Skip to main content

Advertisement

Log in

Alteration of blood-brain barrier function by methamphetamine and cocaine

  • Mini Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The integrity of the blood-brain barrier (BBB) plays an important role in maintaining a safe neural microenvironment in the brain. Loss of BBB integrity has been recognized as a major cause of profound brain alterations. Psychoactive drugs such as methamphetamine (METH) or cocaine are well-known drugs of abuse that can alter the permeability of the BBB via various mechanisms. In addition, the neurotoxicity of METH is well documented, and alterations in BBB function can contribute to this toxicity. A great deal of effort has been devoted to understanding the cellular and molecular mechanisms of the action of these drugs in the central nervous system. However, only a few investigations have focused on the effects of METH and cocaine on BBB function. The aim of this short review is to summarize our present knowledge of this subject.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Axt KJ, Molliver ME (1991) Immunocytochemical evidence from methamphetamine-induced serotoninergic axon loss in rat brain. Synapse 9:302–313

    Article  PubMed  CAS  Google Scholar 

  • Banks WA, Kastin AJ, Akerstrom V (1997) HIV-1 protein gp120 crosses the blood-brain barrier: role of adsorptive endocytosis. Life Sci 61:L119–L125

    Article  Google Scholar 

  • Banks WA, Freed EO, Wolf KM, Robinson SM, Franko M, Kumar VB (2001) Transport of human immunodeficiency virus type 1 pseudoviruses across the blood-brain barrier: role of envelope protein and adsorptive endocytosis. J Virol 75:4681–4691

    Article  PubMed  CAS  Google Scholar 

  • Barroso-Moguel R, Villeda-Hernandez J, Mendez-Armenta M, Rios C (1999) Brain capillary lesions produced by cocaine in rats. Toxicol Lett 16:9–14

    Google Scholar 

  • Bowyer JF, Ali S (2006) High doses of methamphetamine that cause disruption of the blood-brain barrier in limbic regions produce extensive neuronal degeneration in mouse hippocampus. Synapse 60:521–532

    Article  PubMed  CAS  Google Scholar 

  • Bowyer JF, Robinson B, Ali SF, Schmued LC (2008) Neurotoxic-related changes in tyrosine hydroxylase, microglia, myelin, and the blood-brain barrier in the caudate-putamen from acute methamphetamine exposure. Synapse 62:193–204

    Article  PubMed  CAS  Google Scholar 

  • Brown JM, Yamamoto BK (2003) Effects of amphetamines on mitochondrial function: role of free radicals and oxidative stress. Pharmacol Ther 99:45–53

    Article  PubMed  CAS  Google Scholar 

  • Cadet JL, Brannock C (1998) Free radicals and the pathobiology of brain dopamine systems. Neurochem Int 32:117–131

    Article  PubMed  CAS  Google Scholar 

  • Cadet JL, Jayanthi S, Deng X (2003) Speed kills: cellular and molecular bases of methamphetamine-induced nerve terminal degeneration and neuronal apoptosis. FASEB J 17:1775–1788

    Article  PubMed  CAS  Google Scholar 

  • Carman CV, Springer TA (2004) A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. J Cell Biol 167:377–388

    Article  PubMed  CAS  Google Scholar 

  • Carman CV, Springer TA (2008) Trans-cellular migration: cell-cell contacts get intimate. Curr Opin Cell Biol 20:533–540

    Article  PubMed  CAS  Google Scholar 

  • Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605

    PubMed  CAS  Google Scholar 

  • Chang SL, Bersig J, Felix B, Fiala M, House SD (2000) Chronic cocaine alters hemodynamics and leukocyte-endothelial interactions in rat mesenteric venules. Life Sci 66:2357–2369

    Article  PubMed  CAS  Google Scholar 

  • Chao J, Nestler EJ (2004) Molecular neurobiology of drug addiction. Annu Rev Neurosci 11:113–132

    Google Scholar 

  • Cecchelli R, Berezowski V, Lundquist S, Culot M, Renftel M, Dehouck MP, Fenart L (2007) Modelling of the blood-brain barrier in drug discovery and development. Nat Rev Drug Discov 6:650–661

    Article  PubMed  CAS  Google Scholar 

  • Cunha-Oliveira T, Rego AC, Oliveira CR (2008) Cellular and molecular mechanisms involved in the neurotoxicity of opioid and psychostimulant drugs. Brain Res Rev 58:192–208

    Article  PubMed  CAS  Google Scholar 

  • Dejana E (2004) Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Biol 5:261–270

    Article  PubMed  CAS  Google Scholar 

  • Dejana E (2006) The transcellular railway: insight into leukocyte diapedesis. Nat Cell Biol 8:5–107

    Article  Google Scholar 

  • Deng X, Wang Y, Chou J, Cadet JL (2001) Methamphetamine causes widespread apoptosis in the mouse brain: evidence from using an improved TUNEL histochemical method. Mol Brain Res 93:64–69

    Article  PubMed  CAS  Google Scholar 

  • Dermietzel R, Spray DC, Needergard M (2006) Blood-brain barriers. From ontogeny to artificial interfaces. Wiley, Weinheim

    Google Scholar 

  • Dhillon NK, Peng F, Bokhari S, Callen S, Shi SH, Zhu X, Kim KJ, Buch SJ (2008) Cocaine-mediated alteration in tight junction expression and modulation of CCL2/CCR2 axis across the blood-brain barrier: implications for HIV-dementia. J Neuroimmune Pharmacol 3:52–56

    Article  PubMed  Google Scholar 

  • Di Stefano M, Gray F, Leitner T, Chiodi F (1996) Analysis of ENV V3 sequences from HIV-1 infected brain indicates restrained virus expression throughout the disease. J Med Virol 49:41–48

    Article  PubMed  CAS  Google Scholar 

  • Edinger AL, Mankowski JL, Doranz BJ, Margulies BJ, Lee B, Rucker J, Sharron M, Hoffman TL, Berson JF, Zink MC, Hirsch VM, Clements JE, Doms RW (1997) CD-4 independent, CCR5-dependent infection of brain capillary endothelial cells by a neurovirulent simian immunodeficiency virus strain. Proc Natl Acad Sci USA 94:14742–14747

    Article  PubMed  CAS  Google Scholar 

  • Engelhardt B, Wolburg H (2004) Transendothelial migration of leukocytes: through the front door or around the side of the house. Eur J Immunol 34:2955–2963

    Article  PubMed  CAS  Google Scholar 

  • Eugenin EA, Osiecki K, Lopez L, Goldstein H, Calderon TM, Berman JW (2006) CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood-brain barrier: a potential mechanism of HIV-CNS invasion and neuroAIDS. J Neurosci 26:1098–1106

    Article  PubMed  CAS  Google Scholar 

  • Falangola MF, Hanly A, Galvao-Castro B, Petito CK (1995) HIV infection of human choroid plexus: a possible mechanism of viral entry into the CNS. J Neuropathol Exp Neurol 54:497–503

    Article  PubMed  CAS  Google Scholar 

  • Fiala MD, Looney DJ, Stins M, Way DD, Zhang L, Gan X, Chiapelli F, Schweitzer ES, Shapshak P, Weinand M, Graves MC, Witte M, Kim KS (1997) TNF-alpha opens a paracellular route for HIV-1 invasion across the blood-brain barrier. Mol Med 3:553–564

    PubMed  CAS  Google Scholar 

  • Fiala MD, Gan XH, Zhang L, House SD, Newton T, Graves MC, Shapshak P, Stins M, Kim KS, Chang SL (1998) Cocaine enhances monocyte migration across the blood-brain barrier. Cocaine’s connection to AIDS dementia and vasculitis? Adv Exp Med Biol 437:199–205

    PubMed  CAS  Google Scholar 

  • Fleckenstein AE, Wilkins DG, Gibb JW, Hanson GR (1997) Interaction between hyperthermia and oxygen radical formation in the 5-hydroxytryptaminergic response to a single methamphetamine administration. J Pharmacol Exp Ther 283:281–285

    PubMed  CAS  Google Scholar 

  • Förster C (2008) Tight junctions and the modulation of barrier function in disease. Histochem Cell Biol 130:55–70

    Article  PubMed  Google Scholar 

  • Frey K, Kilbourn M, Robinson T (1997) Reduced striatal vesicular monoamine transporters after neurotoxic but not after behaviourally-sensitizing doses of methamphetamine. Eur J Pharmacol 334:273–279

    Article  PubMed  CAS  Google Scholar 

  • Frey BN, Valvassori SS, Gomes KM, Martins MR, Dal-Pizzol F, Kapczinski F, Quevedo J (2006) Increased oxidative stress in submitochondrial particles after amphetamine exposure. Brain Res 1097:224–229

    Article  PubMed  CAS  Google Scholar 

  • Gan X, Zhang L, Berger O, Stins MF, Way D, Taub DD, Chang SL, Kim KS, House SD, Weinand M, Witte M, Graves MC, Fiala M (1999) Cocaine enhances brain endothelial adhesion molecules and leukocyte migration. Clin Immunol 91:68–76

    Article  PubMed  CAS  Google Scholar 

  • Graham DG, Tiffany SM, Bell WR Jr, Gutknecht WF (1978) Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro. Mol Pharmacol 4:644–653

    Google Scholar 

  • Green-Sadan T, Kuttner Y, Lublin-Tennenbaum T, Kinor N, Boguslavsky Y, Margel S, Yadid G (2005) Glial cell line-derived neurotrophic factor-conjugated nanoparticles suppress acquisition of cocaine self-administration in rats. Exp Neurol 194:97–105

    Article  PubMed  CAS  Google Scholar 

  • Hidalgo A, Frenette P (2007) Leukocyte podosomes sense their way through the endothelium. Immunity 26:753–755

    Article  PubMed  CAS  Google Scholar 

  • Hill JM, Mervis RF, Avidor R, Moody TW, Brenneman DE (1993) HIV envelope protein-induced neuronal damage and retardation of behavioral development in rat neonates. Brain Res 603:222–233

    Article  PubMed  CAS  Google Scholar 

  • Hordijk PL (2006) Endothelial signalling events during leukocyte transmigration. FEBS J 273:4408–4415

    Article  PubMed  CAS  Google Scholar 

  • Hurwitz AA, Berman JW, Lyman WD (1994) The role of the blood-brain barrier in HIV infection of the central nervous system. Adv Neuroimmunol 4:249–256

    Article  PubMed  CAS  Google Scholar 

  • Jeliazkova-Mecheva VV, Hymer WC, Nicholas NC, Bobilya DJ (2006) Brief heat affects the permeability and thermotolerance of an in vitro blood-brain barrier model of porcine brain microvascular endothelial cells. Microvasc Res 71:108–116

    Article  PubMed  CAS  Google Scholar 

  • Jones RT (1997) Pharmacokinetics of cocaine: considerations when assessing cocaine use by urinalysis. NIDA Res Monogr 175:221–234

    PubMed  CAS  Google Scholar 

  • Kiyatkin EA, Brown PL, Sharma HS (2007) Brain edema and breakdown of the blood-brain barrier during methamphetamine intoxication: critical role of brain hyperthermia. Eur J Neurosci 26:1242–1253

    Article  PubMed  Google Scholar 

  • Liu NQ, Lossinsky AS, Popik W, Li X, Gujuluva C, Kriederman B, Roberts J, Pushkarsky T, Bukrinsky M, Witte M, Weinand M, Fiala M (2002) Human immunodeficiency virus type 1 enters brain microvascular endothelia by macropinocytosis dependent on lipid rafts and the mitogen-activated protein kinase signaling pathway. J Virol 76:6689–6700

    Article  PubMed  CAS  Google Scholar 

  • Lossinsky AS, Pluta R, Song MJ, Badmajew V, Moretz RC, Wisniewski HM (1991) Mechanisms of inflammatory cell attachment in chronic relapsing experimental allergic encephalomyelitis: a scanning and high-voltage electron microscopic study of the injured mouse blood-brain barrier. Microvasc Res 41:299–310

    Article  PubMed  CAS  Google Scholar 

  • Lum H, Roebuck K (2001) Oxidant stress and endothelial cell dysfunction. Am J Physiol Cell Physiol 280:C719–C741

    PubMed  CAS  Google Scholar 

  • Mahajan SD, Aalinkeel R, Sykes DE, Reynolds JL, Bindukumar B, Adal A, Qi M, Toh J, Xu G, Prasad PN, Schwartz SA (2008) Methamphetamine alters blood-brain barrier permeability via the modulation of tight junction expression: implication for HIV-1 neuropathogenesis in the context of drug abuse. Brain Res 1203:133–148

    Article  PubMed  CAS  Google Scholar 

  • Manninger SP, Muldoon LL, Nesbit G, Murillo T, Jacobs PM, Neuwelt EA (2005) An exploratory study of ferumoxtran-10 nanoparticles as a blood-brain barrier imaging agent targeting phagocytic cells in CNS inflammatory lesions. Am J Neuroradiol 26:2290–2300

    PubMed  Google Scholar 

  • Marsh M (1984) The entry of enveloped viruses into cells by endocytosis. Biochem J 218:1–10

    PubMed  CAS  Google Scholar 

  • Mendelson J, Uemura N, Harris D, Nath RP, Fernandez E, Jacob P III, Everhart ET, Jones RT (2006) Human pharmacology of methamphetamine stereoisomers. Clin Pharmacol Therapeut 80:403–420

    Article  CAS  Google Scholar 

  • Millán J, Hewlett L, Glyn M, Toomre D, Clark P, Ridley A (2006) Lymphocyte transcellular migration occurs through recruitment of endothelial ICAM-1 to caveola- and F-actin-rich domains. Nat Cell Biol 8:113–123

    Article  PubMed  Google Scholar 

  • Moses AV, Bloom FE, Pauza CD, Nelson JA (1993) Human immunodeficiency virus infection of human brain capillary endothelial cells occurs via a CD4/galactosylceramide-independent mechanism. Proc Natl Acad Sci USA 90:10474–10478

    Article  PubMed  CAS  Google Scholar 

  • Neuwelt E, Abbott NJ, Abrey L, Banks WA, Blakley B, Davis T, Engelhardt B, Grammas P, Nedergaard M, Nutt J, Pardridge W, Rosenberg GA, Smith Q, Drewes LR (2008) Strategies to advance translational research into brain barriers. Lancet Neurol 7:84–96

    Article  PubMed  CAS  Google Scholar 

  • Nieminen M, Henttinen T, Merinen M, Martilla-Ichihara F, Eriksson JE, Jalkanen S (2006) Vimentin function in lymphocyte adhesion and transcellular migration. Nat Cell Biol 8:156–162

    Article  PubMed  CAS  Google Scholar 

  • Nottet HS, Persidsky Y, Sasseville VG, Nukuna AN, Bock P, Zhai QH, Sharer LR, McComb RD, Swindells S, Soderland C, Gendelmann HE (1996) Mechanisms for the transendothelial migration of HIV-1-infected monocytes in brain. J Immunol 156:1284–1295

    PubMed  CAS  Google Scholar 

  • Pan W, Xiang S, Tu H, Kastin A (2006) Cytokines interact with the blood-brain barrier. In: Dermietzel R, Spray DC, Needergard M (eds) Blood-brain barriers. From ontogeny to artificial interfaces. Wiley, Weinheim, pp 247–264

    Google Scholar 

  • Pardridge WM (2007) Blood-brain barrier delivery. Drug Discov Today 12:54–61

    Article  PubMed  CAS  Google Scholar 

  • Petri B, Bixel MG (2006) Molecular events during leukocyte diapedesis. FEBS J 273:4399–4407

    Article  PubMed  CAS  Google Scholar 

  • Ricaurte GA, Guillery RW, Seiden LS, Schuster CR, Moore RY (1982) Dopamine nerve terminal degeneration produced by high doses of methylamphetamine in the rat brain. Brain Res 2351:93–103

    Article  Google Scholar 

  • Ritz MC, Boja JW, Grigoriadis D, Zaczek R, Carroll FI, Lewis AH, Kuhar MJ (1990) [3H] WIN 35,065-2: a ligand for cocaine receptors in striatum. J Neurochem 55:823–827

    Article  Google Scholar 

  • Saunders NR, Ek CJ, Habgood MD, Dziegielewska K (2008) Barriers in the brain: a renaissance? Trends Neurosci 831:279–286

    Article  Google Scholar 

  • Saxon AJ, Oreskovich MR, Brkanac Z (2005) Genetic determinants of addiction to opioids and cocaine. Harv Rev Psychiatry 13:218–232

    Article  PubMed  Google Scholar 

  • Schinder AF, Olson EC, Spitzer NC, Montal M (1996) Mitochondrial dysfunction is a primary event in glutamate neurotoxicity. J Neurosci 16:6125–6133

    PubMed  CAS  Google Scholar 

  • Schreibelt G, Kooij G, Reijerkerk A, Doorn R van, Gringhuis SI, Weksler BB, Romero IA, Couraud P-O, Piontek J, Blasig IE, Dijkstra CD, Ronken E, Vries HE de (2007) Reactive oxygen species alter brain endothelial tight junction dynamics via RhoA, PI3 kinase, and PKB signaling. FASEB J 21:322–330

    Article  Google Scholar 

  • Sharma HS, Ali SF (2006) Alterations in blood-brain barrier function by morphine and methamphetamine. Ann N Y Acad Sci 1074:198–224

    Article  PubMed  CAS  Google Scholar 

  • Sharma HS, Sjoquist P-O, Ali SF (2007) Drugs of abuse-induced hyperthermia, blood-brain barrier dysfunction and neurotoxicity: neuroprotective effects of a new antioxidant compound H-290/51. Curr Pharm Des 13:1903–1923

    Article  PubMed  CAS  Google Scholar 

  • Van der Goes A, Wouters D, Van der Pol SMA, Huizinga R, Ronken E, Adamson P, Greenwood J, Dijkstra CD, Vries HE de (2001) Reactive oxygen species enhance the migration of monocytes across the blood-brain barrier in vitro. FASEB J 15:1852–1854

    PubMed  Google Scholar 

  • Wagner GC, Ricaurte GA, Seiden LS, Schuster CR, Miller RJ, Westley J (1980) Long-lasting depletions of striatal dopamine uptake sites following repeated administration of methamphetamine. Brain Res 181:151–160

    Article  PubMed  CAS  Google Scholar 

  • Wolburg H, Lippoldt A, Ebnet K (2006) Tight junctions and the blood-brain barrier. In: Gonzales-Mariscal L (ed) Tight junctions. Landes Bioscience/Springer Science, Georgetown New York, pp 175–195

    Chapter  Google Scholar 

  • Yamamoto BK, Zhu W (1998) The effects of methamphetamine on the production of free radicals and oxidative stress. J Pharmacol Exp Ther 287:107–114

    PubMed  CAS  Google Scholar 

  • Zhang L, Looney D, Taub D, Chang SL, Way D, Witte MH, Graves MC, Fiala M (1998) Cocaine opens the blood-brain barrier to HIV-1 invasion. J Neurovirol 4:619–626

    Article  PubMed  CAS  Google Scholar 

  • Zlokovic BV (2008) The blood-brain barrier in health and chronic degenerative disorders. Neuron 57:178–201

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Thanks are due to Anne-Claire Dietrich for the illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. B. Dietrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dietrich, J.B. Alteration of blood-brain barrier function by methamphetamine and cocaine. Cell Tissue Res 336, 385–392 (2009). https://doi.org/10.1007/s00441-009-0777-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-009-0777-y

Keywords

Navigation