (2019). https://doi.org/10.1007/s10658-018-01656-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-018-01656-0

Keywords

Navigation