Skip to main content

Arsenic-Transforming Bacteria: A Potential Weapon for Arsenic-Contaminated Soil

  • Chapter
  • First Online:
Strategies and Tools for Pollutant Mitigation

Abstract

Arsenic (As) is one of the ten major poisonous metals occurring on earth crust or environment originated from rocks, minerals, and anthropogenic sources. This toxic metalloid occurs as insoluble trivalent arsenite (As III) and pentavalent arsenate (As V) which are fatal to human health as recognized by the World Health Organization (WHO). The insoluble form of arsenic occurs in trivalent arsenite (As III) and pentavalent arsenate (As V) forms. As V is a structural equivalent of phosphate and breaks oxidative phosphorylation, which is a vital reaction of energy uptake in many beings including humans. Processing a phosphate structure analogue which could enter any bacterial cell through phosphate transport system and phosphorylates replacing phosphate thereby inhibits the metabolism. Arsenic is uptaken by aquaglyceroporins at neutral pH in bacteria, yeasts, and mammals by binding to sulfhydryl groups of cysteine residues in proteins leading to an increased cytotoxicity. The soil microbes play a substantial role in its biogeochemical processing, by directly taking part in As speciation or doing so circuitously through redox interactions with other metals and nutrients, e.g., iron and nitrogen. The development of descriptive and comparative approaches with the cumulative number of genomes available was conceived not only to identify several genetic elements of the arsenic metabolism but also to explicate their phylogenetic circulation and its regulation. Numerous mechanisms are used by these microbes such as avoiding/reducing the toxicity due to arsenic by a phosphate uptake, by lipid peroxidation in the cell membranes, and by modifying the ars gene which controls the arsenic detoxification pathway. In this context, we will discuss in detail on the importance of arsenic-transforming bacteria and its potential application in bioremediation of contaminated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

As:

Arsenic

As III:

Arsenite

As V:

Arsenate

References

  • Abbas SZ, Riaz M, Ramzan N, Zahid MT, Shakoori FR, Rafatullah M (2014) Isolation and characterization of arsenic resistant bacteria from wastewater. Braz J Microbiol 45(4):1309–1315

    Article  CAS  Google Scholar 

  • Abbas G, Murtaza B, Bibi I (2018) Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects. Int J Environ Res Publ Health 15(1):59. https://doi.org/10.3390/ijerph15010059

    Article  CAS  Google Scholar 

  • Abedin MJ, Cotter-Howells J, Meharg AA (2002) Arsenic uptake and accumulation in rice (Oryza sativa L.) irrigated with contaminated water. Plant Soil 240:311–319

    Google Scholar 

  • Abid M, Niazi NK, Bibi I, Farooqi A, Ok YS, Kunhikrishnan A, Ali F, Ali S, Igalavithana AD, Arshad M (2016) Arsenic(V) biosorption by charred orange peel in aqueous environments. Int J Phytoremediation 18:442e449

    Google Scholar 

  • Adhikari D, Pal S (2015) Molecular markers in plant-based bioassays for the detection of molecular endpoints to probe of aquatic genotoxicity – an overview. J Environ Sociobiol 12:143–162

    Google Scholar 

  • Adriano DC (2001) Arsenic. In: Trace elements in terrestrial environments. Springer, Berlin, pp 219–261

    Chapter  Google Scholar 

  • Afkar E, Lisak J, SaltikovCW BP, Oremland RS, Stolz JF (2003) The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10. FEMS Microbiol Lett 226:107–112

    Article  CAS  Google Scholar 

  • Ahmad MA, Gaur R, Gupta M (2012) Comparative biochemical and RAPD analysis in two varieties of rice (Oryza sativa) under arsenic stress by using various biomarkers. J Hazard Mater 217:141–148

    Article  CAS  Google Scholar 

  • Ahmann D, Roberts AL, Krumholz LR, Morel FMM (1994) Microbe grows by reducing arsenic. Nature 71(6500):750. https://doi.org/10.1038/371750a0

    Article  Google Scholar 

  • Alka S, Shahir S, Ibrahim N, Chai T-T, Bahari ZM, Manan FA (2020) The role of plant growth promoting bacteria on arsenic removal: a review of existing perspectives. Environ Technol Innov 17

    Google Scholar 

  • Al-Makishah NH, Taleb MA, Barakat MA (2020) Arsenic bioaccumulation in arsenic-contaminated soil: a review. Chem Pap 74:2743–2757. https://doi.org/10.1007/s11696-020-01122-4

    Article  CAS  Google Scholar 

  • Anderson CR, Cook GM (2004) Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand. Curr Microbiol 48:341–347

    Article  CAS  Google Scholar 

  • Anjum SA, Tanveer M, Hussain S, Ashraf U, Khan I, Wang L (2017) Alteration in growth, leaf gas exchange, and photosynthetic pigments of maize plants under combined cadmium and arsenic stress. Water Air Soil Pollut 228:13

    Article  CAS  Google Scholar 

  • Armendariz AL, Talano MA, Travaglia C, Reinoso H, Oller ALW, Agostini E (2016a) Arsenic toxicity in soybean seedlings and their attenuation mechanisms. Plant Physiol Biochem 98:119–127

    Article  CAS  Google Scholar 

  • Armendariz AL, Talano MA, Villasuso AL, Travaglia C, Racagni GE, Reinoso H, Agostini E (2016b) Arsenic stress induces changes in lipid signalling and evokes the stomata closure in soybean. Plant Physiol Biochem 103:45–52

    Article  CAS  Google Scholar 

  • Atienzar FA, Conradi M, Evenden AJ, Jha AN, Depledge MH (1999) Qualitative assessment of genotoxicity using random amplified polymorphic DNA: comparison of genomic template stability with key fitness parameters in Daphnia magna exposed to benzo (a) pyrene. Environ Toxicol Chem 18:2275–2282

    CAS  Google Scholar 

  • Atienzar FA, Cordi B, Donkin ME, Evenden AJ, Jha AN, Depledge MH (2000) Comparison of ultraviolet-induced genotoxicity detected by random amplified polymorphic DNA with chlorophyll fluorescence and growth in a marine macroalgae, Palmaria palmata. Aquat Toxicol 50:1–12

    Article  CAS  Google Scholar 

  • Austruy A, Wanat N, Moussard C, Vernay P, Joussein E, Ledoigt G, Hitmi A (2013) Physiological impacts of soil pollution and arsenic uptake in three plant species: Agrostis capillaris, Solanum nigrum and Vicia faba. Ecotoxicol Environ Saf 90:28–34

    Article  CAS  Google Scholar 

  • Bakhat HF, Zia Z, Fahad S, Abbas S, Hammad HM, Shahzad AN, Abbas F, Alharby H, Shahid M (2017) Arsenic uptake, accumulation and toxicity in rice plants: possible remedies for its detoxification: a review. Environ Sci Pollut Res 24:9142–9158

    Article  CAS  Google Scholar 

  • Barral-Fraga L, Barral MT, MacNeill KL, Martiñá-Prieto D, Morin S, Rodríguez-Castro MC, Tuulaikhuu BA, Guasch H (2020) Biotic and abiotic factors influencing arsenic biogeochemistry and toxicity in fluvial ecosystems: a review. Int J Environ Res Public Health 17:2331

    Article  CAS  Google Scholar 

  • Begum MC, Islam MS, Islam M, Amin R, Parvez MS, Kabir AH (2016) Biochemical and molecular responses underlying differential arsenic tolerance in rice (Oryza sativa L.). Plant Physiol Biochem 104:266–277

    Article  CAS  Google Scholar 

  • Bhowmick S, Pramanik S, Singh P, Mondal P, Chatterjee D, Nriagu J (2018) Arsenic in groundwater of West Bengal, India: a review of human health risks andassessment of possible intervention options. Sci Total Environ 612:148–169

    Google Scholar 

  • Bordoloi R (2012) Existence of arsenic in groundwater and its effect on health. Int J Comput Appl Eng Sci 2(3):270–272

    Google Scholar 

  • Cadet J, Wagner JR (2013) DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. Cold Spring Harb Perspect Biol 5:a012559

    Article  CAS  Google Scholar 

  • Cai J, DuBow MS (1996) Expression of the Escherichia coli chromosomal ars operon. Can J Microbiol 42:662–671

    Article  CAS  Google Scholar 

  • Cai J, Salmon K, Du Bow MS (1998) A chromosomal ars operon homologue of Pseudomonas aeruginosa confers increased resistance to arsenic and antimony in Escherichia coli. Microbiology 144:2705–2713

    Article  CAS  Google Scholar 

  • Carbonell-Barrachina AA, Wu X, Ramírez-Gandolfo A, Norton GJ, Burló F, Deacon C, Meharg AA (2012) Inorganic arsenic contents in rice-based infant foods from Spain, UK, China and USA. Environ Pollut 163:77–83

    Article  CAS  Google Scholar 

  • Caroli F, Torre LA, Petrucci F, Violante N (1996) Element speciation in bioinorganic chemistry. In: Caroli S (ed) Chemical analysis series, vol 135. Wiley, Chichester, pp 445–463

    Google Scholar 

  • Catarecha P, Segura MD, FrancoZorrilla JM, García-Ponce B, Lanza M, Solano R, Paz-Ares J, Leyva A (2007) A mutant of the Arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation. Plant Cell 19:1123–1133

    Article  CAS  Google Scholar 

  • Cenkci S, CiÄŸerci IH, Yıldız M, Özay C, BozdaÄŸ A, Terzi H (2010) Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environ Exp Bot 67:467–473

    Article  CAS  Google Scholar 

  • Chakraborti D, Rahman MM, Das B, Murrill M, Dey S, Mukherjee SC, Dhar RK, Biswas BK, Chowdhury UK, Roy S (2010) Status of ground water arsenic contamination in Bangladesh: a 14-year study report. Water Res 44:5789–5802

    Google Scholar 

  • Chatterjee S et al (2017) Arsenic: source, occurrence, cycle, and detection. In: Arsenic contamination in the environment. Springer, pp 13–35

    Google Scholar 

  • Chen W, Chi Y, Taylor NL, Lambers H, Finnegan PM (2010) Disruption of ptLPD1 or ptLPD2, genes that encode isoforms of the plastidiallipoamide dehydrogenase, confers arsenate hypersensitivity in Arabidopsis. Plant Physiol 153:1385–1397

    Article  CAS  Google Scholar 

  • Chisholm JJ Jr (1970) Arsenic poisoning from rodenticides. Pediatr Clin North Am 17:591

    Google Scholar 

  • Colognato R, Coppede F, Ponti J, Sabbioni E, Migliore L (2007) Genotoxicity induced by arsenic compounds in peripheral human lymphocytes analysed by cytokinesis-block micronucleus assay. Mutagenesis 22:255–261

    Article  CAS  Google Scholar 

  • Crohns M (2010) Antioxidants, cytokines and markers of oxidative stress in lung cancer: associations with adverse events, response and survival. Tampere University Press, University of Tampere, Tampere

    Google Scholar 

  • Cuebas M, Villafane A, McBride M, Yee N, Bini E (2011) Arsenate reduction and expression of multiple chromosomal ars operons in Geobacillus kaustophilus A1. Microbiology 157:2004–2011

    Article  CAS  Google Scholar 

  • Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A (2006) Biomarkers of oxidative damage in human disease. Clin Chem 52:601–623

    Article  CAS  Google Scholar 

  • Das J, Sarkar P (2018) Remediation of arsenic in mung bean (Vigna radiata) with growth enhancement by unique arsenic-resistant bacterium Acinetobacter lwoffii. Sci Total Environ 624:1106–1118

    Article  CAS  Google Scholar 

  • De Andrade FM et al (2019) Beneficial effects of inoculation of growth-promoting bacteria in strawberry. Microbiol Res 223:120–128

    Article  Google Scholar 

  • De Vizcaya-Ruiz A, Barbier O, Ruiz-Ramos R, Cebrian ME (2009) Biomarkers of oxidative stress and damage in human populations exposed to arsenic. Mutat Res 674:85–92

    Article  CAS  Google Scholar 

  • Dey U, Chatterjee S, Mondal NK (2016) Isolation and characterization of arsenic-resistant bacteria and possible application in bioremediation. Biotechnol Rep 10:1–7

    Article  Google Scholar 

  • Diorio C, Cai J, Marmor J, Shinder R, Du Bow MS (1995) An Escherichia coli chromosomal ars operon homolog is functional in arsenic detoxification and is conserved in gram-negative bacteria. J Bacteriol 177:2050–2056

    Article  CAS  Google Scholar 

  • Duquesnoy I, Champeau GM, Evray G, Ledoigt G, Piquet-Pissaloux A (2010) Enzymatic adaptations to arsenic-induced oxidative stress in Zea mays and genotoxic effect of arsenic in root tips of Vicia faba and Zea mays. Comptes Rendus Biol 333:814–824

    Article  CAS  Google Scholar 

  • Duman F, Ozturk F, Aydin Z (2010) Biological responses of duckweed (Lemna minor L.) exposed to the inorganic arsenic species As (III) and As(V): Effects of concentration and duration of exposure. Ecotoxicology 19:983–993

    Google Scholar 

  • Dwivedi S, Mishra A, Tripathi P, Dave R, Kumar A, Srivastava S, Chakrabarty D, Trivedi PK, Adhikari B, Norton GJ (2012) Arsenic affects essential and non-essential amino acids differentially in rice grains: inadequacy of amino acids in rice based diet. Environ Int 46:16–22

    Article  CAS  Google Scholar 

  • Ehrlich HL (1996) Geomicrobiology, vol 12, 3rd edn. Marcel Dekker Inc., New York, pp 276–293

    Google Scholar 

  • Ellis DR, Gumaelius L, Indriolo E, Pickering IJ, Banks JA, Salt DE (2006) A novel arsenate reductase from the arsenic hyper accumulating fern Pteris vittata. Plant Physiol 141:1544–1554

    Article  CAS  Google Scholar 

  • Faita F, Cori L, Bianchi F, Andreassi MG (2013) Arsenic-induced genotoxicity and genetic susceptibility to arsenic-related pathologies. Int J Environ Res Public Health 10:1527–1546

    Article  CAS  Google Scholar 

  • Farooqi A, Masuda H, Firdous N (2007) Toxic fluoride and arsenic contaminated groundwater in the Lahore and Kasur districts, Punjab, Pakistan and possible contaminant sources. Environ Pollut 145:839–849

    Google Scholar 

  • Garg N, Singla P (2011) Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environ Chem Lett 9:303–321

    Article  CAS  Google Scholar 

  • Geng CN, Zhu YG, Hu Y, Williams P, Meharg AA (2006) Arsenate causes differential acute toxicity to two P-deprived genotypes of rice seedlings (Oryza sativa L.). Plant Soil 279:297–306

    Article  CAS  Google Scholar 

  • Gomes M, Carneiro M, Nogueira C, Soares A, Garcia Q (2013) The system modulating ROS content in germinating seeds of two Brazilian savanna tree species exposed to As and Zn. Acta Physiol Plant 35:1011–1022

    Article  CAS  Google Scholar 

  • Goodman L, Gilman A (1942) The pharmacology basis of therapeutics. Macmian Company, New York. 4th printing

    Google Scholar 

  • Gotz F, Zabielski J, Philipson L, Lindberg M (1983) DNA homology between the arsenate resistance plasmid pSX267 from Staphylococcus xylosus and the penicillinase plasmid pI258 from Staphylococcus aureus. Plasmid 9:126–137

    Article  CAS  Google Scholar 

  • Gulz PA, Gupta SK, Schulin R (2005) Arsenic accumulation of common plants from contaminated soils. Plant Soil 272:337–347

    Article  CAS  Google Scholar 

  • Gunes A, Pilbeam DJ, Inal A (2009) Effect of arsenic–phosphorus interaction on arsenic-induced oxidative stress in chickpea plants. Plant Soil 314:211–220

    Google Scholar 

  • Gunes A, Inal A, Bagci EG, Kadioglu YK (2010) Combined effect of arsenic and phosphorus on mineral element concentrations of sunflower. Commun Soil Sci Plant Anal 41:361–372

    Google Scholar 

  • Hlihor RM et al (2017) Bioremediation: an overview on current practices, advances, and new perspectives in environmental pollution treatment. BioMed Res Int

    Google Scholar 

  • Holt JG (1994) Burgey’s manual of systematic bacteriology, 9th edn

    Google Scholar 

  • Hughes JP, Polissar L, Van Belle G (1988) Evaluation and synthesis of health effects studies of communities surrounding arsenic producing industries. Int J Epidemiol 17:407–413

    Article  CAS  Google Scholar 

  • Iriel A, Dundas G, Cirelli AF, Lagorio MG (2015) Effect of arsenic on reflectance spectra and chlorophyll fluorescence of aquatic plants. Chemosphere 119:697–703

    Article  CAS  Google Scholar 

  • Ji G, Silver S (1992) Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258. Proc Natl Acad Sci U S A 89:9474–9478

    Article  CAS  Google Scholar 

  • Ji G, Silver S (1995) Bacterial resistance mechanisms for heavy metals of environmental concern. Ind Microbiol 14:61–75

    Article  CAS  Google Scholar 

  • Jin W, Wang Z, Sun Y, Wang Y, Bi C, Zhou L, Zheng X (2019) Impacts of biochar and silicate fertilizer on arsenic accumulation in rice (Oryza sativa L.). Ecotoxicol Environ Saf 189:109928

    Article  CAS  Google Scholar 

  • Kanwar MK, Bhardwaj R (2015) Arsenic induced modulation of antioxidative defense system and brassinosteroids in Brassica juncea L. Ecotoxicol Environ Saf 115:119–125

    Article  CAS  Google Scholar 

  • Karn SK, Pan X, Jenkinson IR (2017) Bio-transformation and stabilization of arsenic (As) in contaminated soil using arsenic oxidizing bacteria and FeCl3 amendment. 3 Biotech 7(1):50. https://doi.org/10.1007/s13205-017-0681-1

    Article  Google Scholar 

  • Ke C et al (2018) Characterization of recombinant E. coli expressing arsr from Rhodopseudomonaspalustris cga009 that displays highly selective arsenic adsorption. Appl Microbiol Biotechnol 102(14):6247–6255

    Article  CAS  Google Scholar 

  • Khalid S, Shahid M, Niazi NK, Rafiq M, Bakhat HF, Imran M, Abbas T, Bibi I, Dumat C (2017) Arsenic behaviour in soil-plant system: biogeochemical reactions and chemical speciation influences. In: Enhancing cleanup of environmental pollutants. Springer, Berlin, pp 97–140

    Chapter  Google Scholar 

  • Khan I, Ahmad A, Iqbal M (2009) Modulation of antioxidant defence system for arsenic detoxification in Indian mustard. Ecotoxicol Environ Saf 72:626–634

    Article  CAS  Google Scholar 

  • Kitchin KT, Wallace K (2008) Evidence against the nuclear in situ binding of arsenicals–oxidative stress theory of arsenic carcinogenesis. Toxicol Appl Pharmacol 232:252–257

    Article  CAS  Google Scholar 

  • Kligerman AD, Malik SI, Campbell JA (2010) Cytogenetic insights into DNA damage and repair of lesions induced by a monomethylated trivalent arsenical. Mutat Res 695:2–8

    Article  CAS  Google Scholar 

  • Körpe DA, Aras S (2011) Evaluation of copper-induced stress on eggplant (Solanummelongena L.) seedlings at the molecular and population levels by use of various biomarkers. Mutat Res 719:29–34

    Article  CAS  Google Scholar 

  • Krafft T, Macy JM (1998) Purification and characterization of the respiratory arsenate reductase of Chrysiogenes arsenatis. Eur J Biochem 255:647–653

    Article  CAS  Google Scholar 

  • Kumarathilaka P, Seneweera S, Ok YS, Meharg AA, Bundschuh J (2019) Mitigation of arsenic accumulation in rice: an agronomical, physico-chemical, and biological approach – a critical review. Crit Rev Environ Sci Technol 50(19):1984–2015. https://doi.org/10.1080/10643389.2019.1618691

    Article  CAS  Google Scholar 

  • Kushwaha A et al (2015) Heavy metal detoxification and tolerance mechanisms in plants: implications for phytoremediation. Environ Rev 24(1):39–51

    Article  CAS  Google Scholar 

  • LeBlanc MS, McKinney EC, Meagher RB, Smith AP (2013) Hijacking membrane transporters for arsenic phyto extraction. J Biotechnol 163:1–9

    Article  CAS  Google Scholar 

  • Lei M, Wan XM, Huang ZC, Chen TB, Li XW, Liu YR (2012) First evidence on different transportation modes of arsenic and phosphorus in arsenic hyper accumulator Pteris vittata. Environ Pollut 161:1–7

    Article  CAS  Google Scholar 

  • Leslie ACD, Smith H (1978) Self-poisoning by the abuse of arsenic containing tonics. Med Sci Law 18:159–162

    Article  CAS  Google Scholar 

  • Li Y, Dhankher OP, Carreira L, Lee D, Chen A, Schroeder JI, Balish RS, Meagher RB (2004) Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity. Plant Cell Physiol 45:1787–1797

    Article  CAS  Google Scholar 

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397

    Article  CAS  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang WH, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579

    Article  CAS  Google Scholar 

  • Ma JF, Yamaji N, Tamai K, Mitani N (2007) Genotypic difference in silicon uptake and expression of silicon transporter genes in rice. Plant Physiol 145:919–924

    Article  CAS  Google Scholar 

  • Malik JA, Goel S, Sandhir R, Nayyar H (2011) Uptake and distribution of arsenic in chickpea: Effects on seed yield and seed composition. Commun Soil Sci Plant Anal 42:1728–1738

    Google Scholar 

  • Mandal SM, Gouri SS, De D, Das BK, Mondal KC, Pati BR (2011) Effect of arsenic on nodulation and nitrogen fixation of blackgram (Vigna mungo). Indian J Microbiol 51:44–47

    Google Scholar 

  • Mascher R, Lippmann B, Holzinger S, Bergmann H (2002) Arsenate toxicity: Effects on oxidative stress response molecules and enzymes in red clover plants. Plant Sci 163:961–969

    Google Scholar 

  • Maegraith B (1966) In tropical eosinophilia. Price’s textbook of medicine. Oxford University Press, Bombay

    Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29–43

    Article  CAS  Google Scholar 

  • Meharg AA, Williams PN, Adomako A, Lawgali YY, Deacon C, Villada A, Cambell RCJ, Sun G, Zhu YG, Feldmann J, Rabb A, Zhao FJ, Islam R, Hossain S, Yanai J (2009) Geographical variation in total and inorganic arsenic content of polished (white) rice. Environ Sci Technol 43:1612–1617

    Article  CAS  Google Scholar 

  • Mehmood T, Bibi I, Shahid M, Niazi NK, Murtaza B, Wang H, Ok YS, Sarkar B, Javed MT, Murtaza G (2017) Effect of compost addition on arsenic uptake, morphological and physiological attributes of maize plants grown in contrasting soils. J Geochem Explor 2017(178):83–91

    Article  CAS  Google Scholar 

  • Michalke K et al (2000) Production of volatile derivatives of metal (Loid) S by microflora involved in anaerobic digestion of sewage sludge. Appl Environ Microbiol 66(7):2791–2796

    Article  CAS  Google Scholar 

  • Miteva E (2002) Accumulation and effect of arsenic on tomatoes. Commun Soil Sci Plant Anal 33:1917–1926

    Article  CAS  Google Scholar 

  • Mohapatra T, Nayak AK, Raja R, Shahid M (2013) Vision 2050. Central Rice Research Institute. Indian Council of Agricultural Research, Cuttack

    Google Scholar 

  • Moore JE (1933) In modern treatment of syphilis. In: Thomas CC (ed) Springfield

    Google Scholar 

  • Mubarak H, Mirza N, Chai LY, Yang ZH, Yong W, Tang CJ, Mahmood Q, Pervez A, Farooq U, Fahad S (2016) Biochemical and metabolic changes in arsenic contaminated Boehmeria nivea L. BioMed Res Int 2016:1423828

    Article  CAS  Google Scholar 

  • Mukhopadhyay R, Rosen BP, Phung LT, Silver S (2002) FEMS Microbiol Rev 26:311–325

    Article  CAS  Google Scholar 

  • Muller D, Lievremont D, Simeonova DD, Hubert JC, Lett MC (2003) Arsenite oxidase aox genes from a metal-resistant beta-proteobacterium. J Bacteriol 185:135–141

    Article  CAS  Google Scholar 

  • Naidu R, Smith E, Owens G, Bhattacharya P (2006) Managing Arsenic in the Environment: From Soil to Human Health; CSIRO Publishing: Clayton, Australia

    Google Scholar 

  • Nash TA (1960) Review of the African trypanosomiasis problem. Trop Dis Bull 57:973–1013

    CAS  Google Scholar 

  • Nath S, Panda P, Mishra S, Dey M, Choudhury S, Sahoo L, Panda SK (2014) Arsenic stress in rice: Redox consequences and regulation by iron. Plant Physiol Biochem 80:203–210

    Google Scholar 

  • Naujokas MF, Anderson B, Ahsan H, Aposhian HV, Graziano JH, Thompson C, Suk WA (2013) The broad scope of health effects from chronic arsenic exposure: Update on a worldwide public health problem. Environ. Health Perspect 121:295.

    Google Scholar 

  • Niazi NK, Bibi I, Fatimah A, Shahid M, Javed MT, Wang H, Ok YS, Bashir S, Murtaza B, Saqib ZA (2017) Phosphate-assisted phytoremediation of arsenic by Brassica napus and Brassica juncea: morphological and physiological response. Int J Phytoremediation 19:670–678

    Article  CAS  Google Scholar 

  • Nordstrom DK (2002) Public health – worldwide occurrences of arsenic in ground water. Science 296:2143–2145

    Article  CAS  Google Scholar 

  • Nriagu JO, Azcue JM (1990) Food contamination with arsenic in the environment. Adv Environ Sci Technol 23:121–143

    CAS  Google Scholar 

  • Nussaume L, Kanno S, Javot H, Marin E, Pochon N, Ayadi A, Nakanishi TM, Thibaud M-C (2011) Phosphate import in plants: focus on the PHT1 transporters. Front Plant Sci 2

    Google Scholar 

  • Okamoto Y, Chou PH, Kim SY, Suzuki N, Laxmi YS, Okamoto K, Liu X, Matsuda T, Shibutani S (2008) Oxidative DNA damage in XPC-knockout and its wild mice treated with equine estrogen. Chem Res Toxicol 21:1120–1124

    Article  CAS  Google Scholar 

  • Ordóñez E, Letek M, Valbuena N, Gil JA, Mateos LM (2005) Analysis of genes involved in arsenic resistance in Corynebacterium glutamicum ATCC 13032. Appl Environ Microbiol 71(10):6206–6215. https://doi.org/10.1128/AEM.71.10.6206-6215.2005

    Article  CAS  Google Scholar 

  • Oremland RS, Stolz JF, Hollibaugh JT (2004) The microbial arsenic cycle in Mono Lake, California. FEMS Microbiol Ecol 48:15–27

    Article  CAS  Google Scholar 

  • Patra M, Bhowmik N, Bandopadhyay B, Sharma A (2004) Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ Exp Bot 52:199–223

    Article  CAS  Google Scholar 

  • Pickering IJ, Gumaelius L, Harris HH, Prince RC, Hirsch G, Banks JA, Salt DE, George GN (2006) Localizing the biochemical transformations of arsenate in a hyper accumulating fern. Environ Sci Technol 40:5010–5014

    Article  CAS  Google Scholar 

  • Pio I, Scarlino A, Bloise E, Mele G, Santoro O, Pastore T, Santoro D (2015) Efficient removal of low-arsenic concentrations from drinking water by combined coagulation and adsorption processes. Sep Purif Technol 147:284–291

    Google Scholar 

  • Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E (2011) Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol 213:113–136

    CAS  Google Scholar 

  • Rahman MM, NG JC, Naidu R (2009) Chronic exposure of arsenic via drinking water and its adverse health impacts on humans. Environ Geochem Health 31(1):189–200

    Google Scholar 

  • Ravenscroft P, Brammer H, Richards K (2009) Arsenic pollution: A global synthesis (Vol. 28). John Wiley & Sons: Hoboken, NJ, USA

    Google Scholar 

  • Rehman K et al (2019) Enhancement of oil field-produced wastewater remediation by bacterially-augmented floating treatment wetlands. Chemosphere 217:576–583

    Article  CAS  Google Scholar 

  • Reynold ES (1901) In account of epidemic outbreak of arsenical poisons occurring in Beer drinkers in north of England and the Midland Countries in 1900. Lanccl 1:166–170

    Google Scholar 

  • Roberge J, Abalos AT, Skinner JM, Kopplin M, Harris RB (2009) Presence of arsenic in commercial beverages. Am J Environ Sci 5:688–694

    Google Scholar 

  • Rosen BP, Dey S, Dou D, Ji G, Kaur P, Ksenzenko M, Yu SS, Wu J (1992) Evolution of an ion-translocating ATPase. Ann N Y Acad Sci 671:257–272

    Article  CAS  Google Scholar 

  • Saltikov CW, Wildman RA Jr, Newman DK (2005) Expression dynamics of arsenic respiration and detoxification in Shewanella sp. Strain ANA-3. J Bacteriol 187:7390–7396

    Article  CAS  Google Scholar 

  • Sanglard LM, Detmann KC, Martins SC, Teixeira RA, Pereira LF, Sanglard ML, Fernie AR, Araújo WL, DaMatta FM (2016) The role of silicon in metabolic acclimation of rice plants challenged with arsenic. Environ Exp Bot 123:22–36

    Article  CAS  Google Scholar 

  • Schmöger MEV, Oven M, Grill E (2000) Detoxification of arsenic by phytochelatins in plants. Plant Physiol 122:793–802

    Google Scholar 

  • Schulz H, Härtling S, Tanneberg H (2008) The identification and quantification of arsenic-induced phytochelatins—Comparison between plants with varying As sensitivities. Plant Soil 303:275–287

    Google Scholar 

  • Seow WJ, Pan WC, Kile ML, Baccarelli AA, Quamruzzaman Q, Rahman M, Mahiuddin G, Mostofa G, Lin X, Christiani DC (2012) Arsenic reduction in drinking water and improvement in skin lesions: A follow-up study in Bangladesh. Environ Health Perspect 120:1733

    Google Scholar 

  • Shahid M, Dumat C, Pourrut B, Abbas G, Shahid N, Pinelli E (2015) Role of metal speciation in lead-induced oxidative stress to Vicia faba roots. Russ J Plant Physiol 62:448–454

    Google Scholar 

  • Shahid M, Dumat C, Khalid S, Niazi NK, Antunes PM (2017) Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system. Rev Environ Contam Toxicol 241:73–137

    Google Scholar 

  • Shakoor MB, Niazi NK, Bibi I, Rahman MM, Naidu R, Dong Z, Shahid M, Arshad M (2015) Unraveling health risk and speciation of arsenic from groundwater in rural areas of Punjab, Pakistan. Int J Environ Res Public Health 12:12371–12390

    Google Scholar 

  • Shakoor MB, Niazi NK, Bibi I, Murtaza G, Kunhikrishnan A, Seshadri B, Shahid M, Ali S, Bolan NS, Ok YS (2016) Remediation of arsenic-contaminated water using agricultural wastes as biosorbents. Crit Rev Environ Sci Technol 46: 467–499

    Google Scholar 

  • Shah S, Damare S (2020) Cellular response of Brevibacterium casei #NIOSBA88 to arsenic and chromium – a proteomic approach. Braz J Microbiol. https://doi.org/10.1007/s42770-020-00353-7

  • Shariatpanahi M et al (1981) Biotransformation of the pesticide sodium arsenate. J Environ Sci Health B 16(1):35–47

    Article  CAS  Google Scholar 

  • Shipton WA (2014) The biology of fungi impacting human health. Gurgaon, PartridgeIndia

    Google Scholar 

  • Shishir T, Mahbub N (2019) Review on bioremediation: a tool to resurrect the polluted rivers. Pollution 5(3):555–568

    CAS  Google Scholar 

  • Silver S, Ji G, Broer S, Dey S, Dou D, Rosen BP (1993) Orphan enzyme or patriarch of a new tribe: the arsenic resistance ATPase of bacterial plasmids. Mol Microbiol 8:637–642

    Article  CAS  Google Scholar 

  • Singh N, Ma LQ, Srivastava M, Rathinasabapathi B (2006) Metabolic adaptations to arsenic induced oxidative stress in Pteris vittata L. and Pteris ensiformis L. Plant Sci 170:274–282

    Article  CAS  Google Scholar 

  • Singh VP, Singh S, Kumar J, Prasad SM (2015) Hydrogen sulfide alleviates toxic effects of arsenate in pea seedlings through up-regulation of the ascorbate–glutathione cycle: possible involvement of nitric oxide. J Plant Physiol 181:20–29

    Article  CAS  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  • Smedley P, Kinniburgh D (2012) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Google Scholar 

  • Soldan R et al (2019) Bacterial endophytes of mangrove propagules elicit early establishment of the natural host and promote growth of cereal crops under salt stress. Microbiol Res 223:33–43

    Article  CAS  Google Scholar 

  • Sommella A, Deacon C, Norton G, Pigna M, Violante A, Meharg AA (2013) Total arsenic, inorganic arsenic, and other elements concentrations in Italian rice grain varies with origin and type. Environ Pollut 181:38–43

    Article  CAS  Google Scholar 

  • Srivastava S, Srivastava A, Singh B, Suprasanna P, D’souza S (2013) The effect of arsenic on pigment composition and photosynthesis in Hydrilla verticillata. Biol Plant 57:385–389

    Article  CAS  Google Scholar 

  • Srivastava S, Sinha P, Sharma YK (2017) Status of photosynthetic pigments, lipid peroxidation and anti-oxidative enzymes in Vigna mungo in presence of arsenic. J Plant Nutr 40:298–306

    Article  CAS  Google Scholar 

  • Stolz JF, Basu P, Oremland RS (2002) Microbial transformation of elements: the case of arsenic and selenium. Int Microbiol 5:201–207

    Google Scholar 

  • Suhadolnik MLS, Salgado APC, Scholte LLS et al (2017) Novel arsenic-transforming bacteria and the diversity of their arsenic-related genes and enzymes arising from arsenic-polluted freshwater sediment. Sci Rep 7(1):11231. https://doi.org/10.1038/s41598-017-11548-8

    Article  CAS  Google Scholar 

  • Suresh K, Reddy GSN, Sengupta S, Shivaji S (2004) Deinococcus indicus sp. nov., an arsenic-resistant bacterium from an aquifer in West Bengal, India. Int J Syst Evol Microbiol 54(2):457–461

    Google Scholar 

  • Talukdar D (2013) Arsenic-induced changes in growth and antioxidant metabolism of fenugreek. Russ J Plant Physiol 60:652–660

    Article  CAS  Google Scholar 

  • Tara N et al (2019) On-site performance of floating treatment wetland macrocosms augmented with dye-degrading bacteria for the remediation of textile industry wastewater. J Clean Prod

    Google Scholar 

  • Tofan-Lazar J, Al-Abadleh HA (2012) ATR-FTIR studies on the adsorption/desorption kinetics of dimethylarsinic acid on iron–(oxyhydr) oxides. J Phys Chem A 116:1596–1604

    Article  CAS  Google Scholar 

  • Tripathi P, Singh PC, Mishra A, Srivastava S, Chauhan R, Awasthi S, Mishra S, Dwivedi S, Tripathi P, Kalra A (2017) Arsenic tolerant Trichoderma sp. reduces arsenic induced stress in chickpea (Cicer arietinum). Environ Pollut 223:137–145

    Article  CAS  Google Scholar 

  • Tu C, Ma LQ (2003) Interactive effects of pH, arsenic and phosphorus on uptake of As and P and growth of the arsenic hyper accumulator Pteris vittata L. under hydroponic conditions. Environ Exp Bot 50:243–251

    Article  CAS  Google Scholar 

  • Upadhyay A, Singh N, Singh R, Rai U (2016) Amelioration of arsenic toxicity in rice: comparative effect of inoculation of Chlorella vulgaris and Nannochloropsis sp. on growth, biochemical changes and arsenic uptake. Ecotoxicol Environ Saf 124:68–73

    Article  CAS  Google Scholar 

  • Vázquez S, Esteban E, Carpena RO (2008) Evolution of arsenate toxicity in nodulated white lupine in a long-term culture. J Agric Food Chem 56:8580–8587

    Article  CAS  Google Scholar 

  • Wolf R (1974) On the question of occupational arsenic poisoning in vineyard workers. Berufsdermatosen 22(1):34–37

    CAS  Google Scholar 

  • Woźniak K, Blasiak J (2003) In vitro genotoxicity of lead acetate: induction of single and double DNA strand breaks and DNA–protein cross-links. Mutat Res 535:127–139

    Article  CAS  Google Scholar 

  • Yahaghi Z et al (2019) Uptake and effects of lead and zinc on alfalfa (Medicago Sativa L.) seed germination and seedling growth: role of plant growth promoting bacteria. South Afr J Bot

    Google Scholar 

  • Zachariac H, Sogard H, Nyfors A (1974) Liver biopsy in psoriatics previously treated with potassium arsenate. ActoDermVenereol (Stock) 54:235–236

    Google Scholar 

  • Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    Article  CAS  Google Scholar 

  • Ziech D, Franco R, Georgakilas AG, Georgakila S, Malamou-Mitsi V, Schoneveld O, Pappa A, Panayiotidis MI (2010) The role of reactive oxygen species and oxidative stress in environmental carcinogenesis and biomarker development. Chem Biol Interact 188:334–339

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Narayanasamy, P., Subramanian, R.K. (2021). Arsenic-Transforming Bacteria: A Potential Weapon for Arsenic-Contaminated Soil. In: Aravind, J., Kamaraj, M., Prashanthi Devi, M., Rajakumar, S. (eds) Strategies and Tools for Pollutant Mitigation. Springer, Cham. https://doi.org/10.1007/978-3-030-63575-6_12

Download citation

Publish with us

Policies and ethics