Skip to main content

Medical Products Inspired by Biological Oscillators: Intermittent Pneumatic Compression and the Microcirculation

  • Chapter
  • First Online:
Physics of Biological Oscillators

Part of the book series: Understanding Complex Systems ((UCS))

  • 729 Accesses

Abstract

To sustain life oxygen must be transported from the lungs to the heart and then out to the trillions of cells that make up the human body. This process is dependent upon many oscillatory systems that exquisitely respond to the fluctuating needs of each cell. The interplay between these systems that oscillate between an active and passive state provides the unique balance of a healthy life. To circulate blood to each cell in the body there is an intricate network of vessels. Blood leaves the heart through a ~2 cm diameter aorta and branches down to <10 µm capillaries at a cellular level before returning to the heart through the venae cavae. In these non-rigid vessels haemodynamic regulation is controlled by complex oscillatory systems that determine the resistance of vessels and therefore the local blood flow. These mechanisms are also supported by the presence of valves that ensure venous return and cyclical muscle pumps such as in the foot and calf that aid the circulation whilst walking. However, inadequate circulation can arise from the narrowing of vessels such as atherosclerosis, diseases such diabetes, incompetent valves and lack of mobility. This chapter reviews how medical products have been developed to enhance circulation including microcirculation, through the external application of intermittent pneumatic compression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Aalkjaer, D. Boedtkjer, V. Matchkov, Vasomotion: what is currently thought? Acta Physiol. 202(3), 253–269 (2011)

    Article  Google Scholar 

  2. Y.A. Abdulhameed, G. Lancaster, P.V.E. McClintock, A. Stefanovska, On the suitability of laser-Doppler flowmetry for capturing microvascular blood flow dynamics from darkly pigmented skin. Physiol. Meas. 40(7), 074005 (2019)

    Article  Google Scholar 

  3. Y.A. Abdulhameed, P.V.E. McClintock, A. Stefanovska, Race-specific differences in the phase coherence between blood flow and oxygenation: A simultaneous NIRS, white light spectroscopy and LDF study. J. Biophotonics 13(4), e201960131 (2020)

    Article  Google Scholar 

  4. A. Abu-Own, T. Cheatle, J.H. Scurr, P.D. Coleridge Smith, Effects of intermittent pneumatic compression of the foot on the microcirculatory function in arterial disease. Eur J Vasc Surg. 7(5), 488–492 (1993)

    Article  Google Scholar 

  5. K. Aizawa, S. Sbragi, A. Ramalli, P. Tortoli, F. Casanova, C. Morizzo, et al., Brachial artery vasodilatory response and wall shear rate determined by multigate Doppler in a healthy young cohort. J. Appl. Physiol. (1985) 124(1), 150–159 (2018)

    Google Scholar 

  6. U. Alpagut, E. Dayioglu, Importance and advantages of intermittent external pneumatic compression therapy in venous stasis ulceration. Angiology 56(1), 19–23 (2005)

    Article  Google Scholar 

  7. S. Baratchi, K. Khoshmanesh, O.L. Woodman, S. Potocnik, K. Peter, P. McIntyre, Molecular sensors of blood flow in endothelial cells. Trends Mol Med. 23(9), 850–868 (2017)

    Article  Google Scholar 

  8. P.S. van Bemmelen, M.A. Mattos, W.E. Faught, M.A. Mansour, L.D. Barkmeier, K.J. Hodgson et al., Augmentation of blood flow in limbs with occlusive arterial disease by intermittent calf compression. J. Vasc. Surg. 19(6), 1052–1058 (1994)

    Article  Google Scholar 

  9. M.R. De Carvalho, B.U. Peixoto, I.A. Silveira, B. Oliveria, A meta-analysis to compare four-layer to short-stretch compression bandaging for venous leg ulcer healing. Ostomy Wound Manage. 64(5), 30–37 (2018)

    Article  Google Scholar 

  10. A.H. Chen, S.G. Frangos, S. Kilaru, B.E. Sumpio, Intermittent pneumatic compression devices: physiological mechanisms of action. Eur. J. Vasc. Endovasc. Surg. 21(5), 383–392 (2001)

    Article  Google Scholar 

  11. L.E. Chen, K. Liu, W.N. Qi, E. Joneschild, X. Tan, A.V. Seaber, et al., Role of nitric oxide in vasodilation in upstream muscle during intermittent pneumatic compression. J. Appl. Physiol. (1985). 92(2), 559–566 (2002)

    Google Scholar 

  12. S. Chibbaro, H. Cebula, J. Todeschi, M. Fricia, D. Vigouroux, H. Abid et al., Evolution of prophylaxis protocols for venous thromboembolism in neurosurgery: results from a prospective comparative study on low-molecular-weight heparin, elastic stockings, and intermittent pneumatic compression devices. World Neurosurg. 109, e510–e516 (2018)

    Article  Google Scholar 

  13. J.J. Chiu, S. Chien, Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol. Rev. 91(1), 327–387 (2011)

    Article  MathSciNet  Google Scholar 

  14. P.S. Clifford, Skeletal muscle vasodilatation at the onset of exercise. J. Physiol. 583(Pt 3), 825–833 (2007)

    Article  Google Scholar 

  15. W.C. Cole, G.R. Gordon, A.P. Braun, Cellular and ionic mechanisms of arterial vasomotion. Adv. Exp. Med. Biol. 1124, 297–312 (2019)

    Article  Google Scholar 

  16. A.J. Comerota, Intermittent pneumatic compression: physiologic and clinical basis to improve management of venous leg ulcers. J. Vasc. Surg. 53(4), 1121–1129 (2011)

    Article  Google Scholar 

  17. A.J. Comerota, V. Chouhan, R.N. Harada, L. Sun, J. Hosking, R. Veermansunemi, et al., The fibrinolytic effects of intermittent pneumatic compression: mechanism of enhanced fibrinolysis. Ann Surg. 226(3), 306–313 (1997); discussion 13–14

    Google Scholar 

  18. A.R. Crecelius, B.S. Kirby, G.J. Luckasen, D.G. Larson, F.A. Dinenno, Mechanisms of rapid vasodilation after a brief contraction in human skeletal muscle. Am. J. Physiol. Heart Circ. Physiol. 305(1), H29–H40 (2013)

    Article  Google Scholar 

  19. G. Dai, J.P. Gertler, R.D. Kamm, The effects of external compression on venous blood flow and tissue deformation in the lower leg. J. Biomech. Eng. 121(6), 557–564 (1999)

    Article  Google Scholar 

  20. G. Dai, O. Tsukurov, M. Chen, J.P. Gertler, R.D. Kamm, Endothelial nitric oxide production during in vitro simulation of external limb compression. Am. J. Physiol. Heart Circ. Physiol. 282(6), H2066–H2075 (2002)

    Article  Google Scholar 

  21. K.T. Delis, Z.A. Azizi, R.J. Stevens, J.H. Wolfe, A.N. Nicolaides, Optimum intermittent pneumatic compression stimulus for lower-limb venous emptying. Eur. J. Vasc. Endovasc. Surg. 19(3), 261–269 (2000)

    Article  Google Scholar 

  22. K.T. Delis, N. Labropoulos, A.N. Nicolaides, B. Glenville, G. Stansby, Effect of intermittent pneumatic foot compression on popliteal artery haemodynamics. Eur. J. Vasc. Endovasc. Surg. 19(3), 270–277 (2000)

    Article  Google Scholar 

  23. K.T. Delis, G. Slimani, H.M. Hafez, A.N. Nicolaides, Enhancing venous outflow in the lower limb with intermittent pneumatic compression. A comparative haemodynamic analysis on the effect of foot vs. calf vs. foot and calf compression. Eur. J. Vasc. Endovasc. Surg. 19(3), 250–260 (2000)

    Google Scholar 

  24. R.T. Eberhardt, J.D. Raffetto, Chronic venous insufficiency. Circulation 130(4), 333–346 (2014)

    Article  Google Scholar 

  25. S. Eriksson, J. Nilsson, C. Sturesson, Non-invasive imaging of microcirculation: a technology review. Med Dev. (Auckl). 7, 445–452 (2014)

    Google Scholar 

  26. M. Fujisawa, M. Naito, I. Asayama, T. Kambe, K. Koga, Effect of calf-thigh intermittent pneumatic compression device after total hip arthroplasty: comparative analysis with plantar compression on the effectiveness of reducing thrombogenesis and leg swelling. J Orthop Sci. 8(6), 807–811 (2003)

    Article  Google Scholar 

  27. A.M. Gardner, R.H. Fox, The venous footpump: influence on tissue perfusion and prevention of venous thrombosis. Ann. Rheum. Dis. 51(10), 1173–1178 (1992)

    Article  Google Scholar 

  28. A.M. Gardner, R.H. Fox, C. Lawrence, T.D. Bunker, R.S. Ling, A.G. MacEachern, Reduction of post-traumatic swelling and compartment pressure by impulse compression of the foot. J. Bone Joint Surg. Br. 72(5), 810–815 (1990)

    Article  Google Scholar 

  29. A.M.N. Gardner, R.H. Fox, The Venous System in Health and Disease (IOS Press, 2001)

    Google Scholar 

  30. D. Goldman, A.S. Popel, A computational study of the effect of vasomotion on oxygen transport from capillary networks. J. Theor. Biol. 209(2), 189–199 (2001)

    Article  Google Scholar 

  31. C.N. Hall, C. Reynell, B. Gesslein, N.B. Hamilton, A. Mishra, B.A. Sutherland et al., Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508(7494), 55–60 (2014)

    Article  ADS  Google Scholar 

  32. N. Hori, R. Wiest, R.J. Groszmann, Enhanced release of nitric oxide in response to changes in flow and shear stress in the superior mesenteric arteries of portal hypertensive rats. Hepatology 28(6), 1467–1473 (1998)

    Article  Google Scholar 

  33. M.H. Howlader, P.D. Smith, Microangiopathy in chronic venous insufficiency: quantitative assessment by capillary microscopy. Eur. J. Vasc. Endovasc. Surg. 26(3), 325–331 (2003)

    Article  Google Scholar 

  34. S.K. Kakkos, J.A. Caprini, G. Geroulakos, A.N. Nicolaides, G. Stansby, D.J. Reddy, et al., Combined intermittent pneumatic leg compression and pharmacological prophylaxis for prevention of venous thromboembolism. Cochrane Database Systematic Rev. 9, CD005258 (2016)

    Google Scholar 

  35. R.F. Kelly, H.M. Snow, Characteristics of the response of the iliac artery to wall shear stress in the anaesthetized pig. J. Physiol. 582(Pt 2), 731–743 (2007)

    Article  Google Scholar 

  36. B.S. Kirby, R.E. Carlson, R.R. Markwald, W.F. Voyles, F.A. Dinenno, Mechanical influences on skeletal muscle vascular tone in humans: insight into contraction-induced rapid vasodilatation. J. Physiol. 583(Pt 3), 861–874 (2007)

    Article  Google Scholar 

  37. V.V. Kislukhin, Regulation of oxygen consumption by vasomotion. Math. Biosci. 191(1), 101–108 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. P.J. Kolari, K. Pekanmaki, R.T. Pohjola, Transcutaneous oxygen tension in patients with post-thrombotic leg ulcers: treatment with intermittent pneumatic compression. Cardiovasc. Res. 22(2), 138–141 (1988)

    Article  Google Scholar 

  39. H.D. Kvernmo, A. Stefanovska, K.A. Kirkeboen, K. Kvernebo, Oscillations in the human cutaneous blood perfusion signal modified by endothelium-dependent and endothelium-independent vasodilators. Microvasc. Res. 57(3), 298–309 (1999)

    Article  Google Scholar 

  40. N. Labropoulos, L.R. Leon Jr., A. Bhatti, S. Melton, S.S. Kang, A.M. Mansour et al., Hemodynamic effects of intermittent pneumatic compression in patients with critical limb ischemia. J. Vasc. Surg. 42(4), 710–716 (2005)

    Article  Google Scholar 

  41. K. Liu, L.E. Chen, A.V. Seaber, J.R. Urbaniak, Influences of inflation rate and duration on vasodilatory effect by intermittent pneumatic compression in distant skeletal muscle. J. Orthop. Res. 17(3), 415–420 (1999)

    Article  Google Scholar 

  42. M.L. Mihok, C.L. Murrant, Rapid biphasic arteriolar dilations induced by skeletal muscle contraction are dependent on stimulation characteristics. Can. J. Physiol. Pharmacol. 82(4), 282–287 (2004)

    Article  Google Scholar 

  43. P. Moscicka, M.T. Szewczyk, J. Cwajda-Bialasik, A. Jawien, The role of compression therapy in the treatment of venous leg ulcers. Adv Clin Exp Med. (2018)

    Google Scholar 

  44. E.A. Nelson, U. Adderley, Venous leg ulcers. BMJ Clin Evid. (2016)

    Google Scholar 

  45. E.A. Nelson, S.E. Bell-Syer, Compression for preventing recurrence of venous ulcers. Cochrane Database Systematic Rev. 9, CD002303 (2014)

    Google Scholar 

  46. E.A. Nelson, A. Hillman, K. Thomas, Intermittent pneumatic compression for treating venous leg ulcers. Cochrane Database Systematic Rev. 5, CD001899 (2014)

    Google Scholar 

  47. A.N. Nicolaides, J. Fareed, A.K. Kakkar, A.J. Comerota, S.Z. Goldhaber, R. Hull et al., Prevention and treatment of venous thromboembolism–international consensus statement. Int. Angiol. 32(2), 111–260 (2013)

    Google Scholar 

  48. S. Nikolovska, L. Pavlova, A. Ancevski, A. Petrov, A. Arsovski, E. Dejanova, The role of nitric oxide in the pathogenesis of venous ulcers. Acta Dermatovenerol. Croat. 13(4), 242–246 (2005)

    Google Scholar 

  49. S. Nikolovska, A. Arsovski, K. Damevska, G. Gocev, L. Pavlova, Evaluation of two different intermittent pneumatic compression cycle settings in the healing of venous ulcers: a randomized trial. Med. Sci. Monitor 11(7), CR337–CR343 (2005)

    Google Scholar 

  50. H. Nilsson, C. Aalkjaer, Vasomotion: mechanisms and physiological importance. Mol Interv. 3(2), 79–89, 51 (2003)

    Google Scholar 

  51. S. O’Meara, N. Cullum, E.A. Nelson, J.C. Dumville, Compression for venous leg ulcers. Cochrane Database Systematic Rev. 11, CD000265 (2012)

    Google Scholar 

  52. J.M. Pavon, S.S. Adam, Z.A. Razouki, J.R. McDuffie, P.F. Lachiewicz, A.S. Kosinski et al., Effectiveness of intermittent pneumatic compression devices for venous thromboembolism prophylaxis in high-risk surgical patients: a systematic review. J. Arthroplasty 31(2), 524–532 (2016)

    Article  Google Scholar 

  53. J.M. Pavon, J.W. Williams, Jr., S.S. Adam, Z.A. Razouki, J.R. McDuffie, P.F. Lachiewicz, et al., Effectiveness of Intermittent Pneumatic Compression Devices for Venous Thromboembolism Prophylaxis in High-risk Surgical and Medical Patients (Washington (DC), 2015)

    Google Scholar 

  54. K. Pekanmaki, P.J. Kolari, U. Kiistala, Laser Doppler vasomotion among patients with post-thrombotic venous insufficiency: effect of intermittent pneumatic compression. Vasa 20(4), 394–397 (1991)

    Google Scholar 

  55. B.T. Roseguini, S. Mehmet Soylu, J.J. Whyte, H.T. Yang, S. Newcomer, M.H. Laughlin, Intermittent pneumatic leg compressions acutely upregulate VEGF and MCP-1 expression in skeletal muscle. Am. J. Physiol. Heart Circ. Physiol. 298(6), H1991–H2000 (2010)

    Article  Google Scholar 

  56. B.T. Roseguini, R. Sheldon, A. Stroup, J.W. Bell, D. Maurer, B.D. Crist et al., Impact of chronic intermittent external compressions on forearm blood flow capacity in humans. Eur. J. Appl. Physiol. 111(3), 509–519 (2011)

    Article  Google Scholar 

  57. M. Rossi, S. Bertuglia, M. Varanini, A. Giusti, G. Santoro, A. Carpi, Generalised wavelet analysis of cutaneous flowmotion during post-occlusive reactive hyperaemia in patients with peripheral arterial obstructive disease. Biomed. Pharmacother. 59(5), 233–239 (2005)

    Article  Google Scholar 

  58. M. Rossi, A. Carpi, C. Di Maria, F. Franzoni, F. Galetta, G. Santoro, Post-ischaemic peak flow and myogenic flowmotion component are independent variables for skin post-ischaemic reactive hyperaemia in healthy subjects. Microvasc Res. (2007)

    Google Scholar 

  59. M. Rucker, O. Strobel, B. Vollmar, W.J. Spitzer, M.D. Menger, Protective skeletal muscle arteriolar vasomotion during critical perfusion conditions of osteomyocutaneous flaps is not mediated by nitric oxide and endothelins. Langenbecks Arch Surg. 388(5), 339–343 (2003)

    Article  Google Scholar 

  60. T. Sakurai, N. Terui, Effects of sympathetically induced vasomotion on tissue-capillary fluid exchange. Am. J. Physiol. Heart Circ. Physiol. 291(4), H1761–H1767 (2006)

    Article  Google Scholar 

  61. C. Sanal-Toprak, T. Ozsoy-Unubolo, Y. Bahar-Ozdemir, G. Akyuz, The efficacy of intermittent pneumatic compression as a substitute for manual lymphatic drainage in complete decongestive therapy in the treatment of breast cancer related lymphedema. Lymphology. 52(2), 82–91 (2019)

    Google Scholar 

  62. R. Saunders, A.J. Comerota, A. Ozols, R. Torrejon Torres, K.M. Ho, Intermittent pneumatic compression is a cost-effective method of orthopedic postsurgical venous thromboembolism prophylaxis. Clinicoecon Outcomes Res. 10, 231–241 (2018)

    Article  Google Scholar 

  63. M.V. Schaverien, J.A. Moeller, S.D. Cleveland, Nonoperative treatment of lymphedema. Semin Plast Surg. 32(1), 17–21 (2018)

    Article  Google Scholar 

  64. R.D. Sheldon, B.T. Roseguini, J.P. Thyfault, B.D. Crist, M.H. Laughlin, S.C. Newcomer, Acute impact of intermittent pneumatic leg compression frequency on limb hemodynamics, vascular function, and skeletal muscle gene expression in humans. J. Appl. Physiol (1985). 112(12), 2099–2109 (2012)

    Google Scholar 

  65. J.K. Shoemaker, M.E. Tschakovsky, R.L. Hughson, Vasodilation contributes to the rapid hyperemia with rhythmic contractions in humans. Can. J. Physiol. Pharmacol. 76(4), 418–427 (1998)

    Article  Google Scholar 

  66. C.R. Simpson, M. Kohl, M. Essenpreis, M. Cope, Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. Phys. Med. Biol. 43(9), 2465–2478 (1998)

    Article  Google Scholar 

  67. S.Y. Sinkler, S.S. Segal, Rapid versus slow ascending vasodilatation: intercellular conduction versus flow-mediated signalling with tetanic versus rhythmic muscle contractions. J. Physiol. 595(23), 7149–7165 (2017)

    Article  Google Scholar 

  68. B.M. Sorensen, A. Houben, T. Berendschot, J. Schouten, A.A. Kroon, C.J.H. van der Kallen et al., Cardiovascular risk factors as determinants of retinal and skin microvascular function: The Maastricht Study. PLoS ONE 12(10), e0187324 (2017)

    Article  Google Scholar 

  69. A. Stefanovska, M. Bracic, Reconstructing cardiovascular dynamics. Control Eng Pract. 7(2), 161–172 (1999)

    Article  MATH  Google Scholar 

  70. A. Stefanovska, M.B. Lotric, S. Strle, H. Haken, The cardiovascular system as coupled oscillators? Physiol. Meas. 22(3), 535–550 (2001)

    Article  Google Scholar 

  71. A. Stefanovska, Cardiorespiratory interactions, Nonlinear Phenom. Complex Sys. 462–469 (2002)

    Google Scholar 

  72. X. Tan, W.N. Qi, X. Gu, J.R. Urbaniak, L.E. Chen, Intermittent pneumatic compression regulates expression of nitric oxide synthases in skeletal muscles. J. Biomech. 39(13), 2430–2437 (2006)

    Article  Google Scholar 

  73. C.E. Thorn, H. Kyte, D.W. Slaff, A.C. Shore, An association between vasomotion and oxygen extraction. Am J Physiol-Heart C. 301(2), H442–H449 (2011)

    Article  Google Scholar 

  74. C.E. Thorn, A.O. Adio, C.P. Winlove, A.C. Shore, Effects of intermittent impulse compression on microvascular perfusion and capillary density. Microcirculation 27(2) (2020)

    Google Scholar 

  75. A.G. Tsai, M. Intaglietta, Evidence of flowmotion induced changes in local tissue oxygenation. Int. J. Microcirc. Clin. Exp. 12(1), 75–88 (1993)

    Google Scholar 

  76. M.E. Tschakovsky, A.M. Rogers, K.E. Pyke, N.R. Saunders, N. Glenn, S.J. Lee, et al., Immediate exercise hyperemia in humans is contraction intensity dependent: evidence for rapid vasodilation. J. Appl. Physiol. (1985). 96(2), 639–644 (2004)

    Google Scholar 

  77. J.W. VanTeeffelen, S.S. Segal, Rapid dilation of arterioles with single contraction of hamster skeletal muscle. Am. J. Physiol. Heart Circ. Physiol. 290(1), H119–H127 (2006)

    Article  Google Scholar 

  78. M.T. Zaleska, W.L. Olszewski, The effectiveness of intermittent pneumatic compression in therapy of lymphedema of lower limbs: methods of evaluation and results. Lymphat Res Biol. 17(1), 60–69 (2019)

    Article  Google Scholar 

  79. J.M. Zhao, M.L. He, Z.M. Xiao, T.S. Li, H. Wu, H. Jiang, Different types of intermittent pneumatic compression devices for preventing venous thromboembolism in patients after total hip replacement. Cochrane Database Systematic Rev. 12, CD009543 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clare Thorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thorn, C., Shore, A. (2021). Medical Products Inspired by Biological Oscillators: Intermittent Pneumatic Compression and the Microcirculation. In: Stefanovska, A., McClintock, P.V.E. (eds) Physics of Biological Oscillators. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-59805-1_25

Download citation

Publish with us

Policies and ethics