Skip to main content

Robot-Assisted Surgery

  • Chapter
  • First Online:
Urologic Surgery in the Digital Era

Abstract

Over the last two decades the introduction of novel technologies substantially changed the practice in most surgical disciplines. With the advent of robotic surgery, the approach to patients with surgical indications has dramatically changed. The number of robotic procedures performed per year is rapidly increasing all over the world and more and more centers are equipping with this technology.

The availability of new technologies is constantly affecting the field of minimally invasive surgery. Many of these innovations have been integrated within recent robotic surgical systems leading to numerous benefit for the surgeon and patients. New generation robotic systems are equipped with innovative technological refinements in order to improve vision, dexterity and assist the surgeon during the operation (virtual reality). Many companies are engaged in designing new robotic systems in order to propose an alternative to the well-established DaVinci platform. Tactile feedback, image-guided surgery and single site surgery are all hot topics for the next generation robotic surgeons.

At the same time the costs either because this technology is expensive or because their introduction leads to an expansion in the types and numbers of patients treated should be considered to best allocate investments in the healthcare system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Leal Ghezzi T, Campos CO. 30 years of robotic surgery. World J Surg. 2016;40(10):2550–7.

    Article  PubMed  Google Scholar 

  2. Peters BS, Armijo PR, Krause C, Choudhury SA, Oleynikov D. Review of emerging surgical robotic technology. Surg Endosc. 2018;32(4):1636–55.

    Article  PubMed  Google Scholar 

  3. Mazzone E, Mistretta FA, Knipper S, Tian Z, Larcher A, Widmer H, et al. Contemporary national assessment of robot-assisted surgery rates and total hospital charges for major surgical uro-oncological procedures in the United States. J Endourol. 2019;33(6):438–47.

    Article  PubMed  Google Scholar 

  4. Honda M, Morizane S, Hikita K, Takenaka A. Current status of robotic surgery in urology. Asian J Endosc Surg. 2017;10(4):372–81.

    Article  PubMed  Google Scholar 

  5. Lowrance WT, Eastham JA, Savage C, Maschino AC, Laudone VP, Dechet CB, et al. Contemporary open and robotic radical prostatectomy practice patterns among urologists in the United States. J Urol. 2012;187(6):2087–92.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ghani KR, Sukumar S, Sammon JD, Rogers CG, Trinh QD, Menon M. Practice patterns and outcomes of open and minimally invasive partial nephrectomy since the introduction of robotic partial nephrectomy: results from the nationwide inpatient sample. J Urol. 2014;191(4):907–12.

    Article  PubMed  Google Scholar 

  7. Li K, Lin T, Fan X, Xu K, Bi L, Duan Y, et al. Systematic review and meta-analysis of comparative studies reporting early outcomes after robot-assisted radical cystectomy versus open radical cystectomy. Cancer Treat Rev. 2013;39(6):551–60.

    Article  PubMed  Google Scholar 

  8. Palep JH. Robotic assisted minimally invasive surgery. J Minim Access Surg. 2009;5(1):1–7.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lane T. A short history of robotic surgery. Ann R Coll Surg Engl. 2018;100(6_sup):5–7.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kwoh YS, Hou J, Jonckheere EA, Hayati S. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng. 1988;35(2):153–60.

    Article  CAS  PubMed  Google Scholar 

  11. Davies BL, Hibberd RD, Ng WS, Timoney AG, Wickham JE. The development of a surgeon robot for prostatectomies. Proc Inst Mech Eng H J Eng Med. 1991;205(1):35–8.

    Article  CAS  Google Scholar 

  12. Harris SJ, Arambula-Cosio F, Mei Q, Hibberd RD, Davies BL, Wickham JE, et al. The Probot--an active robot for prostate resection. Proc Inst Mech Eng H J Eng Med. 1997;211(4):317–25.

    Article  CAS  Google Scholar 

  13. Subramanian P, Wainwright TW, Bahadori S, Middleton RG. A review of the evolution of robotic-assisted total hip arthroplasty. Hip Int. 2019;29(3):232–8.

    Article  PubMed  Google Scholar 

  14. Satava RM. Surgical robotics: the early chronicles: a personal historical perspective. Surg Laparosc Endosc Percutan Tech. 2002;12(1):6–16.

    Article  PubMed  Google Scholar 

  15. Binder J, Kramer W. Robotically-assisted laparoscopic radical prostatectomy. BJU Int. 2001;87(4):408–10.

    Article  CAS  PubMed  Google Scholar 

  16. George EI, Brand TC, LaPorta A, Marescaux J, Satava RM. Origins of robotic surgery: from skepticism to standard of care. J Soc Laparoendosc Surg. 2018;22(4):e2018.00039.

    Article  Google Scholar 

  17. Reichenspurner H, Damiano RJ, Mack M, Boehm DH, Gulbins H, Detter C, et al. Use of the voice-controlled and computer-assisted surgical system ZEUS for endoscopic coronary artery bypass grafting. J Thorac Cardiovasc Surg. 1999;118(1):11–6.

    Article  CAS  PubMed  Google Scholar 

  18. Larkin M. Transatlantic, robot-assisted telesurgery deemed a success. Lancet (London, England). 2001;358(9287):1074.

    Article  CAS  Google Scholar 

  19. Luke PP, Girvan AR, Al Omar M, Beasley KA, Carson M. Laparoscopic robotic pyeloplasty using the Zeus Telesurgical System. Can J Urol. 2004;11(5):2396–400.

    PubMed  Google Scholar 

  20. Mohr FW, Falk V, Diegeler A, Autschback R. Computer-enhanced coronary artery bypass surgery. J Thorac Cardiovasc Surg. 1999;117(6):1212–4.

    Article  CAS  PubMed  Google Scholar 

  21. Pasticier G, Rietbergen JB, Guillonneau B, Fromont G, Menon M, Vallancien G. Robotically assisted laparoscopic radical prostatectomy: feasibility study in men. Eur Urol. 2001;40(1):70–4.

    Article  CAS  PubMed  Google Scholar 

  22. Cestari A, Buffi NM, Lista G, Lughezzani G, Larcher A, Lazzeri M, et al. Feasibility and preliminary clinical outcomes of robotic laparoendoscopic single-site (R-LESS) pyeloplasty using a new single-port platform. Eur Urol. 2012;62(1):175–9.

    Article  PubMed  Google Scholar 

  23. Mattevi D, Luciani LG, Vattovani V, Chiodini S, Puglisi M, Malossini G. First case of robotic laparoendoscopic single-site radical prostatectomy with single-site VesPa platform. J Robot Surg. 2018;12(2):381–5.

    Article  CAS  PubMed  Google Scholar 

  24. Gaboardi F, Pini G, Suardi N, Montorsi F, Passaretti G, Smelzo S. Robotic laparoendoscopic single-site radical prostatectomy (R-LESS-RP) with daVinci Single-Site® platform. Concept and evolution of the technique following an IDEAL phase 1. J Robot Surg. 2019;13(2):215–26.

    Article  PubMed  Google Scholar 

  25. Bertolo R, Garisto J, Gettman M, Kaouk J. Novel system for robotic single-port surgery: feasibility and state of the art in urology. Eur Urol Focus. 2018;4(5):669–73.

    Article  PubMed  Google Scholar 

  26. Aminsharifi A, Sawczyn G, Wilson CA, Garisto J, Kaouk J. Technical advancements in robotic prostatectomy: single-port extraperitoneal robotic-assisted radical prostatectomy and single-port transperineal robotic-assisted radical prostatectomy. Transl Androl Urol. 2020;9(2):848–55.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kaouk JH, Haber GP, Autorino R, Crouzet S, Ouzzane A, Flamand V, et al. A novel robotic system for single-port urologic surgery: first clinical investigation. Eur Urol. 2014;66(6):1033–43.

    Article  PubMed  Google Scholar 

  28. Maurice MJ, Ramirez D, Kaouk JH. Robotic laparoendoscopic single-site retroperitioneal renal surgery: initial investigation of a purpose-built single-port surgical system. Eur Urol. 2017;71(4):643–7.

    Article  PubMed  Google Scholar 

  29. Ramirez D, Maurice MJ, Kaouk JH. Robotic perineal radical prostatectomy and pelvic lymph node dissection using a purpose-built single-port robotic platform. BJU Int. 2016;118(5):829–33.

    Article  PubMed  Google Scholar 

  30. Maurice MJ, Kaouk JH. Robotic radical perineal cystectomy and extended pelvic lymphadenectomy: initial investigation using a purpose-built single-port robotic system. BJU Int. 2017;120(6):881–4.

    Article  PubMed  Google Scholar 

  31. Atallah S, Parra-Davila E, Melani AGF. Assessment of the Versius surgical robotic system for dual-field synchronous transanal total mesorectal excision (taTME) in a preclinical model: will tomorrow’s surgical robots promise newfound options? Tech Coloproctol. 2019;23(5):471–7.

    Article  CAS  PubMed  Google Scholar 

  32. Thomas BC, Slack M, Hussain M, Barber N, Pradhan A, Dinneen E, et al. Preclinical evaluation of the versius surgical system, a new robot-assisted surgical device for use in minimal access renal and prostate surgery. Eur Urol Focus. 2021;7(2):444–52.

    Article  PubMed  Google Scholar 

  33. Morton J, Hardwick RH, Tilney HS, Gudgeon AM, Jah A, Stevens L, et al. Preclinical evaluation of the versius surgical system, a new robot-assisted surgical device for use in minimal access general and colorectal procedures. Surg Endosc. 2021;35(5):2169–77.

    Article  PubMed  Google Scholar 

  34. Puntambekar SP, Goel A, Chandak S, Chitale M, Hivre M, Chahal H, et al. Feasibility of robotic radical hysterectomy (RRH) with a new robotic system. Experience at Galaxy Care Laparoscopy Institute. J Robot Surg. 2020; https://doi.org/10.1007/s11701-020-01127-x.

  35. Rossitto C, Gueli Alletti S, Romano F, Fiore A, Coretti S, Oradei M, et al. Use of robot-specific resources and operating room times: The case of Telelap Alf-X robotic hysterectomy. Int J Med Robot. 2016;12(4):613–9.

    Article  PubMed  Google Scholar 

  36. Gidaro S, Buscarini M, Ruiz E, Stark M, Labruzzo A. Telelap Alf-X: a novel telesurgical system for the 21st century. Surg Technol Int. 2012;22:20–5.

    PubMed  Google Scholar 

  37. Samalavicius NE, Janusonis V, Siaulys R, Jasėnas M, Deduchovas O, Venckus R, et al. Robotic surgery using Senhance® robotic platform: single center experience with first 100 cases. J Robot Surg. 2020;14(2):371–6.

    Article  PubMed  Google Scholar 

  38. Rassweiler JJ, Autorino R, Klein J, Mottrie A, Goezen AS, Stolzenburg JU, et al. Future of robotic surgery in urology. BJU Int. 2017;120(6):822–41.

    Article  PubMed  Google Scholar 

  39. Abdel Raheem A, Troya IS, Kim DK, Kim SH, Won PD, Joon PS, et al. Robot-assisted Fallopian tube transection and anastomosis using the new REVO-I robotic surgical system: feasibility in a chronic porcine model. BJU Int. 2016;118(4):604–9.

    Article  PubMed  Google Scholar 

  40. Kim DK, Park DW, Rha KH. Robot-assisted Partial Nephrectomy with the REVO-I Robot Platform in Porcine Models. Eur Urol. 2016;69(3):541–2.

    Article  PubMed  Google Scholar 

  41. Hagn U, Konietschke R, Tobergte A, Nickl M, Jörg S, Kübler B, et al. DLR MiroSurge: a versatile system for research in endoscopic telesurgery. Int J Comput Assist Radiol Surg. 2010;5(2):183–93.

    Article  PubMed  Google Scholar 

  42. meerecompany. Available from: http://www.meerecompany.com/en/product/surgical_01.asp

  43. Wottawa CR, Genovese B, Nowroozi BN, Hart SD, Bisley JW, Grundfest WS, et al. Evaluating tactile feedback in robotic surgery for potential clinical application using an animal model. Surg Endosc. 2016;30(8):3198–209.

    Article  PubMed  Google Scholar 

  44. Nair R, Aggarwal R, Khanna D. Methods of formal consensus in classification/diagnostic criteria and guideline development. Semin Arthritis Rheum. 2011;41(2):95–105.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tobis S, Knopf J, Silvers C, Yao J, Rashid H, Wu G, et al. Near infrared fluorescence imaging with robotic assisted laparoscopic partial nephrectomy: initial clinical experience for renal cortical tumors. J Urol. 2011;186(1):47–52.

    Article  PubMed  Google Scholar 

  46. Autorino R, Zargar H, White WM, Novara G, Annino F, Perdonà S, et al. Current applications of near-infrared fluorescence imaging in robotic urologic surgery: a systematic review and critical analysis of the literature. Urology. 2014;84(4):751–9.

    Article  PubMed  Google Scholar 

  47. Borofsky MS, Gill IS, Hemal AK, Marien TP, Jayaratna I, Krane LS, et al. Near-infrared fluorescence imaging to facilitate super-selective arterial clamping during zero-ischaemia robotic partial nephrectomy. BJU Int. 2013;111(4):604–10.

    Article  PubMed  Google Scholar 

  48. Angell JE, Khemees TA, Abaza R. Optimization of near infrared fluorescence tumor localization during robotic partial nephrectomy. J Urol. 2013;190(5):1668–73.

    Article  PubMed  Google Scholar 

  49. Kahramangil B, Kose E, Berber E. Characterization of fluorescence patterns exhibited by different adrenal tumors: determining the indications for indocyanine green use in adrenalectomy. Surgery. 2018;164(5):972–7.

    Article  PubMed  Google Scholar 

  50. Colvin J, Zaidi N, Berber E. The utility of indocyanine green fluorescence imaging during robotic adrenalectomy. J Surg Oncol. 2016;114(2):153–6.

    Article  PubMed  Google Scholar 

  51. Harke NN, Godes M, Wagner C, Addali M, Fangmeyer B, Urbanova K, et al. Fluorescence-supported lymphography and extended pelvic lymph node dissection in robot-assisted radical prostatectomy: a prospective, randomized trial. World J Urol. 2018;36(11):1817–23.

    Article  PubMed  Google Scholar 

  52. Mangano MS, De Gobbi A, Beniamin F, Lamon C, Ciaccia M, Maccatrozzo L. Robot-assisted nerve-sparing radical prostatectomy using near-infrared fluorescence technology and indocyanine green: initial experience. Urologia. 2018;85(1):29–31.

    Article  PubMed  Google Scholar 

  53. Sávio LF, Panizzutti Barboza M, Alameddine M, Ahdoot M, Alonzo D, Ritch CR. Combined partial penectomy with bilateral robotic inguinal lymphadenectomy using near-infrared fluorescence guidance. Urology. 2018;113:251.

    Article  PubMed  Google Scholar 

  54. Hockenberry MS, Smith ZL, Mucksavage P. A novel use of near-infrared fluorescence imaging during robotic surgery without contrast agents. J Endourol. 2014;28(5):509–12.

    Article  PubMed  Google Scholar 

  55. Mucksavage P, Kerbl DC, Pick DL, Lee JY, McDougall EM, Louie MK. Differences in grip forces among various robotic instruments and da Vinci surgical platforms. J Endourol. 2011;25(3):523–8.

    Article  PubMed  Google Scholar 

  56. Reiley CE, Akinbiyi T, Burschka D, Chang DC, Okamura AM, Yuh DD. Effects of visual force feedback on robot-assisted surgical task performance. J Thorac Cardiovasc Surg. 2008;135(1):196–202.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bethea BT, Okamura AM, Kitagawa M, Fitton TP, Cattaneo SM, Gott VL, et al. Application of haptic feedback to robotic surgery. J Laparoendosc Adv Surg Tech A. 2004;14(3):191–5.

    Article  PubMed  Google Scholar 

  58. Toledo L, Gossot D, Fritsch S, Revillon Y, Reboulet C. Study of sustained forces and the working space of endoscopic surgery instruments. Ann Chir. 1999;53(7):587–97.

    CAS  PubMed  Google Scholar 

  59. Meccariello G, Faedi F, AlGhamdi S, Montevecchi F, Firinu E, Zanotti C, et al. An experimental study about haptic feedback in robotic surgery: may visual feedback substitute tactile feedback? J Robot Surg. 2016;10(1):57–61.

    Article  PubMed  Google Scholar 

  60. Tugcu V, Ilbey YO, Mutlu B, Tasci AI. Laparoendoscopic single-site surgery versus standard laparoscopic simple nephrectomy: a prospective randomized study. J Endourol. 2010;24(8):1315–20.

    Article  PubMed  Google Scholar 

  61. McCrory B, Lowndes BR, Wirth LM, de Laveaga AE, LaGrange CA, Hallbeck MS. Ergonomic evaluation of laparoendoscopic single-site surgery ports in a validated laparoscopic training model. Work (Reading, Mass). 2012;41(Suppl 1):1884–90.

    Google Scholar 

  62. Escobar PF, Haber GP, Kaouk J, Kroh M, Chalikonda S, Falcone T. Single-port surgery: laboratory experience with the daVinci single-site platform. J Soc Laparoendosc Surg. 2011;15(2):136–41.

    Article  Google Scholar 

  63. Fisher RA, Dasgupta P, Mottrie A, Volpe A, Khan MS, Challacombe B, et al. An over-view of robot assisted surgery curricula and the status of their validation. Int J Surg (London, England). 2015;13:115–23.

    Article  Google Scholar 

  64. Beulens AJW, Vaartjes L, Tilli S, Brinkman WM, Umari P, Puliatti S, et al. Structured robot-assisted surgery training curriculum for residents in Urology and impact on future surgical activity. J Robot Surg. 2020; https://doi.org/10.1007/s11701-020-01134-y.

  65. Wiener S, Haddock P, Shichman S, Dorin R. Construction of a urologic robotic surgery training curriculum: how many simulator sessions are required for residents to achieve proficiency? J Endourol. 2015;29(11):1289–93.

    Article  PubMed  Google Scholar 

  66. Menhadji A, Abdelshehid C, Osann K, Alipanah R, Lusch A, Graversen J, et al. Tracking and assessment of technical skills acquisition among urology residents for open, laparoscopic, and robotic skills over 4 years: is there a trend? J Endourol. 2013;27(6):783–9.

    Article  PubMed  Google Scholar 

  67. Teber D, Baumhauer M, Guven EO, Rassweiler J. Robotic and imaging in urological surgery. Curr Opin Urol. 2009;19(1):108–13.

    Article  PubMed  Google Scholar 

  68. Porpiglia F, Checcucci E, Amparore D, Autorino R, Piana A, Bellin A, et al. Augmented-reality robot-assisted radical prostatectomy using hyper-accuracy three-dimensional reconstruction (HA3D™) technology: a radiological and pathological study. BJU Int. 2019;123(5):834–45.

    Article  PubMed  Google Scholar 

  69. Shirk JD, Thiel DD, Wallen EM, Linehan JM, White WM, Badani KK, et al. Effect of 3-dimensional virtual reality models for surgical planning of robotic-assisted partial nephrectomy on surgical outcomes: a randomized clinical trial. JAMA Netw Open. 2019;2(9):e1911598.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Porpiglia F, Bertolo R, Amparore D, Checcucci E, Artibani W, Dasgupta P, et al. Augmented reality during robot-assisted radical prostatectomy: expert robotic surgeons’ on-the-spot insights after live surgery. Minerva Urol Nefrol. 2018;70(2):226–9.

    PubMed  Google Scholar 

  71. Ghai B, Malhotra N, Bajwa SJS. Telemedicine for chronic pain management during COVID-19 pandemic. Indian J Anaesth. 2020;64(6):456–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hung AJ, Chen J, Shah A, Gill IS. Telementoring and telesurgery for minimally invasive procedures. J Urol. 2018;199(2):355–69.

    Article  PubMed  Google Scholar 

  73. Choi PJ, Oskouian RJ, Tubbs RS. Telesurgery: past, present, and future. Cureus. 2018;10(5):e2716.

    PubMed  PubMed Central  Google Scholar 

  74. Jell A, Vogel T, Ostler D, Marahrens N, Wilhelm D, Samm N, et al. 5th-generation mobile communication: data highway for surgery 4.0. Surg Technol Inte. 2019;35:36–42.

    Google Scholar 

  75. Saceanu SM, Angelescu C, Valeriu S, Patrascu A. Telesurgery and robotic surgery: ethical and legal aspect. J Commun Med Health Educ. 2015;5:355.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Umari, P., Mazzone, E., De Groote, R., Maes, K., Mottrie, A. (2021). Robot-Assisted Surgery. In: Veneziano, D., Huri, E. (eds) Urologic Surgery in the Digital Era. Springer, Cham. https://doi.org/10.1007/978-3-030-63948-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63948-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63947-1

  • Online ISBN: 978-3-030-63948-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics