Skip to main content

Wax Ester and Triacylglycerol Inclusions

  • Chapter
  • First Online:
Bacterial Organelles and Organelle-like Inclusions

Part of the book series: Microbiology Monographs ((MICROMONO,volume 34))

Abstract

Neutral lipids comprising wax esters (WEs) and triacylglycerols (TAGs) occur frequently as energy and carbon stores in several groups of bacteria. Biosynthesis of these lipids are promoted in cells grown during unbalanced growth, if an essential nutrient is limiting growth and if a surplus of a carbon source is available. They are mobilized under conditions of carbon and energy deficiency. In general, neutral lipids are stored as insoluble inclusions with different shapes and sizes inside the cytoplasm, depending on the lipid, strain, and culture conditions. The structure, morphology, and biogenesis of these inclusions are the main topics of this chapter. A short overview of the metabolic pathways leading to the biosynthesis of TAGs and WEs and the enzymes involved therein is given. Parallels to and differences from the structure and formation of polyhydroxyalkanoate granules in bacteria and neutral lipid bodies in multicellular organisms such as plants and animals and unicellular eukaryotes are described. The biotechnological potential of microbial lipids to satisfy the need for fuels is also shortly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abell BM, Holbrook LA, Abenes M, Murphy DJ, Hills MJ, Moloney MM (1997) Role of the proline knot motif in oleosin endoplasmic reticulum topology and oil body targeting. Plant Cell 9:1481–1493

    CAS  PubMed  PubMed Central  Google Scholar 

  • Akao T, Kusaka T (1976) Solubilization of diglyceride acyltransferase from membrane of Mycobacterium smegmatis. J Biochem (Tokyo) 80:723–728

    Article  CAS  Google Scholar 

  • Alvarez HM (2016) Triacylglycrol and wax ester-accumulating machinery in prokaryotes. Biochemie 120:28–39

    Article  CAS  Google Scholar 

  • Alvarez HM, Steinbüchel A (2002) Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol 60:367–376

    Article  CAS  PubMed  Google Scholar 

  • Alvarez HM, Mayer F, Fabritius D, Steinbüchel A (1996) Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 165:377–386

    Article  CAS  PubMed  Google Scholar 

  • Alvarez HM, Pucci OH, Steinbüchel A (1997a) Lipid storage compounds in marine bacteria. Appl Microbiol Biotechnol 47:132–139

    Article  CAS  Google Scholar 

  • Alvarez HM, Kalscheuer R, Steinbüchel A (1997b) Accumulation of storage lipids in species of Rhodococcus and Nocardia and effects of inhibitors and polyethylene glycol. Fett/Lipid 99:239–246

    Article  CAS  Google Scholar 

  • Alvarez HM, Kalscheuer R, Steinbüchel A (2000) Accumulation and mobilization of storage lipids by Rhodococcus opacus PD630 and Rhodococcus ruber NCIMB40126. Appl Microbiol Biotechnol 47:132–139

    Article  Google Scholar 

  • Alvarez HM, Souto MF, Viale A, Pucci OH (2001) Biosynthesis of fatty acids and triacyl-glycerols by 2,6,10,14-tetramethyl pentadecane-grown cells of Nocardia globerula 432. FEMS Microbiol Lett 200:195–200

    Article  CAS  PubMed  Google Scholar 

  • Alvarez HM, Luftmann H, Silva A, Cesari AC, Viale A, Wältermann M, Steinbüchel A (2002) Identification of phenyldecanoic acid as a constituent of triacylglycerols and wax ester produced by Rhodococcus opacus PD630. Microbiology 148:1407–1412

    Article  CAS  PubMed  Google Scholar 

  • Alvarez HM, Herrero OM, Silva RA, Hernandez MA, Lanfranconi MP, Villalba MS (2019) Insights into the metabolism of oleaginous Rhodococcus spp. Appl Environ Microbiol 85:e00498–e00419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Athenstaedt K, Daum G (1997) Biosynthesis of phosphatidic acid in lipid particles and endoplasmic reticulum of Saccharomyces cerevisiae. J Bacteriol 179:7611–7616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Athenstaedt K, Daum G (2003) YMR313c/TGL3 encodes a novel triacylglycerol lipase located in lipid particles of Saccharomyces cerevisiae. J Biol Chem 278:23317–23323

    Article  CAS  PubMed  Google Scholar 

  • Athenstaedt K, Daum G (2006) The life cycle of neutral lipids: synthesis, storage and degradation. Cell Mol Sci 63:1355–1369

    Article  CAS  Google Scholar 

  • Bacchin P, Robertiello A, Viglia A (1974) Identification of n-decane oxidation products in Corynebacterium cultures by combined gas chromatography mass spectrometry. Appl Microbiol 28:737–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbero P, Buell E, Zulley S, Pfeffer SR (2001) TIP47 is not a component of lipid droplets. J Biol Chem 276:25324–25335

    Article  Google Scholar 

  • Barksdale L, Kim KS (1977) Mycobacterium. Bacteriol Rev 41:217–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanchette-Mackie EI, Dwyer NK, Barber T, Coxey RA, Takeda T, Rondinone CM, Theodorakis JL, Grennberg AS, Londos C (1995) Perilipin is located on the surface-layer of intracellular lipid droplets in adipocytes. J Lipid Res 36:1211–1226

    CAS  PubMed  Google Scholar 

  • Boulton CA, Ratledge C (1981) Correlation of lipid accumulation in yeasts with possession of ATP:citrate lyase. J Gen Microbiol 102:33–43

    Google Scholar 

  • Bouvier-Navé P, Benveniste P, Oelker P, Sturley SL, Schaller H (2000) Expression in yeast and tobacco of plant cDNAs encoding acyl CoA:diacylglycerol acyltransferase. Eur J Biochem 267:85–96

    Article  PubMed  Google Scholar 

  • Bredemeier R, Hulsch R, Metzger JO, Berthe-Corti L (2003) Submersed culture production of extracellular wax esters by the marine bacterium Fundibacter jadensis. Mar Biotechnol 5:579–583

    Article  CAS  Google Scholar 

  • Bresan S, Sznajder A, Hauf W, Forchhammer K, Pfeiffer D, Jendrossek D (2016) Polyhydroxyalkanoate (PHA) granules have no phospholipids. Scientific Reports 6:26612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryn K, Jantzen E, Bovre K (1977) Occurrence and patterns of waxes in Neisseriaceae. J Gen Microbiol 102:33–43

    Article  CAS  PubMed  Google Scholar 

  • Cases S, Smith SJ, Zheng YW, Myers HM, Lear SR, Sande E, Novak S, Collins C, Welch CB, Lusis AJ, Erickson SK, Farese RV (1998) Identification of a gene encoding as acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc Natl Acad Sci USA 95:13018–13023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cases S, Stone SJ, Zhou P, Yen E, Tow B, Lardizabal KD, Voelker T, Farese RV (2001) Cloning of DGAT2, a second mammalian diacylglycerol acyltransferase, and related family members. J Biol Chem 276:38870–38876

    Article  CAS  PubMed  Google Scholar 

  • Chang TY, Chang CCY, Cheng D (1997) Acyl-coenzyme A: cholesterol acyltransferase. Annu Rev Biochem 66:613–638

    Article  CAS  PubMed  Google Scholar 

  • Chen JCF, Lin RH, Huang AHC, Tzen JTC (1997) Cloning, expression and isoform classification of a minor oleosin in sesame oil bodies. J Biochem (Tokyo) 122:819–824

    Article  CAS  Google Scholar 

  • Cherian S, Ryu SB, Cornish K (2019) Natural rubber biosynthesis in plants, the rubber transferase complex, and metabolic engineering progress and prospects. Plant Biotechnol J 17:2041–2061

    Article  PubMed  PubMed Central  Google Scholar 

  • Christensen H, Garton NJ, Horobin RW, Minnikin DE, Barer MR (1999) Lipid domains of mycobacteria studied fluorescent molecular probes. Mol Microbiol 31:1561–1572

    Article  CAS  PubMed  Google Scholar 

  • Christiansen K (1978) Triacylglycerol synthesis in lipid particles of baker’s yeast (Saccharomyces cerevisiae). Biochem Biophys Acta 530:78–90

    Article  CAS  PubMed  Google Scholar 

  • Clausen MK, Christia K, Jensen PK, Behke O (1974) Isolation of lipid particles from bakers-yeast. FEBS Lett 43:176–179

    Article  CAS  PubMed  Google Scholar 

  • Coleman J (1990) Characterization of Escherichia coli cells deficient in 1-acyl-sn-glycerol-3-phosphate acyltransferase activity. J Biol Chem 265:17215–17221

    Article  CAS  PubMed  Google Scholar 

  • Dahlquist A, Stahl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S (2000) Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci USA 97:6487–6492

    Article  Google Scholar 

  • Daniel J, Deb C, Dubey VS, Sirakova TD, Abomoelak B, Morbidoni HR, Kolattukudy PE (2004) Induction of a novel class of diacylglycerol acyltransferases in Mycobacterium tuberculosis as it goes into a dormancy-like state of culture. J Bacteriol 186:5017–5030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Andrès C, Espuny MJ, Robert M, Mercadè ME, Manresa A, Guinea J (1991) Cellular lipid accumulation by Pseudomonas aeruginosa 44T1. Appl Microbiol Biotechnol 35:813–816

    Article  Google Scholar 

  • Dewitt S, Ervin JL, Howesorchison D, Dalietos D, Neidleman SL, Geigert J (1982) Saturated and unsaturated wax esters produced by Acinetobacter sp. HO1-N grown on C16-C20 n-alkanes. J Am Oil Chem Soc 59:69–74

    Article  CAS  Google Scholar 

  • Ding Y, Yang L, Zhang SY, Wang YL, Du J, Pu G, Peng G, Chen Y, Zhang HN, Yu JH, Hang HY, Wu P, Yang FQ, Yang HY, Steinbüchel A, Liu PS (2012) Identification of the major functional proteins of prokaryotic lipid droplets. J Lip Res 53:399–411

    Article  CAS  Google Scholar 

  • Elbahloul Y, Steinbüchel A (2010) Pilol-scale production of fatty acid ethyl esters by an engineered Escherichia coli strain harboring the p(Microdiesel) plasmid. Appl Environ Microbiol 76:4560–4565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ervin JL, Geigert J, Neidleman SL, Wadsworth J (1984) Substrate-dependent and growth temperature dependent changes in the wax ester compositions produced by Acinetobacter sp. HO1-N. In: Ratledge C, Dawson P, Rattray L (eds) Biotechnology of the oil and fats industry. American Oil Chemists Society, Champaign, pp 217–222

    Google Scholar 

  • Fixter LM, Fewson CA (1974) Accumulation of waxes by Acinetobacter calcoaceticus NCIB-8250. Biochem Soc Trans 2:944–945

    Article  CAS  Google Scholar 

  • Fixter LM, McCormack JG (1976) Effect of growth conditions on wax-content of various strains of Acinetobacter. Biochem Soc Trans 4:504–505

    Article  CAS  PubMed  Google Scholar 

  • Fixter LM, Nagi M, McCormack JG, Fewson CA (1986) Structure, distribution and function of wax esters in Acinetobacter calcoaceticus. J Gen Microbiol 132:3147–3157

    CAS  Google Scholar 

  • Frentzen M (1996) Acyltransferases from basic science to modified seed oils. Fett/Lipid 100:161–166

    Article  Google Scholar 

  • Frey-Wyssling A, Muhlethaler K, Grieshaber E (1963) Origin of spherosomes in plant cells. J Ultrastruct Res 8:506–516

    Article  Google Scholar 

  • Galili G, Sengupta-Gopalan C, Ceriotti A (1998) The endoplasmic reticulum of plant cells and its role in protein maturation and biogenesis of oil bodies. Plant Mol Biol 38:1–19

    Article  CAS  PubMed  Google Scholar 

  • Gallagher IHC (1971) Occurrence of waxes in Acinetobacter. J Gen Microbiol 68:245–247

    Article  CAS  PubMed  Google Scholar 

  • Hammerson F (1985) Histology: color atlas of microscopic anatomy, 2nd edn. Urban and Schwarzenberg, Baltimore

    Google Scholar 

  • Harwood JL (1994) Lipid metabolism. In: Gunstone FD, Harwood JL, Padley FB (eds) The lipid handbook. Chapman and Hall, London, pp 605–664

    Google Scholar 

  • Hauschild P, Röttig A, Madkour MH, Al Ansari AM, Almakisha NH, Steinbüchel A (2017) Lipid accumulation in prokaryotic microorganisms from arid habitats. Appl Microbiol Biotechnol 71:942–952

    Google Scholar 

  • Hetzler S, Steinbüchel A (2013) Establishment of cellulose utilization for lipid production in Rhodococcus opacus PD630. Appl Environ Microbiol 79:3122–3125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hills MJ, Watson MD, Murphy DJ (1993) Targeting of oleosins to the oil bodies of oilseed rape (Brassica napus L.). Planta 189:24–29

    Article  CAS  PubMed  Google Scholar 

  • Hobbs PJ, Hills MJ (1999) Expression and characterization of diacylglycerol acyltransferase from Arabidopsis thaliana in insect cell cultures. FEBS Lett 452:145–149

    Article  CAS  PubMed  Google Scholar 

  • Hope HW, Moll R, Schwetlick J, Rackwitz HR, Keenan T (1998) Adipophilin is a specific marker of lipid accumulation in diverse cell types and diseases. Cell Tissue Res 294:309–321

    Article  Google Scholar 

  • Hoskisson PA, Hobbs G, Sharples GP (2001) Antibiotic production, accumulation of intracellular carbon reserves, and sporulation in Micromonospora echinospora (ATCC 15837). Can J Microbiol 47:148–152

    Article  CAS  PubMed  Google Scholar 

  • Ichihara K (1982) Lipid-metabolism in safflower/formation of oleosomes in maturing safflower seeds. Agric Biol Chem 46:1767–1773

    CAS  Google Scholar 

  • Icho T, Raetz CR (1983) Multiple genes for membrane-bound phosphatases in Escherichia coli and their action on phospholipid precursors. J Bacteriol 153:722–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishige T, Tani A, Takabe K, Kawasaki K, Sakai Y, Kato N (2002) Wax ester production from n-alkanes by Acinetobacter sp. strain M-1: ultrastructure of cellular inclusions and role of acyl coenzyme A reductase. Appl Environ Microb 68:1192–1195

    Article  CAS  Google Scholar 

  • Ishige T, Tani A, Sakai JR, Kato N (2003) Wax ester production by bacteria. Cur Opin Microbiol 6:244–250

    Article  CAS  Google Scholar 

  • Jendrossek D (2005) Fluorescence microscopical investigation of poly(3-hydroxybutyrate) granule formation in bacteria. Biomacromolecules 6:598-603.

    Google Scholar 

  • Jendrossek D (2020) Carbonosomes. In Jendrossek D (ed) Bacterial organelles and organelle-like inclusions. Springer Heidelberg

    Google Scholar 

  • Jendrossek D, Pfeiffer D (2014) New insights in the formation of polyhydroxyalkanoate granules (carbonosomes) and novel functions of poly(3-hydroxybutyrate). Environ Microbiol 16:2357–2373

    Article  CAS  PubMed  Google Scholar 

  • Jossek R, Reichelt R, Steinbüchel A (1998) In vitro biosynthesis of poly(3-hydroxybutyric acid) by using purified poly(hydroxyalkanoic acid) synthase of Chromatium vinosum. Appl Microbiol Biotechnol 49:258–266

    Article  CAS  PubMed  Google Scholar 

  • Juanssilfero AB, Kahar P, Amza RL, Miyamoto N, Otsuka H, Matsumoto H, Kihira C, Thontowi A, Yopi OC (2018) Selection of oleaginous yeasts capable of high lipid accumulation during challenges from inhibitory chemical compounds. Biochem Eng J 137:182–191

    Article  CAS  Google Scholar 

  • Jurasek L, Marchessault RH (2004) Polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha cells: a computer simulation. Appl Microbiol Biotechnol 64:611–617

    Article  CAS  PubMed  Google Scholar 

  • Kalantari F, Bergeron JJM, Nilsson T (2010) Biogenesis of lipid droplets – how cells get fatter. Mol Membr Biol 27:462–468

    Article  CAS  PubMed  Google Scholar 

  • Kalscheuer R, Wältermann M, Steinbüchel A (1999) Biosynthese und Speicherung von Triglyceriden und Wachsen in Bakterien. In: Biokonversion nachwachsender Rohstoffe 15. Landwirtschaftsverlag Münster, Münster, pp 253–261

    Google Scholar 

  • Kalscheuer R, Wältermann M, Alvarez HM, Steinbüchel A (2001) Preparative isolation of lipid inclusions from Rhodococcus opacus and Rhodococcus ruber and identification of granule-associated proteins. Arch Microbiol 177:20–28

    Article  CAS  PubMed  Google Scholar 

  • Kalscheuer R, Uthoff S, Luftmann H, Steinbüchel A (2003) In vitro and in vivo biosynthesis of wax diesters by an unspecific bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase from Acinetobacter calcoaceticus ADP1. Eur J Lipid Sci Technol 105:578–584

    Article  CAS  Google Scholar 

  • Kalscheuer R, Stöveken T, Luftmann H, Malkus U, Reichelt R, Steinbüchel A (2006a) Neutral lipid biosynthesis in engineered Escherichia coli: Jojoba oil-like wax esters and fatty acid butyl esters. Appl Environ Microbiol 72:1373–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalscheuer R, Steinb퐩chel A (2003) A novel bifunctional wax ester synthase/acyl-CoA:diacylglycerol acyltransferase mediates wax ester and triacylglycerol biosynthesis in Acinetobacter calcoaceticus (italize) ADP1. J Biol Chem 278:8075-8082.

    Google Scholar 

  • Kalscheuer R, Stoelting T, Steinbüchel A (2006b) Microdiesel: Escherichia coli engineered for fuel production. Microbiology (SGM) 152:2529–2536

    Article  CAS  Google Scholar 

  • Kalscheuer R, Stöveken T, Steinbüchel A (2007) Engineered microorganisms for sustainable production of diesel fuel and other oleochemicals from renewable plant biomass. Int Sugar J 109:16–19

    CAS  Google Scholar 

  • Koval’schuk LP, Donets AP, Razumovskii PN (1973) Lipid biosynthesis by actinomycetes cultivated on different media. Mikrobiologiya Int Ed 42:567–571

    Google Scholar 

  • Lacey DJ, Wellner N, Beaudoin F, Napier NA, Shewry PR (1998) Secondary structure of oleosins in oil bodies isolated from seeds of safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.). Biochem J 334:469–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lardizabal KD, Metz JG, Sakamoto T, Hutton WC, Pollard MR, Lassner MW (2000) Purification of a jojoba embryo wax synthase, cloning of its cDNA, and production of high levels of wax in seeds of transgenic Arabidopsis. Plant Physiol 122:645–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leber R, Zinser E, Zellnig G, Paltauf F, Daum G (1994) Characterization of lipid particles of the yeast. Yeast 10:1421–1428

    Article  CAS  PubMed  Google Scholar 

  • Leber R, Landl K, Zinser E, Ahorn A, Spok A, Kohlwein SD, Turnowsky F, Daum G (1998) Dual localization of squalene epoxidase, Erg1p, in yeast reflect a relationship between endoplasmic reticulum and lipid particles. Mol Biol Cell 9:375–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehner R, Kuksis A (1996) Biosynthesis of triacylglycerols. Prog Lipid Res 35:169–201

    Article  CAS  PubMed  Google Scholar 

  • Leman J (1997) Oleaginous microorganisms: an assessment of the potential. Adv Appl Microbiol 43:195–243

    Article  CAS  PubMed  Google Scholar 

  • Lennen RM, Pfleger BF (2013) Microbial production of fatty acid-derived fuels and chemicals. Curr Opin Biotechnol 24:1044–1053

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Ying Y, Zhao Y, Mundy DJ, Zhu M, Anderson RG (2004) Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles in membrane traffic. J Biol Chem 279:3787–3792

    Article  CAS  PubMed  Google Scholar 

  • Loer DS, Herman EM (1993) Cotranslational integration of soybean (Glycine max) oil body membrane-protein oleosin into microsomal membranes. Plant Physiol 101:993–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Londos C, Brasaemle DL, Gruia-Gray J, Servetnik DA, Schultz CJ, Levin DM, Kimmel AR (1995) Perilipin – unique proteins associated with intracellular neutral lipid droplets in adipocytes and steroidogenic cells. Biochem Soc Trans 23:611–615

    Article  CAS  PubMed  Google Scholar 

  • Londos C, Brasaemle DL, Schultz CJ, Segrest JP, Kimmel AR (1999) Perilipins, ADRP, and other proteins that associate with intracellular neutral lipid droplets in animal cells. Semin Cell Dev Biol 10:51–58

    Article  CAS  PubMed  Google Scholar 

  • Lu XY, Gruia-Gray J, Copeland NG, Gilbert DJ, Jenkins NA, Londos C, Kimmel AR (2001) The murine perilipin gene: the lipid droplet-associated perilipins derive from tissue-specific, mRNA splice variants and define a gene of ancient origin. Mamm Genome 12:741–749

    Article  CAS  PubMed  Google Scholar 

  • Makula RA, Lockwood PJ, Finnerty WR (1975) Comparative analysis of lipids of Acinetobacter species grown on hexadecane. J Bacteriol 121:303–312

    Article  Google Scholar 

  • Manilla-Perez E, Lange AB, Hetzler S, Steinbüchel A (2010) Occurrence, production, and export of lipophilic compounds by hydrocarbonoclastic marine bacteria and their potential use to produce bulk chemicals from hydrocarbons. Appl Microbiol Biotechnol 86:1693–1706

    Article  CAS  PubMed  Google Scholar 

  • Meng X, Yang JM, Xu X, Zhang L, Nie QJ, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energ 34:1–5

    Article  CAS  Google Scholar 

  • Milla P, Athenstaedt K, Viola F, Oliaro-Bosso S, Kohlwein SD, Daum G, Balliano G (2002) Yeast oxidosqualene cyclase (Erg7p) is a major component of lipid particles. J Biol Chem 277:2406–2412

    Article  CAS  PubMed  Google Scholar 

  • Miura S, Gan JW, Brzostowski J, Parisi MJ, Schultz CJ, Londos C, Oliver B, Kimmel AR (2002) Functional conservation for lipid storage droplet association among perilipin, ADRP, and TIP47 (PAT)-related proteins in mammals, Drosophila, and Dictyostelium. J Biol Chem 277:32253–32257

    Article  CAS  PubMed  Google Scholar 

  • Murphy DJ (1993) Structure, function and biogenesis of storage lipid bodies and oleosins in plants and other organisms. Prog Lipid Res 29:299–324

    Google Scholar 

  • Murphy DJ (2001) The biogenesis and functions of lipid bodies in animals, plants and microorganism. Prog Lipid Res 40:325–438

    Article  CAS  PubMed  Google Scholar 

  • Murphy DJ (2012) The dynamic roles of intracellular lipid droplets: from archaea to mammals. Protoplasma 249:541–585

    Article  CAS  PubMed  Google Scholar 

  • Murphy DJ, Vance J (1999) Mechanism of lipid body formation. Trends Biochem Sci 24:109–115

    Article  CAS  PubMed  Google Scholar 

  • Olukoshi ER, Packter NM (1994) Importance of stored triacylglycerols in Streptomyces — possible carbon source for antibiotics. Microbiology 140:931–943

    Article  CAS  PubMed  Google Scholar 

  • Packter NM, Olukoshi ER (1995) Ultrastructural studies of neutral lipid localisation in Streptomycetes. Arch Microbiol 164:420–427

    Article  CAS  PubMed  Google Scholar 

  • Pieper-Fürst U, Madkour MH, Mayer F, Steinbüchel A (1994) Purification and characterization of a 14-kilodalton protein that is bound to the surface of polyhydroxyalkanoic acid granules in Rhodococcus ruber. J Bacteriol 176:4328–4337

    Article  PubMed  PubMed Central  Google Scholar 

  • Polokoff MA, Bell RM (1980) Solubilization, partial-purification and characterization of rat-liver microsomal diacylglycerol acyltransferase. Biochim Biophys Acta 618:129–142

    Google Scholar 

  • Post-Beitenmiller D (1996) Biochemistry and molecular biology of wax production in plants. Annu Rev Plant Physiol Mol Biol 47:405–430

    Article  Google Scholar 

  • Preusting H, Kingma J, Huisman G, Steinbüchel A, Witholt B (1993) Formation of polyester blends by a recombinant strain of Pseudomonas oleovorans: different poly(3-hydroxyalkanoates) are stored in separate granules. J Environ Polym Degrad 1:11–21

    Article  CAS  Google Scholar 

  • Qadeer S, Khalid A, Mahmood S, Anjum M, Ahmad Z (2017) Utilizing oleaginous bacteria and fungi for cleaner energy production. J Clean Prod 168:917–928

    Article  CAS  Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukary Cell 9:486–501

    Article  CAS  Google Scholar 

  • Ratledge C (1989) Biotechnology of oils and fats. In: Ratledge C, Wilkinson SG (eds) Microbial lipids. Academic, London, pp 567–650

    Google Scholar 

  • Ratledge C (2002) Regulation of lipid accumulation in oleaginous microorganisms. Biochem Soc Trans 30:1047–1050

    Article  CAS  PubMed  Google Scholar 

  • Raymond RL, Davies JB (1960) n-Alkane utilization and lipid formation by a Nocardia. Appl Microbiol 8:329–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiser S, Somerville C (1997) Isolation of mutants of Acinetobacter calcoaceticus deficient in wax ester synthesis and complementation of one mutation with a gene encoding a fatty acyl coenzyme A reductase. J Bacteriol 179:2969–2975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robenek MJ, Severs NJ, Schlattmann K, Plenz G, Zimmer KP, Troyer D, Robenek H (2004) Lipids partition caveolin-1 from ER membranes into lipid droplets: updating the model of lipid droplet biogenesis. FASEB J 18:866–868

    Article  CAS  PubMed  Google Scholar 

  • Robert LS, Gerster J, Allard S, Cass L, Simmonds J (1994) Molecular characterization of 2 Brassica napus genes related to oleosins which are highly expressed in the tapetum. Plant J 6:927–933

    Article  CAS  PubMed  Google Scholar 

  • Roberts MR, Robson F, Foster GD, Draper J, Scott RJ (1991) A Brassica napus messenger-RNA expressed specifically in developing microspores. Plant Mol Biol 17:295–299

    Article  CAS  PubMed  Google Scholar 

  • Ross JHE, Sanchez J, Millan F, Murphy DJ (1993) Differential presence of oleosins in oleogenic seed and mesocarp tissues in olive (Olea europaea) and avocado (Persea americana). Plant Sci 93:203–210

    Article  CAS  Google Scholar 

  • Röttig A, Steinbüchel A (2013) Acyltransferases in bacteria. Microbiol Molec Biol Rev. 77:277–321

    Article  CAS  Google Scholar 

  • Röttig A, Hauschild P, Madkour MH, Al-Ansari AM, Almakishah NH, Steinbüchel A (2016) Analysis and optimization of triacylglycerol synthesis in novel oleaginous Rhodococcus and Streptomyces strains isolated from desert soil. J Biotechnol 225:48–56

    Article  PubMed  CAS  Google Scholar 

  • Routaboul JM, Benninng C, Bechtold N, Caboche M, Lepiniec L (1999) The TAG1 locus of Arabidopsis encodes for a diacylglycerol acyltransferase. Plant Physiol Biochem 37:831–840

    Article  CAS  PubMed  Google Scholar 

  • Russel NJ, Volkman JK (1980) The effect of growth temperature and wax ester composition in the psychrophilic bacterium Micrococcus cryophilus ATCC 15174. J Gen Microbiol 118:131–141

    Google Scholar 

  • Sandager L, Gustavson MH, Stahl U, Dahlquist A, Wiberg E, Banas A, Lenman M, Ronne H, Stymne S (2002) Storage lipid biosynthesis is non-essential in yeast. J Biol Chem 277:6478–6482

    Article  CAS  PubMed  Google Scholar 

  • Schaffner G, Matile P (1981) Structure and composition of baker’s yeast lipid globules. Biochem Physiol Pflanzen 176:659–666

    Article  CAS  Google Scholar 

  • Schlunk FF, Lombardi B (1967) Liver liposomes/isolation and chemical characterization. Lab Invest 17:30–38

    CAS  PubMed  Google Scholar 

  • Scott CCL, Finnerty WR (1976) Characterization of intracytoplasmic hydrocarbon inclusions from hydrocarbon-oxidizing Acinetobacter species HO1-N. J Bacteriol 127:481–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21:277–286

    Article  CAS  PubMed  Google Scholar 

  • Silva RA, Grossi V, Alvarez M (2007) Biodegradation of phytane (2,6,10,14-tetramethylhexadecane) and accumulation of related isoprenoid wax esters by Mycobacterium ratisbonense strain SD4 under nitrogen-starved conditions. FEMS Microbiol Lett 272:220–228

    Article  CAS  PubMed  Google Scholar 

  • Singer ME, Tyler SM, Finnerty WR (1985) Growth of Acinetobacter sp. strain HO1-N on n-hexadecanol: physiological and ultrastructural characteristics. J Bacteriol 162:162–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smid A, Riva M, Bouet F, Sentenac A, Carles C (1995) The association of 3 subunits with yeast RNA-polymerase is stabilized by A14. J Biol Chem 270:13534–13540

    Article  CAS  PubMed  Google Scholar 

  • Smith SJ, Cases S, Jensen DR, Chen HC, Sande E, Tow B, Sana DA, Raber J, Eckel RH, Farese RV Jr (2000) Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking DGAT. Nat Genet 25:87–90

    Article  CAS  PubMed  Google Scholar 

  • Sorger D, Daum G (2003) Triacylglycerol biosynthesis in yeast. Appl Microbiol Biotechnol 61:289–299

    Article  CAS  PubMed  Google Scholar 

  • Stahmann KP, Kupp C, Feldmann SD, Sahm H (1994) Formation and degradation of lipid bodies found in the riboflavin-producing fungus Ashbya gossypii. Appl Microbiol Biotechnol 42:121–127

    Article  CAS  Google Scholar 

  • Steinbüchel A (2001) Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromol Biosci 1:1–24

    Article  Google Scholar 

  • Steinbüchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228

    Article  Google Scholar 

  • Stöveken T, Kalscheuer R, Malkus U, Reichelt R, Steinbüchel A (2005) The wax ester synthase/acyl coenzyme A: diacylglycerol acyltransferase from Acinetobacter sp. strain ADP1: characterization of a novel type of acyltransferase. J Bacteriol 187:1369–1376

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stubbe JA, Tian J (2003) Polyhydroxyalkanoate (PHA) homeostasis: the role of the PHA synthase. Nat Prod Rep 20:445–457

    Article  CAS  PubMed  Google Scholar 

  • Suckling KE, Stange EF (1985) Role of acyl-CoA:cholesterol acyltransferase in cellular cholesterol-metabolism. J Lipid Res 26:647–670

    CAS  PubMed  Google Scholar 

  • Syu LJ, Saltiel AR (1999) Lipotransin: a novel docking protein for hormone-sensitive lipase. Mol Cell 4:109–115

    Article  CAS  PubMed  Google Scholar 

  • Sztalryd C, Xu GH, Dorward H, Tansey JT, Contreras JA, Kimmel AR, Londos C (2003) Perilipin A is essential for the translocation of hormone-sensitive lipase during lipolytic activation. J Cell Biol 161:1093–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsitsigiannis DI, Zarnowski R, Keller NP (2004) The lipid body protein, PpoA, coordinates sexual and asexual sporulation in Aspergillus nidulans. J Biol Chem 279:11344–11353

    Article  CAS  PubMed  Google Scholar 

  • Tzen JT, Cao YZ, Laurent P, Ratnayake C, Huang AHC (1993) Lipids, proteins, and structure of seed oil bodies from diverse species. Plant Physiol 101:267–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umlauf E, Csaszar E, Moertelmaier M, Schuetz G, Parton RG, Prohaska R (2004) Association of stomatin with lipid droplets. J Biol Chem 280:23699–23709

    Article  CAS  Google Scholar 

  • Wahl A, Schuth N, Pfeiffer D, Nussberger S, Jendrossek D (2012) PHB granules are attached to the nucleoid via PhaM in Ralstonia eutropha. BMC Microbiol 12:262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker RW, Barakat H, Hung JGC (1970) Positional distribution of fatty acids in phospholipids and triglycerides of Mycobacterium smegmatis and M. bovis BCG. Lipids 5:684–691

    Article  CAS  PubMed  Google Scholar 

  • Wältermann M, Steinbüchel A (2005) Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots. J Bacteriol 187:3607–3619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wältermann M, Luftmann H, Baumeister D, Kalscheuer D, Steinbüchel A (2000) Rhodococcus opacus strain PD630 as a new source of high-value single cell oil? Isolation and characterization of triacylglycerols and other storage lipids. Microbiology 146:1143–1149

    Article  PubMed  Google Scholar 

  • Wältermann M, Hinz A, Robenek H, Troyer D, Reichelt R, Malkus U, Galla HJ, Kalscheuer R, Stöveken T, von Landenberg P, Steinbüchel A (2005) Mechanism of lipid body formation in prokaryotes: how bacteria fatten up. Mol Microbiol 55:750–763

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Schnoes HK, Takayama K, Goldman DS (1972) Synthesis of alcohol and wax ester by a cell-free system in Mycobacterium tuberculosis. Biochem Biophys Acta 260:41–48

    Article  CAS  PubMed  Google Scholar 

  • Wang SM, Fong T, Hsu S, Chien S, Wu J (1997) Reorganization of a novel vimentin-associated protein in 3T3-L1 cells during adipocyte conversion. J Cell Biochem 67:84–91

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Reape TJ, Li X, Rayner K, Webb C, Burnand KG, Lysko PG (1999) Induced expression of adipophilin mRNA in human macrophages stimulated with oxidized low-density lipoprotein in artheriosklerotic lesions. FEBS Lett 462:445–450

    Google Scholar 

  • Wang SM, Hwang RD, Greenberg AS, Yeo HL (2003) Temporal and spatial assembly of lipid-droplet associated proteins in 3T3-L1 preadipocytes. Histochem Cell Biol 120:285–292

    Article  CAS  PubMed  Google Scholar 

  • Wanner G, Theimer RR (1978) Membranous appendices of spherosomes (oleosomes)—possible role in fat utilization in germinating oil seeds. Planta 140:163–169

    Article  CAS  PubMed  Google Scholar 

  • Wanner G, Formanek H, Theimer RR (1981) The ontogeny of lipid bodies (spherosomes) in plant cells—ultrastructural evidence. Planta 151:109–123

    Article  CAS  PubMed  Google Scholar 

  • Wayman M, Jenkins AD, Kormendy AG (1984) Ratledge C, Dawson P, Rattray J (eds) Biotechnology for the oils and fat industry. American Oil Chemists’ Society, monograph no 11. American Oil Chemists’ Society, Champaign, pp 129–143

    Google Scholar 

  • Weather PR, Burkiott HG, Daniels VG (1987) Functional histology: a text and color atlas, 2nd edn. Churchill Livingstone, New York

    Google Scholar 

  • Weiss L (1983) Cell and tissue biology, 5th edn. Elsevier, New York

    Book  Google Scholar 

  • Wilkinson WO, Bell RM (1997) sn-Glycerol-3-phosphate acyltransferase from Escherichia coli. Biochem Biophys Acta 1348:3–9

    Article  Google Scholar 

  • Wolins NE, Skinner JR, Schoenfish MJ, Tzekow A, Bensch KG, Bickel PE (2003) Adipocyte protein S3–12 coats nascent lipid droplets. J Biol Chem 276:37713–37721

    Article  CAS  Google Scholar 

  • Wood D, Cornish K (2000) Microstructure of purified rubber particles. Int J Plant Sci 161:435–445

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Bard M, Bruner DA, Gleeson A, Deckelbaum RJ, Aljinovic G, Pohl TM, Rothstein R, Sturley SL (1996) Sterol esterification in yeast: a two-gene process. Science 272:1353–1356

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Ding YF, Chen Y, Zhang SY, Huo CX, Wang Y, Yu JH, Zhang P, Na HM, Zhang HN (2012) The proteomics of lipid droplets: structure, dynamics, and functions of the organelle conserved from bacteria to humans. J Lip Res 53:1245–1253

    Article  CAS  Google Scholar 

  • Yermanos DM (1975) Composition of jojoba seed during development. J Am Oil Chem Soc 52:115–117

    Article  CAS  Google Scholar 

  • Yu C, Kennedy NJ, Chang CC, Rothblatt JA (1996) Molecular cloning and characterization of two isoforms of Saccharomyces cerevisiae acyl-CoA:sterol acyltransferase. J Biol Chem 272:3980–3985

    Google Scholar 

  • Zou JT, Wei YD, Jako C, Kumar A, Selvaraj G, Taylor DC (1999) The Arabidopsis thaliana TAG1 mutant has a mutation in a diacylglycerol acyltransferase gene. Plant J 19:645–653

    Article  CAS  PubMed  Google Scholar 

  • Zweytick D, Athenstedt K, Daum G (2000) Intracellular lipids particles of eukaryotic cells. BBA Rev Biomembr 1469:101–120

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to all coworkers at the Institut für Molekulare Mikrobiologie und Biotechnologie at the Westfälische Wilhelms-Universität Münster who have in the past contributed to lipid research. This manuscript is an update of the manuscript previously published in the corresponding first volumes of the “Microbiology Monographs” book series.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Steinbüchel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Steinbüchel, A., Wältermann, M. (2020). Wax Ester and Triacylglycerol Inclusions. In: Jendrossek, D. (eds) Bacterial Organelles and Organelle-like Inclusions. Microbiology Monographs, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-030-60173-7_9

Download citation

Publish with us

Policies and ethics