Skip to main content

Neuropathological Findings in Drug Abusers

  • Chapter
  • First Online:
Neuropathology of Drug Abuse
  • 515 Accesses

Abstract

Older autopsy studies of drug deaths predominantly focused on cerebrovascular complications or the consequences of hypoxic-ischemic conditions which were considered as unspecific secondary findings. However, subsequent systematic neuropathological studies have shown profound morphological CNS alterations. The major findings encompassed hypoxic-ischemic-independent neuronal loss, reduction of GFAP-positive astrocytes, widespread areas of demyelination and axonal damage with concomitant microglia activation, disturbances of various constituents of the BBB as well as reactive and degenerative cerebrovascular alterations.

These findings demonstrate that drugs of abuse initiate a cascade of interacting toxic, vascular, and hypoxic factors which finally result in widespread disturbances within the complex network of CNS cell-to-cell interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott NJ (2013) Blood–brain barrier structure and function and the challenges for CNS drug delivery. J Inherit Metab Dis 36:437–449

    Article  CAS  PubMed  Google Scholar 

  • Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37:13–25

    Article  CAS  PubMed  Google Scholar 

  • Abdul Muneer PM, Alikunju S, Szlachetka AM, Murrin LC, Haorah J (2011) Impairment of brain endothelial glucose transporter by methamphetamine causes blood-brain barrier dysfunction. Mol Neurodegener 6:23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adelman LS, Aronson SM (1969) The neuropathologic complications of narcotic drug addiction. Bull NY Acad Med 45:225–234

    CAS  Google Scholar 

  • Andersen SN, Skullerud K (1999) Hypoxic/ischaemic brain damage, especially pallidal lesions, in heroin addicts. Forensic Sci Int 102:51–59

    Article  CAS  PubMed  Google Scholar 

  • Anderson CE, Tomlinson GS, Pauly B, Brannan FW, Chiswick A, Brack-Werner R, Simmonds P, Bell JE (2003) Relationship of Nef-positive and GFAP-reactive astrocytes to drug use in early and late HIV infection. Neuropathol Appl Neurobiol 29:378–388

    Article  CAS  PubMed  Google Scholar 

  • Anthony IC, Ramage SN, Carnie FW, Simmonds P, Bell JE (2005) Does drug abuse alter microglial phenotype and cell turnover in the context of advancing HIV infection? Neuropathol Appl Neurobiol 31:325–338

    Article  CAS  PubMed  Google Scholar 

  • Ballabh P, Braun A, Nedergaard M (2004) The blood-brain barrier: an overview. Structure, regulation, and clinical implications. Neurobiol Dis 16:1–13

    Article  CAS  PubMed  Google Scholar 

  • Barr JL, Brailoiu GC, Abood ME, Rawls SM, Unterwald EM, Brailoiu E (2020) Acute cocaine administration alters permeability of blood-brain barrier in freely-moving rats—evidence using miniaturized fluorescence microscopy. Drug Alcohol Depend 206:107637

    Article  CAS  PubMed  Google Scholar 

  • Bayer R, Franke H, Ficker C, Richter M, Lessig R, Büttner A, Weber M (2015) Influence of drug addiction on human adult hippocampal neurogenesis: effects on developmental stages of precursor cells. Drug Alcohol Depend 156:139–149

    Article  PubMed  Google Scholar 

  • Bell JE, Arango JC, Robertson R, Brettle RP, Leen C, Simmonds P (2002) HIV and drug misuse in the Edinburgh cohort. J Acquir Immune Defic Syndr 31(Suppl. 2):S35–S42

    Article  CAS  PubMed  Google Scholar 

  • Bell JE, Arango JC, Anthony IC (2006) Neurobiology of multiple insults: HIV-1-associated brain disorders in those who use illicit drugs. J Neuroimmune Pharmacol 1:182–191

    Article  PubMed  Google Scholar 

  • Bernstein H-G, Trübner K, Krebs P, Dobrowolny H, Bielau H, Steiner J, Bogerts B (2014) Increased densities of nitric oxide synthase expressing neurons in the temporal cortex and the hypothalamic paraventricular nucleus of polytoxicomanic heroin overdose victims: possible implications for heroin neurotoxicity. Acta Histochem 116:182–190

    Article  CAS  PubMed  Google Scholar 

  • Boronat MA, Olmos G, García-Sevilla JA (1998) Attenuation of tolerance to opioid-induced antinociception and protection against morphine-induced decrease of neurofilament proteins by idazoxan and other I2-imidazoline ligands. Br J Pharmacol 125:175–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boronat MA, García-Fuster MJ, García-Sevilla JA (2001) Chronic morphine induces up-regulation of the pro-apoptotic Fas receptor and down-regulation of the anti-apoptotic Bcl-2 oncoprotein in rat brain. Br J Pharmacol 134:1263–1270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Büttner A (2019) Neurohistopathologie des Drogentodes. Rechtsmedizin 29:179–184

    Article  Google Scholar 

  • Büttner A, Weis S (2006) Neuropathological alterations in drug abusers: the involvement of neurons, glial, and vascular systems. Forensic Sci Med Pathol 2:115–126

    Article  PubMed  PubMed Central  Google Scholar 

  • Büttner A, Kroehling C, Mall G, Penning R, Weis S (2005) Alterations of the vascular basal lamina in the cerebral cortex in drug abuse: a combined morphometric and immunohistochemical investigation. Drug Alcohol Depend 79:63–70

    Article  CAS  PubMed  Google Scholar 

  • Büttner A, Rohrmoser K, Mall G, Penning R, Weis S (2006) Widespread axonal damage in the brain of drug abusers as evidenced by accumulation of ß-amyloid precursor protein (ß-APP): an immunohistochemical investigation. Addiction 101:1339–1346

    Article  PubMed  Google Scholar 

  • Cadet JL, Krasnova IN (2009) Molecular bases of methamphetamine-induced neurodegeneration. Int Rev Neurobiol 88:101–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell VA (2001) Tetrahydrocannabinol-induced apoptosis of cultured cortical neurones is associated with cytochrome c release and caspase-3 activation. Neuropharmacology 40:702–709

    Article  CAS  PubMed  Google Scholar 

  • Carvalho M, Carmo H, Costa VM, Capela JP, Pontes H, Remião F, Carvalho F, de Lourdes BM (2012) Toxicity of amphetamines: an update. Arch Toxicol 86:1167–1231

    Article  CAS  PubMed  Google Scholar 

  • Castagnoli N Jr, Castagnoli KP (1997) Metabolic bioactivation reactions potentially related to drug toxicities. NIDA Res Monogr 173:85–105

    CAS  PubMed  Google Scholar 

  • Chambers RA (2013) Adult hippocampal neurogenesis in the pathogenesis of addiction and dual diagnosis disorders. Drug Alcohol Depend 130:1–12

    Article  PubMed  Google Scholar 

  • Chow BW, Gu C (2015) The molecular constituents of the blood–brain barrier. Trends Neurosci 38:598–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connor MD, Lammie GA, Bell JE, Warlow CP, Simmonds P, Brettle RP (2000) Cerebral infarction in adult AIDS patients: observations from the Edinburgh HIV autopsy cohort. Stroke 31:2117–2126

    Article  CAS  PubMed  Google Scholar 

  • Davidson C, Gow AJ, Lee TH, Ellinwood EH (2001) Methamphetamine neurotoxicity: necrotic and apoptotic mechanisms and relevance to human abuse and treatment. Brain Res Rev 36:1–22

    Article  CAS  PubMed  Google Scholar 

  • Dietrich JB (2009) Alteration of blood-brain barrier function by methamphetamine and cocaine. Cell Tissue Res 336:385–392

    Article  CAS  PubMed  Google Scholar 

  • Dudvarski Stankovic N, Teodorczyk M, Ploen R, Zipp F, Schmidt MHH (2016) Microglia–blood vessel interactions: a double-edged sword in brain pathologies. Acta Neuropathol 131:347–363

    Article  PubMed  Google Scholar 

  • Egleton RD, Abbruscato T (2014) Drug abuse and the neurovascular unit. Adv Pharmacol 71:451–480

    Article  CAS  PubMed  Google Scholar 

  • Eisch AJ, Harburg GC (2006) Opiates, psychostimulants, and adult hippocampal neurogenesis: insights for addiction and stem cell biology. Hippocampus 16:271–286

    Article  CAS  PubMed  Google Scholar 

  • Erickson MA, Banks WA (2018) Neuroimmune axes of the blood-brain barriers and blood-brain interfaces: bases for physiological regulation, disease states, and pharmacological interventions. Pharmacol Rev 70:278–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrer-Alcón M, García-Sevilla JA, Jaquet PE, La Harpe R, Riederer BM, Walzer C, Guimón J (2000) Regulation of nonphosphorylated and phosphorylated forms of neurofilament proteins in the prefrontal cortex of human opioid addicts. J Neurosci Res 61:338–349

    Article  PubMed  Google Scholar 

  • Filley CM, Kleinschmidt-DeMasters BK (2001) Toxic leukoencephalopathy. N Engl J Med 345:425–432

    Article  CAS  PubMed  Google Scholar 

  • Fisher D, Gamieldien K, Mafunda PS (2015) Methamphetamine is not toxic but disrupts the cell cycle of blood-brain barrier endothelial cells. Neurotox Res 28:8–17

    Article  CAS  PubMed  Google Scholar 

  • Gan X, Zhang L, Berger O, Stins MF, Way D, Taub DD, Chang SL, Kim KS, House SD, Weinand M, Witte M, Graves MC, Fiala M (1999) Cocaine enhances brain endothelial adhesion molecules and leukocyte migration. Clin Immunol 91:68–76

    Article  CAS  PubMed  Google Scholar 

  • García-Sevilla JA, Ventayol P, Busquets X, La Harpe R, Walzer C, Guimón J (1997a) Marked decrease of immunolabelled 68 kDa neurofilament (NF-L) proteins in brains of opiate addicts. Neuroreport 8:1561–1570

    Article  PubMed  Google Scholar 

  • Geibprasert S, Gallucci M, Krings T (2010) Addictive illegal drugs: structural neuroimaging. AJNR Am J Neuroradiol 31:803–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonçalves J, Baptista S, Silva AP (2014) Psychostimulants and brain dysfunction: a review of the relevant neurotoxic effects. Neuropharmacology 87:135–149

    Article  CAS  PubMed  Google Scholar 

  • Gosztonyi G, Schmidt V, Nickel R, Rothschild MA, Camacho S, Siegel G, Zill E, Pauli G, Schneider V (1993) Neuropathologic analysis of postmortal brain samples of HIV-seropositive and -seronegative i.v. drug addicts. Forensic Sci Int 62:101–105

    Article  CAS  PubMed  Google Scholar 

  • Gray F, Lescs MC, Keohane C, Paraire F, Marc B, Durigon M, Gherardi R (1992) Early brain changes in HIV infection: neuropathological study of 11 HIV seropositive, non-AIDS cases. J Neuropathol Exp Neurol 51:177–185

    Article  CAS  PubMed  Google Scholar 

  • Harlan RE, Garcia MM (1998) Drugs of abuse and immediate-early genes in the forebrain. Mol Neurobiol 16:221–267

    Article  CAS  PubMed  Google Scholar 

  • Hawkins BT, Davis TP (2005) The blood–brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173–185

    Article  CAS  PubMed  Google Scholar 

  • Hu S, Sheng WS, Lokensgard JR, Peterson PK (2020) Morphine induces apoptosis of human microglia and neurons. Neuropharmacology 42:829–836

    Article  Google Scholar 

  • Jiang Y, Yang W, Zhou Y, Ma L (2003) Up-regulation of murine double minute clone 2 (MDM2) gene expression in rat brain after morphine, heroin, and cocaine administrations. Neurosci Lett 352:216–220

    Article  CAS  PubMed  Google Scholar 

  • Kettenmann H, Hanisch U, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553

    Article  CAS  PubMed  Google Scholar 

  • Kierdorf K, Masuda T, Costa Jordão MJ, Prinz M (2019) Macrophages at CNS interfaces: ontogeny and function in health and disease. Nat Rev Neurosci 20:547–562

    Article  CAS  PubMed  Google Scholar 

  • Kimelberg HK (2010) Functions of mature mammalian astrocytes: a current view. Neuroscientist 16:79–106

    Article  CAS  PubMed  Google Scholar 

  • Kiryakova T (2016) Forensic study of the morphological changes in the brain tissue of deceased with history of drug abuse. Sci Technol 6:125–131

    Google Scholar 

  • Kitamura O, Takeichi T, Wang EL, Tokunaga I, Ishigami A, Kubo S (2010) Microglial and astrocytic changes in the striatum of methamphetamine abusers. Legal Med 12:57–62

    Article  CAS  PubMed  Google Scholar 

  • Kiyatkin EA, Sharma HS (2019) Leakage of the blood-brain barrier followed by vasogenic edema as the ultimate cause of death induced by acute methamphetamine overdose. Int Rev Neurobiol 146:189–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kousik SM, Napier TC, Carvey PM (2012) The effects of psychostimulant drugs on blood brain barrier function and neuroinflammation. Front Pharmacol 3:121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacagnina MJ, Rivera PD, Bilbo SD (2017) Glial and neuroimmune mechanisms as critical modulators of drug use and abuse. Neuropsychopharmacology 42:156–177

    Article  CAS  PubMed  Google Scholar 

  • Lane-Ladd SB, Pineda J, Boundy VA, Pfeuffer T, Krupinski J, Aghajanian GK, Nestler EJ (1997) CREB (cAMP response element-binding protein) in the locus coeruleus: biochemical, physiological, and behavioral evidence for a role in opiate dependence. J Neurosci 17:7890–7901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YW, Hennig B, Yao J, Toborek M (2001) Methamphetamine induces AP-1 and NF-kappaB binding and transactivation in human brain endothelial cells. J Neurosci Res 66:583–591

    Article  CAS  PubMed  Google Scholar 

  • Lee CT, Boeshore KL, Wu C, Becker KG, Errico SL, Mash DC, Freed WJ (2016) Cocaine promotes primary human astrocyte proliferation via JNK-dependent up-regulation of cyclin A2. Restor Neurol Neurosci 34:965–976

    CAS  PubMed  PubMed Central  Google Scholar 

  • Linker KE, Cross SJ, Leslie FM (2019) Glial mechanisms underlying substance use disorders. Eur J Neurosci 50:2574–2589

    Article  CAS  PubMed  Google Scholar 

  • Little KY, Ramssen E, Welchko R, Volberg V, Roland CJ, Cassin B (2009) Decreased brain dopamine cell numbers in human cocaine users. Psychiatry Res 168:173–180

    Article  CAS  PubMed  Google Scholar 

  • Makrigeorgi-Butera M, Hagel C, Laas R, Püschel K, Stavrou D (1996) Comparative brain pathology of HIV-seronegative and HIV-infected drug addicts. Clin Neuropathol 15:324–329

    CAS  PubMed  Google Scholar 

  • Mao J, Sung M, Ji R-R, Lim G (2002) Neuronal apoptosis associated with morphine tolerance: evidence for an opioid-induced neurotoxic mechanism. J Neurosci 22:7650–7661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins T, Baptista S, Gonçalves J, Leal E, Milhazes N, Borges F, Ribeiro CF, Quintela O, Lendoiro E, López-Rivadulla M, Ambrósio AF, Silva AP (2011) Methamphetamine transiently increases the blood–brain barrier permeability in the hippocampus: role of tight junction proteins and matrix metalloproteinase-9. Brain Res 1411:28–40

    Article  CAS  PubMed  Google Scholar 

  • Metter D (1978) Pathologisch-anatomische Befunde bei Heroinvergiftung. Beitr Gerichtl Med 36:433–437

    CAS  PubMed  Google Scholar 

  • Miguel-Hidalgo JJ (2009) The role of glial cells in drug abuse. Curr Drug Abuse Rev 2:76–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore S, Thanos S (1996) The concept of microglia in relation to central nervous system disease and regeneration. Prog Neurobiol 48:441–460

    Article  CAS  PubMed  Google Scholar 

  • Moretti M, Belli G, Morini L, Monti MC, Osculati AMM, Visonà SD (2019) Drug abuse-related neuroinflammation in human postmortem brains: an immunohistochemical approach. J Neuropathol Exp Neurol 78:1059–1065

    Article  CAS  PubMed  Google Scholar 

  • Müller UJ, Truebner K, Schiltz K, Kuhn J, Mawrin C, Dobrowolny H, Bernstein H-G, Bogerts B, Steiner J (2015) Postmortem volumetric analysis of the nucleus accumbens in male heroin addicts: implications for deep brain stimulation. Eur Arch Psychiatry Clin Neurosci 265:647–653

    Article  PubMed  Google Scholar 

  • Müller UJ, Schiltz K, Mawrin C, Dobrowolny H, Frodl T, Bernstein H-G, Bogerts B, Truebner K, Steiner J (2018) Total hypothalamic volume is reduced in postmortem brains of heroin addicts. Eur Arch Psychiatry Clin Neurosci 268:243–248

    Article  PubMed  Google Scholar 

  • Müller F, Brändle R, Liechti ME, Borgwardt S (2019a) Neuroimaging of chronic MDMA (“ecstasy”) effects: a meta-analysis. Neurosci Biobehav Rev 96:10–20

    Article  CAS  PubMed  Google Scholar 

  • Neuwelt EA (2004) Mechanisms of disease: the blood brain barrier. Neurosurgery 54:131–142

    Article  PubMed  Google Scholar 

  • Niu F, Liao K, Hu G, Sil S, Callen S, Guo M, Yang L, Buch S (2019) Cocaine-induced release of CXCL10 from pericytes regulates monocyte transmigration into the CNS. J Cell Biol 218:700–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norenberg MD (1994) Astrocyte responses to CNS injury. J Neuropathol Exp Neurol 53:213–220

    Article  CAS  PubMed  Google Scholar 

  • O’Callaghan JP, Sriram K (2005) Glial fibrillary acidic protein and related glial proteins as biomarkers of neurotoxicity. Exp Opin Drug Saf 4:433–442

    Article  Google Scholar 

  • O’Shea E, Urrutia A, Green AR, Colado MI (2014) Current preclinical studies on neuroinflammation and changes in blood–brain barrier integrity by MDMA and methamphetamine. Neuropharmacology 87:125–134

    Article  CAS  PubMed  Google Scholar 

  • Obermeier B, Daneman R, Ransohoff RM (2013) Development, maintenance and disruption of the blood-brain barrier. Nat Med 19:1584–1596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oehmichen M, Meißner C, Reiter A, Birkholz M (1996) Neuropathology in non-human immunodeficiency virus-infected drug addicts: hypoxic brain damage after chronic intravenous drug abuse. Acta Neuropathol 91:642–646

    Article  CAS  PubMed  Google Scholar 

  • Oldendorf WH (1974) Blood-brain barrier permeability to drugs. Annu Rev Pharmacol 14:239–248

    Article  CAS  Google Scholar 

  • Pardridge WM (2012) Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab 32:1959–1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson J, Richter RW (1979) Addiction to opiates: neurologic aspects. In: Vinken PJ, Bruyn GW (eds) Handbook of clinical neurology. Intoxications of the nervous system, part II. North-Holland Publishing Company, Amsterdam, pp p365–p400

    Google Scholar 

  • Pearson J, Challenor YB, Baden M, Richter RW (1972a) The neuropathology of heroin addiction. J Neuropathol Exp Neurol 31:165–166

    Google Scholar 

  • Pearson J, Baden MB, Richter RW (1975) Neuronal depletion in the globus pallidus of heroin addicts. Drug Alcohol Depend 1:349–356

    Article  Google Scholar 

  • Pekny M, Pekna M, Messing A, Steinhäuser C, Lee J-M, Parpura V, Hol EM, Sofroniew MV, Verkhratsky A (2016) Astrocytes: a central element in neurological diseases. Acta Neuropathol 131:323–345

    Article  CAS  PubMed  Google Scholar 

  • Persidsky Y, Ramirez SH, Haorah J, Kanmogne GD (2006) Blood-brain barrier: structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol 1:223–236

    Article  PubMed  Google Scholar 

  • Pimentel E, Sivalingam K, Doke M, Samikkannu T (2020) Effects of drugs of abuse on the blood-brain barrier: a brief overview. Front Neurosci 14:513

    Article  PubMed  PubMed Central  Google Scholar 

  • Prinz M, Tay TL, Wolf Y, Jung S (2014) Microglia: unique and common features with other tissue macrophages. Acta Neuropathol 128:319–331

    Article  PubMed  Google Scholar 

  • Ramirez SH, Potula R, Fan S, Eidem T, Papugani A, Reichenbach N, Dykstra H, Weksler BB, Romero IA, Couraud PO, Persidsky Y (2009) Methamphetamine disrupts blood-brain barrier function by induction of oxidative stress in brain endothelial cells. J Cereb Blood Flow Metab 29:1933–1945

    Article  CAS  PubMed  Google Scholar 

  • Ransohoff RM, Khoury JE (2016) Microglia in health and disease. Cold Spring Harb Perspect Biol 8:a020560

    Article  CAS  PubMed Central  Google Scholar 

  • Sajja RK, Rahman S, Cucullo L (2016) Drugs of abuse and blood-brain barrier endothelial dysfunction: a focus on the role of oxidative stress. J Cereb Blood Flow Metab 36:539–554

    Article  CAS  PubMed  Google Scholar 

  • Sastre M, Ventayol P, García-Sevilla JA (1996) Decreased density of I2-imidazoline receptors in the postmortem brains of heroin addicts. Neuroreport 7:509–512

    Article  CAS  PubMed  Google Scholar 

  • Sekine Y, Ouchi Y, Sugihara G, Takei N, Yoshikawa E, Nakamura K, Iwata Y, Tsuchiya KJ, Suda S, Suzuki K, Kawai M, Takebayashi K, Yamamoto S, Matsuzaki H, Ueki T, Mori N, Gold MS, Cadet JL (2008) Methamphetamine causes microglial activation in the brains of human abusers. J Neurosci 28:5756–5761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma HS, Ali SF (2006) Alterations in blood-brain barrier function by morphine and methamphetamine. Ann N Y Acad Sci 1074:198–224

    Article  CAS  PubMed  Google Scholar 

  • Sharma HS, Muresanu D, Sharma A, Patnaik R (2009) Cocaine-induced breakdown of the blood-brain barrier and neurotoxicity. Int Rev Neurobiol 88:297–334

    Article  CAS  PubMed  Google Scholar 

  • Sofroniew MV (2015) Astrogliosis. Cold Spring Harb Perspect Biol 7:a020420

    Article  CAS  PubMed Central  Google Scholar 

  • Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    Article  PubMed  Google Scholar 

  • Sorensen RG, Lawrence DMP (2009) Glial cells and drugs of abuse in the nervous system. Drug Alcohol Depend 102:166–169

    Article  Google Scholar 

  • Stadlin A, Lau JWS, Szeto YK (1998) A selective regional response of cultured astrocytes to methamphetamine. Ann N Y Acad Sci 844:108–121

    Article  CAS  PubMed  Google Scholar 

  • Stoll G, Jander S (1999) The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol 58:233–247

    Article  CAS  PubMed  Google Scholar 

  • Stumm G, Schlegel J, Schäfer T, Würz C, Mennel HD, Krieg J-C, Vedder H (1999) Amphetamines induce apoptosis and regulation of bcl-x splice variants in neocortical neurons. FASEB J 1999:1065–1072

    Article  Google Scholar 

  • Thomas WE (1992) Brain macrophages: evaluation of microglia and their functions. Brain Res Brain Res Rev 17:61–74

    Article  CAS  PubMed  Google Scholar 

  • Thomas DM, Dowgiert J, Geddes TJ, Francescutti-Verbeem DM, Liu X, Kuhn DM (2004) Microglial activation is a pharmacologically specific marker for the neurotoxic amphetamines. Neurosci Lett 367:349–354

    Article  CAS  PubMed  Google Scholar 

  • Thurgur H, Pinteaux E (2019) Microglia in the neurovascular unit: blood–brain barrier–microglia interactions after central nervous system disorders. Neuroscience 405:55–67

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson GS, Simmonds P, Busuttil A, Chiswick A, Bell JE (1999) Upregulation of microglia in drug users with and without pre-symptomatic HIV infection. Neuropathol Appl Neurobiol 25:369–379

    Article  CAS  PubMed  Google Scholar 

  • Tong J, Fitzmaurice P, Furukawa Y, Schmunk GA, Wickham DJ, Ang LC, Sherwin A, McCluskey T, Boileau I, Kish SJ (2014) Is brain gliosis a characteristic of chronic methamphetamine use in the human? Neurobiol Dis 67:107–118

    Article  CAS  PubMed  Google Scholar 

  • Turowski P, Kenny B-A (2015) The blood-brain barrier and methamphetamine: open sesame? Front Neurosci 9:156

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Ishikawa T, Michiue T, Zhu B-L, Guan D-W, Maeda H (2014) Molecular pathology of brain matrix metalloproteases, claudin 5, and aquaporins in forensic autopsy cases with special regard to methamphetamine intoxication. Int J Legal Med 128:469–474

    Article  PubMed  Google Scholar 

  • Weber M, Scherf N, Kahl T, Braumann U-D, Scheibe P, Kuska J-P, Bayer R, Büttner A, Franke H (2013) Quantitative analysis of astrogliosis in drug dependent humans. Brain Res 1500:72–87

    Article  CAS  PubMed  Google Scholar 

  • Weis S, Büttner A (2017) Neurotoxicology and drug-related disorders. In: Kovacs G, Alafuzoff I (eds) Handbook of clinical neurology, Neuropathology, vol 145. Elsevier, Amsterdam, pp 181–192

    Google Scholar 

  • Yamamoto BK, Raudensky J (2008) The role of oxidative stress, metabolic compromise, and inflammation in neuronal injury produced by amphetamine-related drugs of abuse. J Neuroimmune Pharmacol 3:203–217

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Gong Q, Feng X, Zhang D, Quan L (2017) Astrocytic clasmatodendrosis in the cerebral cortex of methamphetamine abusers. Forensic Sci Res 2:139–144

    Article  PubMed  PubMed Central  Google Scholar 

  • Zlokovic BV (2008) The blood-brain barrier in health and chronic degenerative disorders. Neuron 57:178–201

    Article  CAS  PubMed  Google Scholar 

  • Zogopoulos P, Theocharis S, Kotakidis N, Patsouris E, Agapitos E (2016) Drug abuse and perivascular changes of the brain. J Clin Exp Pathol 6:3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Büttner, A. (2021). Neuropathological Findings in Drug Abusers. In: Neuropathology of Drug Abuse. Springer, Cham. https://doi.org/10.1007/978-3-030-60531-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60531-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60530-8

  • Online ISBN: 978-3-030-60531-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics