Skip to main content
Log in

Review of emerging surgical robotic technology

  • Review
  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

The use of laparoscopic and robotic procedures has increased in general surgery. Minimally invasive robotic surgery has made tremendous progress in a relatively short period of time, realizing improvements for both the patient and surgeon. This has led to an increase in the use and development of robotic devices and platforms for general surgery. The purpose of this review is to explore current and emerging surgical robotic technologies in a growing and dynamic environment of research and development.

Methods

This review explores medical and surgical robotic endoscopic surgery and peripheral technologies currently available or in development. The devices discussed here are specific to general surgery, including laparoscopy, colonoscopy, esophagogastroduodenoscopy, and thoracoscopy. Benefits and limitations of each technology were identified and applicable future directions were described.

Results

A number of FDA-approved devices and platforms for robotic surgery were reviewed, including the da Vinci Surgical System, Sensei X Robotic Catheter System, FreeHand 1.2, invendoscopy E200 system, Flex® Robotic System, Senhance, ARES, the Single-Port Instrument Delivery Extended Research (SPIDER), and the NeoGuide Colonoscope. Additionally, platforms were reviewed which have not yet obtained FDA approval including MiroSurge, ViaCath System, SPORT™ Surgical System, SurgiBot, Versius Robotic System, Master and Slave Transluminal Endoscopic Robot, Verb Surgical, Miniature In Vivo Robot, and the Einstein Surgical Robot.

Conclusions

The use and demand for robotic medical and surgical platforms is increasing and new technologies are continually being developed. New technologies are increasingly implemented to improve on the capabilities of previously established systems. Future studies are needed to further evaluate the strengths and weaknesses of each robotic surgical device and platform in the operating suite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Kumar A, Yadav N, Singh S, Chauhan N (2016) Minimally invasive (endoscopic-computer assisted) surgery: technique and review. Ann Maxillofac Surg 6:159

    Article  PubMed  PubMed Central  Google Scholar 

  2. Walker AS, Steele SR (2016) The future of robotic instruments in colon and rectal surgery, vol 27. Elsevier, Amsterdam, pp 144–149

    Google Scholar 

  3. Oleynikov D (2008) Robotic surgery. Surg Clin North Am 88:1121–1130. https://doi.org/10.1016/j.suc.2008.05.012

    Article  PubMed  Google Scholar 

  4. Rassweiler JJ, Teber D (2016) Advances in laparoscopic surgery in urology. Nat Rev Urol 13:387–399. https://doi.org/10.1038/nrurol.2016.70

    Article  PubMed  Google Scholar 

  5. Simorov A, Otte RS, Kopietz CM, Oleynikov D (2012) Review of surgical robotics user interface: what is the best way to control robotic surgery? Surg Endosc 26:2117–2125. https://doi.org/10.1007/s00464-012-2182-y

    Article  PubMed  Google Scholar 

  6. DACH Medical Group—English (2017). https://www.dach-medical-group.com/en. Accessed 20 Dec 2017

  7. Rivera-Serrano CM, Johnson P, Zubiate B, Kuenzler R, Choset H, Zenati M, Tully S, Duvvuri U (2012) A transoral highly flexible robot. Laryngoscope 122:1067–1071

    Article  PubMed  Google Scholar 

  8. World’s First Use of Miniaturized Robot in Human Surgery—Virtual Incision Corporation (2017). https://www.virtualincision.com/fim-surgery/. Accessed 20 Dec 2017

  9. van den Bedem LJM (2010) Realization of a demonstrator slave for robotic minimally invasive surgery. Doctoral degree 22-09-2010; Department of Mechanical Engineering; Supervisors: M. Steinbuch and I.A.M.J. Broeders; Co-promotor: P.C.J.N. Rosielle; Eindhoven: Technische Universiteit Eindhoven. https://doi.org/10.6100/IR684835

  10. Hanly EJ, Talamini MA (2004) Robotic abdominal surgery. Am J Surg 188:19–26

    Article  Google Scholar 

  11. Armijo PR, Pagkratis S, Boilesen E, Tanner T, Oleynikov D (2017) Growth in robotic-assisted procedures is from conversion of laparoscopic procedures and not from open surgeons’ conversion: a study of trends and costs. Surg Endosc. https://doi.org/10.1007/s00464-017-5908-z

    Google Scholar 

  12. Tsui C, Klein R, Garabrant M (2013) Minimally invasive surgery: national trends in adoption and future directions for hospital strategy. Surg Endosc 27:2253–2257. https://doi.org/10.1007/s00464-013-2973-9

    Article  PubMed  Google Scholar 

  13. Alli VV, Yang J, Xu J, Bates AT, Pryor AD, Talamini MA, Telem DA (2017) Nineteen-year trends in incidence and indications for laparoscopic cholecystectomy: the NY State experience. Surg Endosc 31:1651–1658. https://doi.org/10.1007/s00464-016-5154-9

    Article  PubMed  Google Scholar 

  14. Rodriguez-Sanjuan JC, Gomez-Ruiz M, Trugeda-Carrera S, Manuel-Palazuelos C, Lopez-Useros A, Gomez-Fleitas M (2016) Laparoscopic and robot-assisted laparoscopic digestive surgery: present and future directions. World J Gastroenterol 22:1975–2004. https://doi.org/10.3748/wjg.v22.i6.1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ghezzi TL, Corleta OC (2016) 30 Years of robotic surgery. World J Surg 40(10):1–8

    Google Scholar 

  16. Higgins RM, Frelich MJ, Bosler ME, Gould JC (2017) Cost analysis of robotic versus laparoscopic general surgery procedures. Surg Endosc 31:185–192. https://doi.org/10.1007/s00464-016-4954-2

    Article  PubMed  Google Scholar 

  17. Beasly RA (2012) Medical robots: current systems and research directions. J Robot 2012:1–14

    Article  Google Scholar 

  18. Al-Ahmad A, Grossman JD, Wang PJ (2005) Early experience with a computerized robotically controlled catheter system. J Interv Card Electrophysiol 12:199–202. https://doi.org/10.1007/s10840-005-0325-y

    Article  PubMed  Google Scholar 

  19. Hansen Medical (2017). http://www.hansenmedical.com/us/en/why-robotics. Accessed 20 Dec 2017

  20. Rafii-Tari H, Payne CJ, Yang GZ (2014) Current and emerging robot-assisted endovascular catheterization technologies: a review. Ann Biomed Eng 42:697–715. https://doi.org/10.1007/s10439-013-0946-8

    Article  PubMed  Google Scholar 

  21. Russo AD, Fassini G, Conti S, Casella M, Di Monaco A, Russo E, Riva S, Moltrasio M, Tundo F, De Martino G (2016) Analysis of catheter contact force during atrial fibrillation ablation using the robotic navigation system: results from a randomized study. J Interv Cardiac Electrophysiol 46:97–103

    Article  Google Scholar 

  22. Hlivák P, Mlčochová H, Peichl P, ČIHÁK R, Wichterle D, Kautzner J (2011) Robotic navigation in catheter ablation for paroxysmal atrial fibrillation: midterm efficacy and predictors of postablation arrhythmia recurrences. J Cardiovasc Electrophysiol 22:534–540

    Article  PubMed  Google Scholar 

  23. Datino T, Arenal A, Pelliza M, Hernandez-Hernandez J, Atienza F, Gonzalez-Torrecilla E, Avila P, Bravo L, Fernandez-Aviles F (2014) Comparison of the safety and feasibility of arrhythmia ablation using the Amigo Robotic Remote Catheter System versus manual ablation. Am J Cardiol 113:827–831. https://doi.org/10.1016/j.amjcard.2013.11.030

    Article  PubMed  Google Scholar 

  24. Stolzenburg JU, Franz T, Kallidonis P, Minh D, Dietel A, Hicks J, Nicolaus M, Al-Aown A, Liatsikos E (2011) Comparison of the FreeHand(R) robotic camera holder with human assistants during endoscopic extraperitoneal radical prostatectomy. BJU Int 107:970–974. https://doi.org/10.1111/j.1464-410X.2010.09656.x

    Article  PubMed  Google Scholar 

  25. Sbaih M, Arulampalam TH, Motson RW (2016) Rate of skill acquisition in the use of a robotic laparoscope holder (FreeHand®). Minim Invasive Ther Allied Technol 25:196–202

    Article  PubMed  Google Scholar 

  26. Tran H (2011) Robotic single-port hernia surgery. JSLS 15:309–314. https://doi.org/10.4293/108680811X13125733356198

    Article  PubMed  PubMed Central  Google Scholar 

  27. Groth S, Rex DK, Rosch T, Hoepffner N (2011) High cecal intubation rates with a new computer-assisted colonoscope: a feasibility study. Am J Gastroenterol 106:1075–1080. https://doi.org/10.1038/ajg.2011.52

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kurniawan N, Keuchel M (2017) Flexible gastro-intestinal endoscopy—clinical challenges and technical achievements. Comput Struct Biotechnol J 15:168–179

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sterile single-use endoscopy; invendo medical GmbH (2017). http://www.invendo-medical.com/. Accessed 20 Dec 2017

  30. Remacle M, Prasad V, Lawson G, Plisson L, Bachy V, Van der Vorst S (2015) Transoral robotic surgery (TORS) with the Medrobotics Flex™ System: first surgical application on humans. Eur Arch Otorhinolaryngol 272:1451–1455

    Article  CAS  PubMed  Google Scholar 

  31. Schuler PJ, Duvvuri U, Friedrich DT, Rotter N, Scheithauer MO, Hoffmann TK (2015) First use of a computer-assisted operator-controlled flexible endoscope for transoral surgery. Laryngoscope 125:645–648

    Article  PubMed  Google Scholar 

  32. Funk E, Goldenberg D, Goyal N (2017) Demonstration of transoral robotic supraglottic laryngectomy and total laryngectomy in cadaveric specimens using the Medrobotics Flex System. Head Neck 39(6):1218–1225

    Article  Google Scholar 

  33. Johnson PJ, Serrano CMR, Castro M, Kuenzler R, Choset H, Tully S, Duvvuri U (2013) Demonstration of transoral surgery in cadaveric specimens with the medrobotics flex system. Laryngoscope 123:1168–1172

    Article  PubMed  Google Scholar 

  34. Mattheis S, Hasskamp P, Holtmann L, Schafer C, Geisthoff U, Dominas N, Lang S (2017) Flex robotic system in transoral robotic surgery: the first 40 patients. Head Neck 39:471–475. https://doi.org/10.1002/hed.24611

    Article  PubMed  Google Scholar 

  35. Fanfani F, Monterossi G, Fagotti A, Rossitto C, Alletti SG, Costantini B, Gallotta V, Selvaggi L, Restaino S, Scambia G (2016) The new robotic TELELAP ALF-X in gynecological surgery: single-center experience. Surg Endosc 30:215–221

    Article  PubMed  Google Scholar 

  36. Fanfani F, Restaino S, Rossitto C, Alletti SG, Costantini B, Monterossi G, Cappuccio S, Perrone E, Scambia G (2016) Total laparoscopic (S-LPS) versus TELELAP ALF-X robotic-assisted hysterectomy: a case-control study. J Minim Invasive Gynecol 23:933–938

    Article  PubMed  Google Scholar 

  37. Rassweiler JJ, Autorino R, Klein J, Mottrie A, Goezen AS, Stolzenburg J, Rha KH, Schurr M, Kaouk J, Patel V (2017) Future of robotic surgery in urology. BJU Int 120(6):822–841

    Article  PubMed  Google Scholar 

  38. Stark M, Pomati S, D’Ambrosio A, Giraudi F, Gidaro S (2015) A new telesurgical platform–preliminary clinical results. Minim Invasive Ther Allied Technol 24:31–36

    Article  PubMed  Google Scholar 

  39. Spinelli A, David G, Gidaro S, Carvello M, Sacchi M, Montorsi M, Montroni I (2017) First experience in colorectal surgery with a new robotic platform with haptic feedback. Colorectal Dis. https://doi.org/10.1111/codi.13882

    Google Scholar 

  40. Miller NS (2017) Florida Hospital 1st in nation to use new robotic surgery system. Orlando Sentinel. http://www.orlandosentinel.com/health/os-florida-hospital-TransEnterix-robotic-surgery-20171114-story.html. Accessed 20 Dec 2017

  41. Auris Surgical Robotics (2017) Auris indications for use statement and 510 k summary bronchscopy v4 052616 ra. http://www.accessdata.fda.gov/cdrh_docs/pdf15/k152319.pdf. Accessed 20 Dec 2017

  42. Romo E, Bogusky J (2014) Auris Surgical Robotics Inc. Endoscopic device with helical lumen design. US Patent 20,150,164,594

  43. Harris M (2016) First surgical robot from secretive startup Auris cleared for use. IEEE Spectr. https://spectrum.ieee.org/the-human-os/biomedical/devices/first-surgical-robot-from-secretive-startup-auris-cleared-for-use. Accessed 20 Dec 2017

  44. Eickhoff A, van Dam J, Jakobs R, Kudis V, Hartmann D, Damian U, Weickert U, Schilling D, Riemann JF (2007) Computer-assisted colonoscopy (the NeoGuide Endoscopy System): results of the first human clinical trial (“PACE study”). Am J Gastroenterol 102:261–266

    Article  PubMed  Google Scholar 

  45. Gudeloglu A, Brahmbhatt J, Parekattil S (2014) Robotic microsurgery in male infertility and urology—taking robotics to the next level. Transl Androl Urol 3:102

    PubMed  PubMed Central  Google Scholar 

  46. Prendergast JM, Rentschler ME (2016) Towards autonomous motion control in minimally invasive robotic surgery. Expert Rev Med Devices 13:741–748

    Article  CAS  PubMed  Google Scholar 

  47. Henry B, Novarro G, Santo G (2017) Peering Behind The Veil of Secrecy In Surgical Robotics & 2016 Market Outlook

  48. Hagn U, Konietschke R, Tobergte A, Nickl M, Jörg S, Kübler B, Passig G, Gröger M, Fröhlich F, Seibold U (2010) DLR MiroSurge: a versatile system for research in endoscopic telesurgery. Int J Comp Assist Radiol Surg 5:183–193

    Article  Google Scholar 

  49. Konietschke R, Hagn U, Nickl M, Jorg S, Tobergte A, Passig G, Seibold U, Le-Tien L, Kubler B, Groger M, Frohlich F, Rink C, Albu-Schaffer A, Grebenstein M, Ortmaier T, Hirzinger G (2009) The DLR MiroSurge—A robotic system for surgery. Robotics and Automation, 2009 ICRA ‘09 IEEE International Conference on 1589–1590. https://doi.org/10.1109/ROBOT.2009.5152361

  50. Tobergte A, Helmer P, Hagn U, Rouiller P, Thielmann S, Grange S, Albu-Schaffer A, Conti F, Hirzinger G (2011) The sigma.7 haptic interface for MiroSurge: a bi-manual surgical console, pp 3023–3029

  51. Klibansky D, Rothstein RI (2012) Robotics in endoscopy. Curr Opin Gastroenterol 28:477–482. https://doi.org/10.1097/MOG.0b013e328356ac5e

    Article  PubMed  Google Scholar 

  52. Yeung BP, Gourlay T (2012) A technical review of flexible endoscopic multitasking platforms. Int J Surg 10:345–354. https://doi.org/10.1016/j.ijsu.2012.05.009

    Article  PubMed  Google Scholar 

  53. ViaCath diagnostic catheters (2016). https://www.biotronik.com/sixcms/media.php/136/ViaCath_EN.pdf. Accessed 20 Dec 2017

  54. SPORT™ Surgical System (2017) Titan Medical Inc. http://www.titanmedicalinc.com/product/. Accessed 20 Dec 2017

  55. SurgiBot (2017) http://www.transenterix.com/SurgiBot

  56. Haskins O (2015) TransEnterix completes SurgiBot pre-clinical FDA work Bariatric News. http://www.bariatricnews.net/?q=node/1856. Accessed 20 Dec 2017

  57. Pryor AD, Tushar JR, DiBernardo LR (2010) Single-port cholecystectomy with the TransEnterix SPIDER: simple and safe. Surg Endosc 24:917–923. https://doi.org/10.1007/s00464-009-0695-9

    Article  PubMed  Google Scholar 

  58. Haber G, Autorino R, Laydner H, Yang B, White MA, Hillyer S, Altunrende F, Khanna R, Spana G, Wahib I (2012) SPIDER surgical system for urologic procedures with laparoendoscopic single-site surgery: from initial laboratory experience to first clinical application. Eur Urol 61:415–422

    Article  PubMed  Google Scholar 

  59. Thibault M (2016) Finally, details on Medtronic’s robotics platform. Medical Device Business. http://www.mddionline.com/blog/devicetalk/finally-details-medtronics-robotics-platform-06-08-16. Accessed 20 Dec 2017

  60. CMR reveals versus robotic surgery system. (2016)

  61. Kume K (2016) Flexible robotic endoscopy: current and original devices. Comp Assisted Surg 21:150–159

    Article  Google Scholar 

  62. Lomanto D, Wijerathne S, Ho LKY, Phee LSJ (2015) Flexible endoscopic robot. Minim Invasive Ther Allied Technol 24:37–44

    Article  PubMed  Google Scholar 

  63. Verb surgical delivers digital surgery prototype demonstration to collaboration partners (2017). http://www.prnewswire.com/news-releases/verb-surgical-delivers-digital-surgery-prototype-demonstration-to-collaboration-partners-300397192.html. Accessed 20 Dec 2017

  64. Simonite T (2016) The recipe for the perfect robot surgeon. https://www.technologyreview.com/s/602595/the-recipe-for-the-perfect-robot-surgeon/. MIT Technology Review 2017. Accessed 20 Dec 2017

  65. Here’s the Latest from Verb Surgical|MDDI Medical Device and Diagnostic Industry News Products and Suppliers (2017). http://www.mddionline.com/blog/devicetalk/heres-latest-verb-surgical-10-03-16. Accessed 20 Dec 2017

  66. Khateeb OM (2016) Democratizing Surgery Part 1: What Verb surgical is creating. Robotics Buisness Review. https://www.linkedin.com/pulse/democratizing-surgery-how-verb-surgical-invented-new-category. Accessed 20 Dec 2017

  67. Wortman TD (2011) Design, analysis, and testing of in vivo surgical robots. Department of Mechanical Engineering, University of Nebraska—Lincoln. http://digitalcommons.unl.edu/mechengdiss/28. Accessed 20 Dec 2017

  68. Rentschler ME, Oleynikov D (2007) Recent in vivo surgical robot and mechanism developments. Surg Endosc 21:1477–1481. https://doi.org/10.1007/s00464-007-9338-1

    Article  CAS  PubMed  Google Scholar 

  69. Feussner H (2017) Surgery 4.0. In: Thuemmler C, Bai C (eds) Health 4.0: How Virtualization and Big Data are Revolutionizing healthcare. Springer, Cham, pp 91–107

    Chapter  Google Scholar 

  70. Berci G, Forde K (2000) History of endoscopy. Surg Endosc 14:5–15

    Article  CAS  PubMed  Google Scholar 

  71. McMurray J, Strudwick G, Forchuk C, Morse A, Lachance J, Baskaran A, Allison L, Booth R (2017) The importance of trust in the adoption and use of intelligent assistive technology by older adults to support aging in place: scoping review protocol. JMIR Res Protoc 6:e218. https://doi.org/10.2196/resprot.8772

    Article  PubMed  PubMed Central  Google Scholar 

  72. Yan A (2017) How a robot passed China’s medical licensing exam: Machine shows capacity to learn, reason and make judgments but is not quite ready to go into solo practice, developers say. South China Morning Post. http://www.scmp.com/news/china/society/article/2120724/how-robot-passed-chinas-medical-licensing-exam. Accessed 20 Dec 2017

  73. Moukarzel LA, Fader AN, Tanner EJ (2017) Feasibility of robotic-assisted laparoendoscopic single-site surgery in the gynecologic oncology setting. J Minim Invasive Gynecol 24:258–263

    Article  PubMed  Google Scholar 

  74. Tsukamoto S, Nishizawa Y, Ochiai H, Tsukada Y, Sasaki T, Shida D, Ito M, Kanemitsu Y (2017) Surgical outcomes of robot-assisted rectal cancer surgery using the da Vinci Surgical System: a multi-center pilot Phase II study. Jpn J Clin Oncol:1–6, https://doi.org/10.1093/jjco/hyx141

  75. Galvez D, Sorber R, Javed AA, He J (2017) Technical considerations for the fully robotic pancreaticoduodenectomy. J Vis Surg 3:81. https://doi.org/10.21037/jovs.2017.05.08

    Article  PubMed  PubMed Central  Google Scholar 

  76. Randell R, Honey S, Hindmarsh J, Alvarado N, Greenhalgh J, Pearman A, Long A, Cope A, Gill A, Gardner P, Kotze A, Wilkinson D, Jayne D, Croft J, Dowding D (2017) https://doi.org/10.3310/hsdr05200

  77. Ozyurtkan MO, Kaba E, Toker A (2017) What happens while learning robotic lobectomy for lung cancer? J Vis Surg 3:27. https://doi.org/10.21037/jovs.2017.02.02

    Article  PubMed  PubMed Central  Google Scholar 

  78. Criss CN, Gadepalli SK (2017) Sponsoring surgeons; an investigation on the influence of the da Vinci robot. Am J Surg, https://doi.org/10.1016/j.amjsurg.2017.08.017

    PubMed  Google Scholar 

  79. Jeong IG, Khandwala YS, Kim JH, Han DH, Li S, Wang Y, Chang SL, Chung BI (2017) Association of robotic-assisted vs laparoscopic radical nephrectomy with perioperative outcomes and health Care costs, 2003 to 2015. JAMA 318:1561–1568. https://doi.org/10.1001/jama.2017.14586

    Article  PubMed  Google Scholar 

  80. Vasudevan V, Reusche R, Wallace H, Kaza S (2016) Clinical outcomes and cost–benefit analysis comparing laparoscopic and robotic colorectal surgeries. Surg Endosc 30:5490–5493

    Article  PubMed  Google Scholar 

  81. Waite KE, Herman MA, Doyle PJ (2016) Comparison of robotic versus laparoscopic transabdominal preperitoneal (TAPP) inguinal hernia repair. J Robot Surg 10:239–244

    Article  PubMed  Google Scholar 

Download references

Funding

The authors would like to acknowledge the financial and material support of the Center for Advanced Surgical Technology at the University of Nebraska Medical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Oleynikov.

Ethics declarations

Disclosure

Dr. Dmitry Oleynikov has an equity interest in the company, Virtual Incision. Songita a. Choudhury, Priscila R. Armijo, Crystal Krause, and Brian S. Peters have no conflicts of interest or financial ties to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peters, B.S., Armijo, P.R., Krause, C. et al. Review of emerging surgical robotic technology. Surg Endosc 32, 1636–1655 (2018). https://doi.org/10.1007/s00464-018-6079-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-018-6079-2

Keywords

Navigation