Skip to main content

Genes and Biochemical Pathways Involved in Microbial Transformation of Arsenic

  • Chapter
  • First Online:
Arsenic Toxicity: Challenges and Solutions

Abstract

Arsenic exists as a ubiquitous toxic metalloid in both organic and inorganic forms. Most predominant forms are arsenate [As(V)] and arsenite [As(III)]. Both natural processes and anthropogenic activities play part in arsenic entry in the environment and the water bodies. Environmental arsenic is biologically cycled by many microbial species. These microbial species possess certain genes and corresponding proteins to ensure survival in metal contaminated sites. Microbial resistance to arsenic can accompany with oxidation, reduction, or methylation of arsenic. The relevant genes are often plasmid borne but can also be found in the chromosome of the bacteria. Various operons, gene products, and biochemical pathways are involved in biotransformation of arsenic. Arsenic also serves as electron acceptor for many bacterial species under anaerobic conditions. All these processes take place in coordination within a bacterial cell depending upon the valence state of arsenic and types of genes and proteins present in the bacteria. The current chapter highlights the microbial genes, proteins, and the biochemical pathways involved in microbial transformation of arsenic. These processes not only play important roles in maintaining the environment, but also have the potential for biotechnological interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas G, Murtaza B, Bibi I, Shahid M, Niazi NK, Khan MI, Amjad M, Hussain M (2018) Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects. Int J Environ Res Public Health 15:59

    Article  PubMed Central  Google Scholar 

  • Achour-Rokbani A, Cordi A, Poupin P, Bauda P, Billard P (2010) Characterization of the ars gene cluster from extremely arsenic-resistant Microbacterium sp. strain A33. Appl Environ Microbiol 76:948–955

    Article  CAS  PubMed  Google Scholar 

  • Afkar E, Lisak J, Saltikov C, Basu P, Oremland RS, Stolz JF (2003) The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10. FEMS Microbiol Lett 226:107–112

    Article  CAS  PubMed  Google Scholar 

  • Ahmann D, Roberts AL, Krumholz LR, Morel FM (1994) Microbe grows by reducing arsenic. Nature 371:750–750

    Article  CAS  PubMed  Google Scholar 

  • Andres J, Bertin PN (2016) The microbial genomics of arsenic. FEMS Microbiol Rev 40:299–322

    Article  CAS  PubMed  Google Scholar 

  • Awasthi G, Singh T, Awasthi A, Awasthi KK (2020) Arsenic in mushrooms, fish, and animal products. In: Arsenic in drinking water and food. Springer, Singapore, pp 307–323

    Chapter  Google Scholar 

  • Baldwin SA, Khoshnoodi M, Rezadehbashi M, Taupp M, Hallam S, Mattes A, Sanei H (2015) The microbial community of a passive biochemical reactor treating arsenic, zinc, and sulfate-rich seepage. Front Bioeng Biotechnol 3:27

    Article  PubMed  PubMed Central  Google Scholar 

  • Ben Fekih I, Zhang C, Li Y, Zhao Y, Alwathnani H, Saquib Q, Rensing C, Cervantes C (2018) Distribution of arsenic resistance genes in prokaryotes. Front Microbiol 9:2473

    Article  PubMed  PubMed Central  Google Scholar 

  • Bennett WW, Teasdale PR, Panther JG, Welsh DT, Zhao H, Jolley DF (2012) Investigating arsenic speciation and mobilization in sediments with DGT and DET: a mesocosm evaluation of oxic-anoxic transitions. Environ Sci Technol 46:3981–3989

    Article  CAS  PubMed  Google Scholar 

  • Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol Mol Biol Rev 66:250–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharjee H, Rosen BP (2007) Arsenic metabolism in prokaryotic and eukaryotic microbes. In: Molecular microbiology of heavy metals. Springer, Berlin, pp 371–406

    Chapter  Google Scholar 

  • Cai L, Liu G, Rensing C, Wang G (2009) Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils. BMC Microbiol 9:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Castillo R, Saier MH (2010) Functional promiscuity of homologues of the bacterial ArsA ATPases. Int J Microbiol 2010:187373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cavalca L, Corsini A, Zaccheo P, Andreoni V, Muyzer G (2013) Microbial transformations of arsenic: perspectives for biological removal of arsenic from water. Future Microbiol 8:753–768

    Article  CAS  PubMed  Google Scholar 

  • Cavalca L, Zecchin S, Zaccheo P, Abbas BA, Rotiroti M, Bonomi T, Muyzer G (2019) Exploring biodiversity and arsenic metabolism of microbiota inhabiting arsenic-rich groundwaters in northern Italy. Front Microbiol 10:1480

    Article  PubMed  PubMed Central  Google Scholar 

  • Challenger F (1945) Biological methylation. Chem Rev 36:315–361

    Article  CAS  Google Scholar 

  • Chatterjee S, Moogoui R, Gupta DK (2017) Arsenic: source, occurrence, cycle, and detection. In: Gupta DK, Chatterjee S (eds) Arsenic contamination in the environment: the issues and solutions. Springer, Cham, pp 13–35

    Chapter  Google Scholar 

  • Chauhan NS, Ranjan R, Purohit HJ, Kalia VC, Sharma R (2009) Identification of genes conferring arsenic resistance to Escherichia coli from an effluent treatment plant sludge metagenomic library. FEMS Microbiol Ecol 67:130–139

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Graziano JH, Parvez F, Liu M, Slavkovich V, Kalra T, Argos M, Islam T, Ahmed A, Rakibuz-Zaman M (2011) Arsenic exposure from drinking water and mortality from cardiovascular disease in Bangladesh: prospective cohort study. BMJ 342:d2431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen H-L, Lee C-C, Huang W-J, Huang H-T, Wu Y-C, Hsu Y-C, Kao Y-T (2016) Arsenic speciation in rice and risk assessment of inorganic arsenic in Taiwan population. Environ Sci Pollut Res 23:4481–4488

    Article  CAS  Google Scholar 

  • Chen S-C, Sun G-X, Yan Y, Konstantinidis KT, Zhang S-Y, Deng Y, Li X-M, Cui H-L, Musat F, Popp D (2020) The great oxidation event expanded the genetic repertoire of arsenic metabolism and cycling. Proc Natl Acad Sci 117:10414–10421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung J-Y, Yu S-D, Hong Y-S (2014) Environmental source of arsenic exposure. J Prevent Med Public Health (Yebang Uihakhoe chi) 47:253–257

    Article  Google Scholar 

  • Corkhill C, Vaughan D (2009) Arsenopyrite oxidation–a review. Appl Geochem 24:2342–2361

    Article  CAS  Google Scholar 

  • Corsini A, Cavalca L, Crippa L, Zaccheo P, Andreoni V (2010) Impact of glucose on microbial community of a soil containing pyrite cinders: role of bacteria in arsenic mobilization under submerged condition. Soil Biol Biochem 42:699–707

    Article  CAS  Google Scholar 

  • Cullen WR (2008) Is arsenic an aphrodisiac? The sociochemistry of an element. Royal Society of Chemistry, London

    Google Scholar 

  • Cullen WR (2014) Chemical mechanism of arsenic biomethylation. Chem Res Toxicol 27:457–461

    Article  CAS  PubMed  Google Scholar 

  • Cullen WR, Reimer KJ (2017) An introduction to arsenic. In: Arsenic is everywhere: cause for concern? Royal Society of Chemistry, London

    Google Scholar 

  • Cullen WR, Li H, Hewitt G, Reimer KJ, Zalunardo N (1994) Identification of extracellular arsenical metabolites in the growth medium of the microorganisms Apiotrichum humicola and Scopulariopsis brevicaulis. Appl Organomet Chem 8:303–311

    Article  CAS  Google Scholar 

  • Demergasso CS, Guillermo CD, Lorena EG, Mur JJP, Pedrós-Alió C (2007) Microbial precipitation of arsenic sulfides in Andean salt flats. Geomicrobiol J 24:111–123

    Article  CAS  Google Scholar 

  • Dey U, Chatterjee S, Mondal NK (2016) Isolation and characterization of arsenic-resistant bacteria and possible application in bioremediation. Biotechnol Rep 10:1–7

    Article  Google Scholar 

  • Dhuldhaj U, Sharma N, Singh S (2012) Microbial removal of arsenic: an overview. In: Bioremediation of pollutants. IK International Publishing House, New Delhi, pp 112–127

    Google Scholar 

  • Duval S, Ducluzeau A-L, Nitschke W, Schoepp-Cothenet B (2008) Enzyme phylogenies as markers for the oxidation state of the environment: the case of respiratory arsenate reductase and related enzymes. BMC Evol Biol 8:1–13

    Article  CAS  Google Scholar 

  • Ehara A, Suzuki H, Amachi S (2015) Draft genome sequence of Geobacter sp. strain OR-1, an arsenate-respiring bacterium isolated from Japanese paddy soil. Genome Announc 3:e01478-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Escudero LV, Casamayor EO, Chong G, Pedrós-Alió C, Demergasso C (2013) Distribution of microbial arsenic reduction, oxidation and extrusion genes along a wide range of environmental arsenic concentrations. PLoS One 8:e78890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fauser P, Sanderson H, Hedegaard RV, Sloth JJ, Larsen MM, Krongaard T, Bossi R, Larsen JB (2013) Occurrence and sorption properties of arsenicals in marine sediments. Environ Monit Assess 185:4679–4691

    Article  CAS  PubMed  Google Scholar 

  • Frohne T, Rinklebe J, Diaz-Bone RA, Du Laing G (2011) Controlled variation of redox conditions in a floodplain soil: impact on metal mobilization and biomethylation of arsenic and antimony. Geoderma 160:414–424

    Article  CAS  Google Scholar 

  • Garelick H, Jones H, Dybowska A, Valsami-Jones E (2008) Arsenic pollution sources. Rev Environ Contam Toxicol 197:17–60

    CAS  PubMed  Google Scholar 

  • Garland T (2018) Chapter 23 - Arsenic. In: Gupta RC (ed) Veterinary toxicology (third edition). Academic Press, New York, pp 411–415

    Google Scholar 

  • Gupta RC (2015) Handbook of toxicology of chemical warfare agents. Academic Press, New York

    Google Scholar 

  • Hassan Z, Sultana M, Khan SI, Braster M, Röling WF, Westerhoff HV (2019) Ample arsenite bio-oxidation activity in Bangladesh drinking water wells: a bonanza for bioremediation? Microorganisms 7:246

    Article  CAS  PubMed Central  Google Scholar 

  • Hayakawa T, Kobayashi Y, Cui X, Hirano S (2005) A new metabolic pathway of arsenite: arsenic–glutathione complexes are substrates for human arsenic methyltransferase Cyt19. Arch Toxicol 79:183–191

    Article  CAS  PubMed  Google Scholar 

  • Hedges R, Baumberg S (1973) Resistance to arsenic compounds conferred by a plasmid transmissible between strains of Escherichia coli. J Bacteriol 115:459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinrich-Salmeron A, Cordi A, Brochier-Armanet C, Halter D, Pagnout C, Abbaszadeh-fard E, Montaut D, Seby F, Bertin PN, Bauda P, Arsène-Ploetze F (2011) Unsuspected diversity of arsenite-oxidizing bacteria as revealed by widespread distribution of the aoxB gene in prokaryotes. Appl Environ Microbiol 77:4685–4692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Héry M, Van Dongen B, Gill F, Mondal D, Vaughan D, Pancost R, Polya D, Lloyd J (2010) Arsenic release and attenuation in low organic carbon aquifer sediments from West Bengal. Geobiology 8:155–168

    Article  PubMed  CAS  Google Scholar 

  • Hoeft SE, Lucas F o, Hollibaugh JT, Oremland RS (2002) Characterization of microbial arsenate reduction in the anoxic bottom waters of Mono Lake, California. Geomicrobiol J 19:23–40

    Article  CAS  Google Scholar 

  • Huang J-H (2014) Impact of microorganisms on arsenic biogeochemistry: a review. Water Air Soil Pollut 225:1848

    Article  CAS  Google Scholar 

  • Huang J-H, Hu K-N, Decker B (2011a) Organic arsenic in the soil environment: speciation, occurrence, transformation, and adsorption behavior. Water Air Soil Pollut 219:401–415

    Article  CAS  Google Scholar 

  • Huang J-H, Voegelin A, Pombo SA, Lazzaro A, Zeyer J, Kretzschmar R (2011b) Influence of arsenate adsorption to ferrihydrite, goethite, and boehmite on the kinetics of arsenate reduction by Shewanella putrefaciens strain CN-32. Environ Sci Technol 45:7701–7709

    Article  CAS  PubMed  Google Scholar 

  • Hudek L, Premachandra D, Webster W, Bräu L (2016) Role of phosphate transport system component PstB1 in phosphate internalization by Nostoc punctiforme. Appl Environ Microbiol 82:6344–6356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam F, Pederick R, Gault A, Adams L, Polya D, Charnock J, Lloyd J (2005) Interactions between the Fe (III)-reducing bacterium Geobacter sulfurreducens and arsenate, and capture of the metalloid by biogenic Fe (II). Appl Environ Microbiol 71:8642–8648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito A, Miura J-i, Ishikawa N, Umita T (2012) Biological oxidation of arsenite in synthetic groundwater using immobilised bacteria. Water Res 46:4825–4831

    Article  CAS  PubMed  Google Scholar 

  • Jackson RJ, Binet MR, Lee LJ, Ma R, Graham AI, McLeod CW, Poole RK (2008) Expression of the PitA phosphate/metal transporter of Escherichia coli is responsive to zinc and inorganic phosphate levels. FEMS Microbiol Lett 289:219–224

    Article  CAS  PubMed  Google Scholar 

  • Jain C, Ali I (2000) Arsenic: occurrence, toxicity and speciation techniques. Water Res 34:4304–4312

    Article  CAS  Google Scholar 

  • Jia Y, Huang H, Zhong M, Wang F-H, Zhang L-M, Zhu Y-G (2013) Microbial arsenic methylation in soil and rice rhizosphere. Environ Sci Technol 47:3141–3148

    Article  CAS  PubMed  Google Scholar 

  • Johnson DW, Van Hook RI (2012) Analysis of biogeochemical cycling processes in Walker branch watershed. Springer, Berlin

    Google Scholar 

  • Konefes JL, Mc Gee MK (2001) Old cemeteries, arsenic and health safety. In: Dangerous places: health, safety, and archaeology. Bergin & Garvey, Westport, CA, p 127

    Google Scholar 

  • Krafft T, Macy JM (1998) Purification and characterization of the respiratory arsenate reductase of Chrysiogenes arsenatis. Eur J Biochem 255:647–653

    Article  CAS  PubMed  Google Scholar 

  • Lear G, Song B, Gault A, Polya D, Lloyd J (2007) Molecular analysis of arsenate-reducing bacteria within Cambodian sediments following amendment with acetate. Appl Environ Microbiol 73:1041–1048

    Article  CAS  PubMed  Google Scholar 

  • Lehr CR, Polishchuk E, Radoja U, Cullen WR (2003) Demethylation of methylarsenic species by Mycobacterium neoaurum. Appl Organomet Chem 17:831–834

    Article  CAS  Google Scholar 

  • Li X, Zhang L, Wang G (2014) Genomic evidence reveals the extreme diversity and wide distribution of the arsenic-related genes in Burkholderiales. PLoS One 9:e92236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lim K, Shukor M, Wasoh H (2014) Physical, chemical, and biological methods for the removal of arsenic compounds. Biomed Res Int 2014:503784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Y-F, Walmsley AR, Rosen BP (2006) An arsenic metallochaperone for an arsenic detoxification pump. Proc Natl Acad Sci 103:15617–15622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lloyd JR, Lovley DR (2001) Microbial detoxification of metals and radionuclides. Curr Opin Biotechnol 12:248–253

    Article  CAS  PubMed  Google Scholar 

  • Malasarn D, Keeffe JR, Newman DK (2008) Characterization of the arsenate respiratory reductase from Shewanella sp. strain ANA-3. J Bacteriol 190:135–142

    Article  CAS  PubMed  Google Scholar 

  • McDermott TR, Stolz JF, Oremland RS (2020) Arsenic and the gastrointestinal tract microbiome. Environ Microbiol Rep 12:136–159

    Article  PubMed  Google Scholar 

  • McMurry L, Petrucci RE, Levy SB (1980) Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc Natl Acad Sci 77:3974–3977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng Y-L, Liu Z, Rosen BP (2004) As (III) and Sb (III) uptake by GlpF and efflux by ArsB in Escherichia coli. J Biol Chem 279:18334–18341

    Article  CAS  PubMed  Google Scholar 

  • Mestrot A, Planer-Friedrich B, Feldmann J (2013) Biovolatilisation: a poorly studied pathway of the arsenic biogeochemical cycle. Environ Sci: Processes Impacts 15:1639–1651

    CAS  Google Scholar 

  • Michalke K, Wickenheiser E, Mehring M, Hirner A, Hensel R (2000) Production of volatile derivatives of metal (loid) s by microflora involved in anaerobic digestion of sewage sludge. Appl Environ Microbiol 66:2791–2796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirza BS, Sorensen DL, Dupont RR, McLean JE (2017) New arsenate reductase gene (arrA) PCR primers for diversity assessment and quantification in environmental samples. Appl Environ Microbiol 83:e02725-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Mo J, Xia Y, Wade TJ, Schmitt M, Le XC, Dang R, Mumford JL (2006) Chronic arsenic exposure and oxidative stress: OGG1 expression and arsenic exposure, nail selenium, and skin hyperkeratosis in Inner Mongolia. Environ Health Perspect 114:835–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mobley H, Rosen BP (1982) Energetics of plasmid-mediated arsenate resistance in Escherichia coli. Proc Natl Acad Sci 79:6119–6122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mochizuki H (2019) Arsenic neurotoxicity in humans. Int J Mol Sci 20:3418

    Article  CAS  PubMed Central  Google Scholar 

  • Mohsin H, Asif A, Rehman Y (2019) Anoxic growth optimization for metal respiration and photobiological hydrogen production by arsenic-resistant Rhodopseudomonas and Rhodobacter species. J Basic Microbiol 59:1208–1216

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Jiménez E, Esteban E, Peñalosa JM (2012) The fate of arsenic in soil-plant systems. In: Reviews of environmental contamination and toxicology. Springer, New York, pp 1–37

    Google Scholar 

  • Murphy EA, Aucott M (1998) An assessment of the amounts of arsenical pesticides used historically in a geographical area. Sci Total Environ 218:89–101

    Article  CAS  Google Scholar 

  • Newman DK, Kennedy EK, Coates JD, Ahmann D, Ellis DJ, Lovley DR, Morel FM (1997) Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. Arch Microbiol 168:380–388

    Article  CAS  PubMed  Google Scholar 

  • Novick RP, Roth C (1968) Plasmid-linked resistance to inorganic salts in Staphylococcus aureus. J Bacteriol 95:1335–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oremland RS, Hoeft SE, Santini JM, Bano N, Hollibaugh RA, Hollibaugh JT (2002) Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1. Appl Environ Microbiol, 68(10):4795–4802

    Google Scholar 

  • Páez-Espino D, Tamames J, de Lorenzo V, Cánovas D (2009) Microbial responses to environmental arsenic. Biometals 22(1):117–130

    Google Scholar 

  • Pandey S, Rai R, Rai LC (2015) Biochemical and molecular basis of arsenic toxicity and tolerance in microbes and plants. In: Handbook of arsenic toxicology. Elsevier, New York, pp 627–674

    Chapter  Google Scholar 

  • Plewniak F, Crognale S, Rossetti S, Bertin PN (2018) A genomic outlook on bioremediation: the case of arsenic removal. Front Microbiol 9:820

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiao J-t, Li X-m, Hu M, Li F-b, Young LY, Sun W-m, Huang W, Cui J-h (2018) Transcriptional activity of arsenic-reducing bacteria and genes regulated by lactate and biochar during arsenic transformation in flooded paddy soil. Environ Sci Technol 52:61–70

    Article  CAS  PubMed  Google Scholar 

  • Rahman A (2016) Bioremediation of toxic metals for protecting human health and the ecosystem. Örebro University, Örebro

    Google Scholar 

  • Rahman MA, Hassler C (2014) Is arsenic biotransformation a detoxification mechanism for microorganisms? Aquat Toxicol 146:212–219

    Article  CAS  PubMed  Google Scholar 

  • Rensing C, Rosen B (2009) Heavy metals cycle (arsenic, mercury, selenium, others). Elsevier, New York

    Book  Google Scholar 

  • Saltikov CW, Cifuentes A, Venkateswaran K, Newman DK (2003) The ars detoxification system is advantageous but not required for As (V) respiration by the genetically tractable Shewanella species strain ANA-3. Appl Environ Microbiol 69:2800–2809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santini JM, vanden Hoven RN (2004) Molybdenum-containing arsenite oxidase of the chemolithoautotrophic arsenite oxidizer NT-26. J Bacteriol 186:1614–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saona LA, Valenzuela-Diaz S, Kurth D, Contreras M, Meneses C, Castro-Nallar E, Farias ME (2019) Analysis of co-regulated abundance of genes associated with arsenic and phosphate metabolism in Andean microbial ecosystems. bioRxiv:870428. https://doi.org/10.1101/870428

  • Satyapal G, Rani S, Kumar M, Kumar N (2016) Potential role of arsenic resistant bacteria in bioremediation: current status and future prospects. J Microb Biochem Technol 8:256–258

    Article  CAS  Google Scholar 

  • Sharma S, Kaur J, Nagpal AK, Kaur I (2016) Quantitative assessment of possible human health risk associated with consumption of arsenic contaminated groundwater and wheat grains from Ropar Wetand and its environs. Environ Monit Assess 188:506

    Article  PubMed  CAS  Google Scholar 

  • Shen S, Li X-F, Cullen WR, Weinfeld M, Le XC (2013) Arsenic binding to proteins. Chem Rev 113:7769–7792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silver S, Keach D (1982) Energy-dependent arsenate efflux: the mechanism of plasmid-mediated resistance. Proc Natl Acad Sci 79:6114–6118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silver S, Phung LT (2005a) A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J Ind Microbiol Biotechnol 32:587–605

    Article  CAS  PubMed  Google Scholar 

  • Silver S, Phung LT (2005b) Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl Environ Microbiol 71:599–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slyemi D, Bonnefoy V (2012) How prokaryotes deal with arsenic. Environ Microbiol Rep 4:571–586

    CAS  PubMed  Google Scholar 

  • Smith AH, Ercumen A, Yuan Y, Steinmaus CM (2009) Increased lung cancer risks are similar whether arsenic is ingested or inhaled. J Expo Sci Environ Epidemiol 19:343–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinmaus C, Yuan Y, Kalman D, Rey OA, Skibola CF, Dauphine D, Basu A, Porter KE, Hubbard A, Bates MN (2010) Individual differences in arsenic metabolism and lung cancer in a case-control study in Cordoba, Argentina. Toxicol Appl Pharmacol 247:138–145

    Article  CAS  PubMed  Google Scholar 

  • Stolz JF, Basu P, Santini JM, Oremland RS (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107–130

    Article  CAS  PubMed  Google Scholar 

  • Su S, Zeng X, Li L, Duan R, Bai L, Li A, Wang J, Jiang S (2012) Arsenate reduction and methylation in the cells of Trichoderma asperellum SM-12F1, Penicillium janthinellum SM-12F4, and Fusarium oxysporum CZ-8F1 investigated with X-ray absorption near edge structure. J Hazard Mater 243:364–367

    Article  CAS  PubMed  Google Scholar 

  • Tamaki S, Frankenberger WT (1992) Environmental biochemistry of arsenic. In: Reviews of environmental contamination and toxicology. Springer, Cham, pp 79–110

    Chapter  Google Scholar 

  • Tsuchiya T, Ehara A, Kasahara Y, Hamamura N, Amachi S (2019) Expression of genes and proteins involved in arsenic respiration and resistance in dissimilatory arsenate-reducing Geobacter sp. strain OR-1. Appl Environ Microbiol 85:e00763–e00719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhyay MK, Shukla A, Yadav P, Srivastava S (2019) A review of arsenic in crops, vegetables, animals and food products. Food Chem 276:608–618

    Article  CAS  PubMed  Google Scholar 

  • Vrotsos E, Martinez R, Pizzolato J, Martinez A, Sriganeshan V (2014) Arsenic exposure as a cause of persistent absolute eosinophilia. JMED Res 2014:230675

    Google Scholar 

  • Wang S, Zhao X (2009) On the potential of biological treatment for arsenic contaminated soils and groundwater. J Environ Manag 90:2367–2376

    Article  CAS  Google Scholar 

  • Wang Q, Xiong D, Zhao P, Yu X, Tu B, Wang G (2011a) Effect of applying an arsenic-resistant and plant growth–promoting rhizobacterium to enhance soil arsenic phytoremediation by Populus deltoides LH05-17. J Appl Microbiol 111:1065–1074

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Ma LQ, Rathinasabapathi B, Cai Y, Liu YG, Zeng GM (2011b) Mechanisms of efficient arsenite uptake by arsenic hyperaccumulator Pteris vittata. Environ Sci Technol 45:9719–9725

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Kojima H, Fukui M (2014) Complete genomes of freshwater sulfur oxidizers Sulfuricella denitrificans skB26 and Sulfuritalea hydrogenivorans sk43H: genetic insights into the sulfur oxidation pathway of betaproteobacteria. Syst Appl Microbiol 37:387–395

    Article  CAS  PubMed  Google Scholar 

  • Williams JW, Silver S (1984) Bacterial resistance and detoxification of heavy metals. Enzym Microb Technol 6:530–537

    Article  CAS  Google Scholar 

  • Willsky GR, Malamy MH (1980) Characterization of two genetically separable inorganic phosphate transport systems in Escherichia coli. J Bacteriol 144:356–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J (2005) A comparative study of arsenic methylation in a plant, yeast and bacterium. Doctor of Philosophy thesis, School of. Biological Sciences, University of Wollongong

    Google Scholar 

  • Wu G, Huang L, Jiang H, Peng Y e, Guo W, Chen Z, She W, Guo Q, Dong H (2017) Thioarsenate formation coupled with anaerobic arsenite oxidation by a sulfate-reducing bacterium isolated from a hot spring. Front Microbiol 8:1336

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang H-C, Rosen BP (2016) New mechanisms of bacterial arsenic resistance. Biom J 39:5–13

    Google Scholar 

  • Yang H-C, Cheng J, Finan TM, Rosen BP, Bhattacharjee H (2005) Novel pathway for arsenic detoxification in the legume symbiont Sinorhizobium meliloti. J Bacteriol 187:6991–6997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H-C, Fu H-L, Lin Y-F, Rosen BP (2012) Pathways of arsenic uptake and efflux. Curr Top Membr 69:325–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Wu S, Lilley RM, Zhang R (2015) The diversity of membrane transporters encoded in bacterial arsenic-resistance operons. PeerJ 3:e943

    Article  PubMed  PubMed Central  Google Scholar 

  • Ying S, Damashek J, Fendorf S, Francis C (2015) Indigenous arsenic (V)-reducing microbial communities in redox-fluctuating near-surface sediments of the M ekong D elta. Geobiology 13:581–587

    Article  CAS  PubMed  Google Scholar 

  • Yoshinaga M, Rosen BP (2014) AC· As lyase for degradation of environmental organoarsenical herbicides and animal husbandry growth promoters. Proc Natl Acad Sci 111:7701–7706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshinaga M, Cai Y, Rosen BP (2011) Demethylation of methylarsonic acid by a microbial community. Environ Microbiol 13:1205–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshinaga-Sakurai K, Shinde R, Rodriguez M, Rosen BP, El-Hage N (2020) Comparative cytotoxicity of inorganic arsenite and methylarsenite in human brain cells. ACS Chem Neurosci 11:743–751

    Article  CAS  PubMed  Google Scholar 

  • Yu G, Sun D, Zheng Y (2007) Health effects of exposure to natural arsenic in groundwater and coal in China: an overview of occurrence. Environ Health Perspect 115:636–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zargar K, Hoeft S, Oremland R, Saltikov CW (2010) Identification of a novel arsenite oxidase gene, arxA, in the haloalkaliphilic, arsenite-oxidizing bacterium Alkalilimnicola ehrlichii strain MLHE-1. J Bacteriol 192:3755–3762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zargar K, Conrad A, Bernick DL, Lowe TM, Stolc V, Hoeft S, Oremland RS, Stolz J, Saltikov CW (2012) ArxA, a new clade of arsenite oxidase within the DMSO reductase family of molybdenum oxidoreductases. Environ Microbiol 14:1635–1645

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, Ma JF, Meharg A, McGrath S (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y-G, Yoshinaga M, Zhao F-J, Rosen BP (2014) Earth abides arsenic biotransformations. Annu Rev Earth Planet Sci 42:443–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y-G, Xue X-M, Kappler A, Rosen BP, Meharg AA (2017) Linking genes to microbial biogeochemical cycling: lessons from arsenic. Environ Sci Technol 51:7326–7339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zobrist J, Dowdle PR, Davis JA, Oremland RS (2000) Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environ Sci Technol 34:4747–4753

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasir Rehman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohsin, H., Shafique, M., Rehman, Y. (2021). Genes and Biochemical Pathways Involved in Microbial Transformation of Arsenic. In: Kumar, N. (eds) Arsenic Toxicity: Challenges and Solutions. Springer, Singapore. https://doi.org/10.1007/978-981-33-6068-6_15

Download citation

Publish with us

Policies and ethics