Skip to main content

Enzyme Biocatalysis and Sustainability

  • Chapter
  • First Online:
Nanostructured Catalysts for Environmental Applications

Abstract

Enzymes are biological catalysts capable of recognizing a substrate and catalyze reactions of hydrolysis and synthesis. The most significant property of enzymes is their high specificity toward their substrates since they are able to recognize and act upon a molecule from a pool of similar compounds.

Enzymes are labile catalysts at certain operative conditions that may severely affect their stability. However, the attachment of enzymes to solid supports has proven to be a good solution to stabilize them and, thus, to preserve their catalytic performances.

The fundamentals of enzyme biocatalysis in sustainable processes are summarized in this chapter. The advantages of immobilized enzymes in environmental applications and sustainable processes will be addressed considering the most suitable materials and the most common immobilization methods. The use of biocatalysts in bioremediation, biofuel production, and in the valorization of waste streams is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Buchholz, V. Kasche, U.T. Bornscheuer, Biocatalysts and Enzyme Technology (Wiley, New York, 2012)

    Google Scholar 

  2. K.M. Koeller, C.-H. Wong, Enzymes for chemical synthesis. Nature 409(6817), 232–240 (2001)

    Article  CAS  Google Scholar 

  3. R.D. Ward, Relationship between enzyme heterozygosity and quaternary structure. Biochem. Genet. 15(1), 123–135 (1977)

    Article  CAS  Google Scholar 

  4. C. Mateo, J.M. Palomo, G. Fernandez-Lorente, J.M. Guisan, R. Fernandez-Lafuente, Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzym. Microb. Technol. 40(6), 1451–1463 (2007)

    Article  CAS  Google Scholar 

  5. U. Hanefeld, L. Gardossi, E. Magner, Understanding enzyme immobilisation. Chem. Soc. Rev. 38(2), 453–468 (2009)

    Article  CAS  Google Scholar 

  6. L. Cao, Immobilised enzymes: science or art? Curr. Opin. Chem. Biol. 9(2), 217–226 (2005)

    Article  CAS  Google Scholar 

  7. R. DiCosimo, J. McAuliffe, A.J. Poulose, G. Bohlmann, Industrial use of immobilized enzymes. Chem. Soc. Rev. 42(15), 6437–6474 (2013)

    Article  CAS  Google Scholar 

  8. J.R. Cherry, A.L. Fidantsef, Directed evolution of industrial enzymes: an update. Curr. Opin. Biotechnol. 14(4), 438–443 (2003)

    Article  CAS  Google Scholar 

  9. A. Kumar, S. Singh, Directed evolution: tailoring biocatalysts for industrial applications. Crit. Rev. Biotechnol. 33(4), 365–378 (2013)

    Article  CAS  Google Scholar 

  10. C. Bernal, K. Rodríguez, R. Martínez, Integrating enzyme immobilization and protein engineering: an alternative path for the development of novel and improved industrial biocatalysts. Biotechnol. Adv. 36(5), 1470–1480 (2018)

    Article  CAS  Google Scholar 

  11. Y. Huang, J. Ren, X. Qu, Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 119(6), 4357–4412 (2019)

    Article  CAS  Google Scholar 

  12. X. Wang, Y. Hu, H. Wei, Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorg. Chem. Front. 3(1), 41–60 (2016)

    Article  CAS  Google Scholar 

  13. J.-M. Choi, S.-S. Han, H.-S. Kim, Industrial applications of enzyme biocatalysis: current status and future aspects. Biotechnol. Adv. 33(7), 1443–1454 (2015)

    Article  CAS  Google Scholar 

  14. O. Kirk, T.V. Borchert, C.C. Fuglsang, Industrial enzyme applications. Curr. Opin. Biotechnol. 13(4), 345–351 (2002)

    Article  CAS  Google Scholar 

  15. M. Alcalde, M. Ferrer, F.J. Plou, A. Ballesteros, Environmental biocatalysis: from remediation with enzymes to novel green processes. Trends Biotechnol. 24(6), 281–287 (2006)

    Article  CAS  Google Scholar 

  16. P. Kumar, S. Sharma, Enzymes in green chemistry: the need for environment and sustainability. Int. J. Appl. Res. 2, 337–341 (2016)

    Google Scholar 

  17. C.S. Karigar, S.S. Rao, Role of microbial enzymes in the bioremediation of pollutants: a review. Enzym. Res. 2011, 805187 (2011)

    Article  Google Scholar 

  18. C.H. Okino-Delgado, M.R. Zanutto-Elgui, D.Z. do Prado, M.S. Pereira, L.F. Fleuri, Enzymatic bioremediation: current status, challenges of obtaining process, and applications, in Microbial Metabolism of Xenobiotic Compounds, ed. by P. K. Arora, (Springer Singapore, Singapore, 2019), pp. 79–101

    Chapter  Google Scholar 

  19. R.L. Singh, P.K. Singh, R.P. Singh, Enzymatic decolorization and degradation of azo dyes—a review. Int. Biodeterior. Biodegrad. 104, 21–31 (2015)

    Article  CAS  Google Scholar 

  20. T. Sutherland, I. Horne, K. Weir, C. Coppin, M. Williams, M. Selleck, R. Russell, J. Oakeshott, Enzymatic bioremediation: from enzyme discovery to applications. Clin. Exp. Pharmacol. Physiol. 31(11), 817–821 (2004)

    Article  CAS  Google Scholar 

  21. M. Babaki, M. Yousefi, Z. Habibi, M. Mohammadi, Process optimization for biodiesel production from waste cooking oil using multi-enzyme systems through response surface methodology. Renew. Energy 105, 465–472 (2017)

    Article  CAS  Google Scholar 

  22. A. Badoei-Dalfard, S. Malekabadi, Z. Karami, G. Sargazi, Magnetic cross-linked enzyme aggregates of Km12 lipase: a stable nanobiocatalyst for biodiesel synthesis from waste cooking oil. Renew. Energy 141, 874–882 (2019)

    Article  CAS  Google Scholar 

  23. M. Bilal, H.M.N. Iqbal, Sustainable bioconversion of food waste into high-value products by immobilized enzymes to meet bio-economy challenges and opportunities—a review. Food Res. Int. 123, 226–240 (2019)

    Article  CAS  Google Scholar 

  24. R.A. Sheldon, S. van Pelt, Enzyme immobilisation in biocatalysis: why, what and how. Chem. Soc. Rev. 42(15), 6223–6235 (2013)

    Article  CAS  Google Scholar 

  25. J.M. Guisán, Aldehyde-agarose gels as activated supports for immobilization-stabilization of enzymes. Enzym. Microb. Technol. 10(6), 375–382 (1988)

    Article  Google Scholar 

  26. C. Mateo, J.M. Palomo, M. Fuentes, L. Betancor, V. Grazu, F. López-Gallego, B.C.C. Pessela, A. Hidalgo, G. Fernández-Lorente, R. Fernández-Lafuente, J.M. Guisán, Glyoxyl agarose: a fully inert and hydrophilic support for immobilization and high stabilization of proteins. Enzym. Microb. Technol. 39(2), 274–280 (2006)

    Article  CAS  Google Scholar 

  27. V.P. Torchilin, E.G. Tischenko, V.N. Smirnov, Effect of electrostatic complex formation prior to immobilization. J. Solid Phase Biochem. 2(1), 19–29 (1977)

    Article  CAS  Google Scholar 

  28. N.S. Rios, S. Arana-Peña, C. Mendez-Sanchez, C. Ortiz, L.R.B. Gonçalves, R. Fernandez-Lafuente, Reuse of lipase from Pseudomonas fluorescens via its step-by-step coimmobilization on glyoxyl-octyl agarose beads with least stable lipases. Catalysts 9, 5 (2019)

    Article  Google Scholar 

  29. R. Fernandez-Lafuente, P. Armisén, P. Sabuquillo, G. Fernández-Lorente, J.M. Guisán, Immobilization of lipases by selective adsorption on hydrophobic supports. Chem. Phys. Lipids 93(1–2), 185–197 (1998)

    Article  CAS  Google Scholar 

  30. J.M. Palomo, G. Fernandez-Lorente, C. Mateo, C. Ortiz, R. Fernandez-Lafuente, J.M. Guisan, Modulation of the enantioselectivity of lipases via controlled immobilization and medium engineering: hydrolytic resolution of mandelic acid esters. Enzym. Microb. Technol. 31(6), 775–783 (2002)

    Article  CAS  Google Scholar 

  31. J.M. Palomo, G. Muoz, G. Fernández-Lorente, C. Mateo, R. Fernández-Lafuente, J.M. Guisán, Interfacial adsorption of lipases on very hydrophobic support (octadecyl-Sepabeads): immobilization, hyperactivation and stabilization of the open form of lipases. J. Mol. Catal. B Enzym. 19(20), 279–286 (2002)

    Article  Google Scholar 

  32. A. Care, P.L. Bergquist, A. Sunna, Solid-binding peptides: smart tools for nanobiotechnology. Trends Biotechnol. 33(5), 259–268 (2015)

    Article  CAS  Google Scholar 

  33. J. Nilsson, S. Ståhl, J. Lundeberg, M. Uhlén, P.Å. Nygren, Affinity fusion strategies for detection, purification, and immobilization of recombinant proteins. Protein Expr. Purif. 11(1), 1–16 (1997)

    Article  CAS  Google Scholar 

  34. S. Lopez, L. Rondot, C. Leprêtre, C. Marchi-Delapierre, S. Ménage, C. Cavazza, Cross-linked artificial enzyme crystals as heterogeneous catalysts for oxidation reactions. J. Am. Chem. Soc. 139(49), 17994–18002 (2017)

    Article  CAS  Google Scholar 

  35. L. Cao, F. Van Rantwijk, R.A. Sheldon, Cross-linked enzyme aggregates: a simple and effective method for the immobilization of penicillin acylase. Org. Lett. 2(10), 1361–1364 (2000)

    Article  CAS  Google Scholar 

  36. R. Sheldon, Cross-Linked Enzyme Aggregates (CLEA® s): Stable and Recyclable Biocatalysts (Portland Press Limited, London, 2007)

    Google Scholar 

  37. E.T. Hwang, M.B. Gu, Enzyme stabilization by nano/microsized hybrid materials. Eng. Life Sci. 13(1), 49–61 (2013)

    Article  CAS  Google Scholar 

  38. P. Jochems, Y. Satyawali, L. Diels, W. Dejonghe, Enzyme immobilization on/in polymeric membranes: status, challenges and perspectives in biocatalytic membrane reactors (BMRs). Green Chem. 13(7), 1609–1623 (2011)

    Article  CAS  Google Scholar 

  39. J. Zdarta, A.S. Meyer, T. Jesionowski, M. Pinelo, A general overview of support materials for enzyme immobilization: characteristics, properties, practical utility. Catalysts 8, 2 (2018)

    Article  Google Scholar 

  40. G. Busca, Catalytic materials based on silica and alumina: structural features and generation of surface acidity. Prog. Mater. Sci. 104, 215–249 (2019)

    Article  CAS  Google Scholar 

  41. J. Hou, G. Dong, Y. Ye, V. Chen, Laccase immobilization on titania nanoparticles and titania-functionalized membranes. J. Membr. Sci. 452, 229–240 (2014)

    Article  CAS  Google Scholar 

  42. J. Yu, H. Ju, Preparation of porous titania sol−gel matrix for immobilization of horseradish peroxidase by a vapor deposition method. Anal. Chem. 74(14), 3579–3583 (2002)

    Article  CAS  Google Scholar 

  43. C. Pizarro, M.A. Fernández-Torroba, C. Benito, J.M. González-Sáiz, Optimization by experimental design of polyacrylamide gel composition as support for enzyme immobilization by entrapment. Biotechnol. Bioeng. 53(5), 497–506 (1997)

    Article  CAS  Google Scholar 

  44. W. Jin, J.D. Brennan, Properties and applications of proteins encapsulated within sol-gel derived materials. Anal. Chim. Acta 461(1), 1–36 (2002)

    Article  CAS  Google Scholar 

  45. R. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica (John Wiley & Sons, New York, 1979)

    Google Scholar 

  46. N. Velikova, Y. Vueva, Y. Ivanova, I. Salvado, M. Fernandes, P. Vassileva, R. Georgieva, A. Detcheva, Synthesis and characterization of sol-gel mesoporous organosilicas functionalized with amine groups. J. Noncrystal. Solids 378, 89–95 (2013)

    Article  CAS  Google Scholar 

  47. B. Sun, G. Zhou, H. Zhang, Synthesis, functionalization, and applications of morphology-controllable silica-based nanostructures: a review. Prog. Solid State Chem. 44(1), 1–19 (2016)

    Article  Google Scholar 

  48. A.A. Pisal, A.V. Rao, Comparative studies on the physical properties of TEOS, TMOS and Na2SiO3 based silica aerogels by ambient pressure drying method. J. Porous. Mater. 23(6), 1547–1556 (2016)

    Article  CAS  Google Scholar 

  49. H. Isobe, S. Utsumi, K. Yamamoto, H. Kanoh, K. Kaneko, Micropore to macropore structure-designed silicas with regulated condensation of silicic acid nanoparticles. Langmuir 21(17), 8042–8047 (2005)

    Article  CAS  Google Scholar 

  50. P.S. Nabavi Zadeh, B. Åkerman, Immobilization of enzymes in mesoporous silica particles: protein concentration and rotational mobility in the pores. J. Phys. Chem. B 121(12), 2575–2583 (2017)

    Article  CAS  Google Scholar 

  51. N. Zhong, W. Chen, L. Liu, H. Chen, Immobilization of Rhizomucor miehei lipase onto the organic functionalized SBA-15: their enzymatic properties and glycerolysis efficiencies for diacylglycerols production. Food Chem. 271, 739–746 (2019)

    Article  CAS  Google Scholar 

  52. C. Bernal, A. Illanes, L. Wilson, Heterofunctional hydrophilic-hydrophobic porous silica as support for multipoint covalent immobilization of lipases: application to lactulose palmitate synthesis. Langmuir 30(12), 3557–3566 (2014)

    Article  CAS  Google Scholar 

  53. P. Zucca, E. Sanjust, Inorganic materials as supports for covalent enzyme immobilization: methods and mechanisms. Molecules 19(9), 14139–14194 (2014)

    Article  Google Scholar 

  54. A.C. Pierre, The sol-gel encapsulation of enzymes. Biocatal. Biotransform. 22(3), 145–170 (2004)

    Article  CAS  Google Scholar 

  55. S. Pandey, S.B. Mishra, Sol-gel derived organic-inorganic hybrid materials: synthesis, characterizations and applications. J. Sol-Gel Sci. Technol. 59(1), 73–94 (2011)

    Article  CAS  Google Scholar 

  56. X. Xiang, H. Suo, C. Xu, Y. Hu, Covalent immobilization of lipase onto chitosan-mesoporous silica hybrid nanomaterials by carboxyl functionalized ionic liquids as the coupling agent. Colloids Surf. B: Biointerf. 165, 262–269 (2018)

    Article  CAS  Google Scholar 

  57. H. Dai, S. Ou, Z. Liu, H. Huang, Pineapple peel carboxymethyl cellulose/polyvinyl alcohol/mesoporous silica SBA-15 hydrogel composites for papain immobilization. Carbohydr. Polym. 169, 504–514 (2017)

    Article  CAS  Google Scholar 

  58. R. Onbas, O. Yesil-Celiktas, Synthesis of alginate-silica hybrid hydrogel for biocatalytic conversion by β-glucosidase in microreactor. Eng. Life Sci. 19(1), 37–46 (2019)

    Article  CAS  Google Scholar 

  59. A. Jędrzak, T. Rębiś, Ł. Klapiszewski, J. Zdarta, G. Milczarek, T. Jesionowski, Carbon paste electrode based on functional GOx/silica-lignin system to prepare an amperometric glucose biosensor. Sens. Actuators B Chem. 256, 176–185 (2018)

    Article  Google Scholar 

  60. J. Luo, A.S. Meyer, R.V. Mateiu, M. Pinelo, Cascade catalysis in membranes with enzyme immobilization for multi-enzymatic conversion of CO2 to methanol. New Biotechnol. 32(3), 319–327 (2015)

    Article  CAS  Google Scholar 

  61. J.M. Sperl, V. Sieber, Multienzyme cascade reactions—status and recent advances. ACS Catal. 8(3), 2385–2396 (2018)

    Article  CAS  Google Scholar 

  62. C. Schmidt-Dannert, F. Lopez-Gallego, A roadmap for biocatalysis–functional and spatial orchestration of enzyme cascades. Microb. Biotechnol. 9(5), 601–609 (2016)

    Article  Google Scholar 

  63. J. Rocha-Martín, B.L. Rivas, R. Muñoz, J.M. Guisán, F. López-Gallego, Rational co-immobilization of bi-enzyme cascades on porous supports and their applications in bio-redox reactions with insitu recycling of soluble cofactors. ChemCatChem 4(9), 1279–1288 (2012)

    Article  Google Scholar 

  64. J. Rocha-Martin, A. Acosta, J.M. Guisan, F. López-Gallego, Immobilizing systems biocatalysis for the selective oxidation of glycerol coupled to in situ cofactor recycling and hydrogen peroxide elimination. ChemCatChem 7(13), 1939–1947 (2015)

    Article  CAS  Google Scholar 

  65. X. Ji, Z. Su, P. Wang, G. Ma, S. Zhang, Tethering of nicotinamide adenine dinucleotide inside hollow nanofibers for high-yield synthesis of methanol from carbon dioxide catalyzed by coencapsulated multienzymes. ACS Nano. 9(4), 4600–4610 (2015)

    Article  CAS  Google Scholar 

  66. J. Chung, E.T. Hwang, J.H. Kim, B.C. Kim, M.B. Gu, Modular multi-enzyme cascade process using highly stabilized enzyme microbeads. Green Chem. 16(3), 1163–1167 (2014)

    Article  CAS  Google Scholar 

  67. J. Fu, Y.R. Yang, A. Johnson-Buck, M. Liu, Y. Liu, N.G. Walter, N.W. Woodbury, H. Yan, Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm. Nat. Nanotechnol. 9(7), 531 (2014)

    Article  CAS  Google Scholar 

  68. R. Xue, J.M. Woodley, Process technology for multi-enzymatic reaction systems. Bioresour. Technol. 115, 183–195 (2012)

    Article  CAS  Google Scholar 

  69. E. Araya, P. Urrutia, O. Romero, A. Illanes, L. Wilson, Design of combined crosslinked enzyme aggregates (combi-CLEAs) of β-galactosidase and glucose isomerase for the one-pot production of fructose syrup from lactose. Food Chem. 288, 102–107 (2019)

    Article  CAS  Google Scholar 

  70. T.C. Logan, D.S. Clark, T.B. Stachowiak, F. Svec, J.M.J. Fréchet, Photopatterning enzymes on polymer monoliths in microfluidic devices for steady-state kinetic analysis and spatially separated multi-enzyme reactions. Anal. Chem. 79(17), 6592–6598 (2007)

    Article  CAS  Google Scholar 

  71. S. Talekar, A. Pandharbale, M. Ladole, S. Nadar, M. Mulla, K. Japhalekar, K. Pattankude, D. Arage, Carrier free co-immobilization of alpha amylase, glucoamylase and pullulanase as combined cross-linked enzyme aggregates (combi-cleas): a tri-enzyme biocatalyst with one pot starch hydrolytic activity. Bioresour. Technol. 147, 269–275 (2013)

    Article  CAS  Google Scholar 

  72. J.M. Blamey, F. Fischer, H.-P. Meyer, F. Sarmiento, M. Zinn, Enzymatic biocatalysis in chemical transformations: a promising and emerging field in green chemistry practice, in Biotechnology of Microbial Enzymes, ed. by G. Brahmachari, (Elsevier, San Diego, 2017), pp. 347–403

    Chapter  Google Scholar 

  73. M.C. Bryan, P.J. Dunn, D. Entwistle, F. Gallou, S.G. Koenig, J.D. Hayler, M.R. Hickey, S. Hughes, M.E. Kopach, G. Moine, Key green chemistry research areas from a pharmaceutical manufacturers’ perspective revisited. Green Chem. 20(22), 5082–5103 (2018)

    Article  CAS  Google Scholar 

  74. S. Kobayashi, H. Uyama, J.-I. Kadokawa, Enzymatic Polymerization Towards Green Polymer Chemistry (Springer, New York, 2019)

    Book  Google Scholar 

  75. T. Fecker, P. Galaz-Davison, F. Engelberger, Y. Narui, M. Sotomayor, L.P. Parra, C.A. Ramírez-Sarmiento, Active site flexibility as a hallmark for efficient PET degradation by I. sakaiensis PETase. Biophys. J. 114(6), 1302–1312 (2018)

    Article  CAS  Google Scholar 

  76. D.W. Wong, Structure and action mechanism of ligninolytic enzymes. Appl. Biochem. Biotechnol. 157(2), 174–209 (2009)

    Article  CAS  Google Scholar 

  77. J.D.C. Medina, A.L. Woiciechowski, L.R.C. Guimarães, S.G. Karp, C.R. Soccol, 10-Peroxidases, in Current Developments in Biotechnology and Bioengineering, ed. by A. Pandey, S. Negi, C. R. Soccol, (Elsevier, New York, 2017), pp. 217–232

    Chapter  Google Scholar 

  78. J. Rocha-Martin, S. Velasco-Lozano, J.M. Guisán, F. López-Gallego, Oxidation of phenolic compounds catalyzed by immobilized multi-enzyme systems with integrated hydrogen peroxide production. Green Chem. 16(1), 303–311 (2014)

    Article  CAS  Google Scholar 

  79. M. Bilal, T. Rasheed, F. Nabeel, H.M. Iqbal, Y. Zhao, Hazardous contaminants in the environment and their laccase-assisted degradation—a review. J. Environ. Manag. 234, 253–264 (2019)

    Article  CAS  Google Scholar 

  80. W. Chouyyok, J. Panpranot, C. Thanachayanant, S. Prichanont, Effects of pH and pore characters of mesoporous silicas on horseradish peroxidase immobilization. J. Mol. Catal. B Enzym. 56(4), 246–252 (2009)

    Article  CAS  Google Scholar 

  81. N.C. Veitch, Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry 65(3), 249–259 (2004)

    Article  CAS  Google Scholar 

  82. L.G.C. Villegas, N. Mashhadi, M. Chen, D. Mukherjee, K.E. Taylor, N. Biswas, A short review of techniques for phenol removal from wastewater. Curr. Pollut. Rep. 2(3), 157–167 (2016)

    Article  CAS  Google Scholar 

  83. D. Gonzalez-Perez, M. Alcalde, The making of versatile peroxidase by directed evolution. Biocatal. Biotransform. 36(1), 1–11 (2018)

    Article  CAS  Google Scholar 

  84. J. Qi, M.K. Anke, K. Szymańska, D. Tischler, Immobilization of Rhodococcus opacus 1CP azoreductase to obtain azo dye degrading biocatalysts operative at acidic pH. Int. Biodeterior. Biodegrad. 118, 89–94 (2017)

    Article  CAS  Google Scholar 

  85. A.T. Biegunski, A. Michota, J. Bukowska, K. Jackowska, Immobilization of tyrosinase on poly(indole-5-carboxylic acid) evidenced by electrochemical and spectroscopic methods. Bioelectrochemistry 69(1), 41–48 (2006)

    Article  CAS  Google Scholar 

  86. T. Brugnari, M.G. Pereira, G.A. Bubna, E.N. de Freitas, A.G. Contato, R.C.G. Corrêa, R. Castoldi, C.G.M. de Souza, M.L.T. de Moraes, A. Bracht, A highly reusable MANAE-agarose-immobilized Pleurotus ostreatus laccase for degradation of bisphenol A. Sci. Total Environ. 634, 1346–1351 (2018)

    Article  CAS  Google Scholar 

  87. P. Calza, D. Zacchigna, E. Laurenti, Degradation of orange dyes and carbamazepine by soybean peroxidase immobilized on silica monoliths and titanium dioxide. Environ. Sci. Pollut. Res. 23(23), 23742–23749 (2016)

    Article  CAS  Google Scholar 

  88. H.-Y. Chen, S.-H. Wu, C.-T. Chen, Y.-P. Chen, F.-P. Chang, F.-C. Chien, C.-Y. Mou, Horseradish peroxidase-ancapsulated hollow silica nanospheres for intracellular sensing of reactive oxygen species. Nanoscale Res. Lett. 13(1), 123 (2018)

    Article  Google Scholar 

  89. J.K. Gill, V. Orsat, S. Kermasha, Screening trials for the encapsulation of laccase enzymatic extract in silica sol-gel. J. Sol-Gel Sci. Technol. 85(3), 657–663 (2018)

    Article  CAS  Google Scholar 

  90. D. Vishnu, G. Neeraj, R. Swaroopini, R. Shobana, V.V. Kumar, H. Cabana, Synergetic integration of laccase and versatile peroxidase with magnetic silica microspheres towards remediation of biorefinery wastewater. Environ. Sci. Pollut. Res. 24(22), 17993–18009 (2017)

    Article  CAS  Google Scholar 

  91. P. Peralta-Zamora, C.M. Pereira, E.R. Tiburtius, S.G. Moraes, M.A. Rosa, R.C. Minussi, N. Durán, Decolorization of reactive dyes by immobilized laccase. Appl. Catal. B Environ. 42(2), 131–144 (2003)

    Article  CAS  Google Scholar 

  92. F. Shakerian, J. Zhao, S.-P. Li, Recent development in the application of immobilized oxidative enzymes for bioremediation of hazardous micropollutants—a review. Chemosphere 239, 124716 (2019)

    Article  Google Scholar 

  93. K. Golka, S. Kopps, Z.W. Myslak, Carcinogenicity of azo colorants: influence of solubility and bioavailability. Toxicol. Lett. 151(1), 203–210 (2004)

    Article  CAS  Google Scholar 

  94. Y. Lai, F. Wang, Y. Zhang, P. Ou, P. Wu, Q. Fang, S. Li, Z. Chen, Effective removal of methylene blue and orange II by subsequent immobilized laccase decolorization on crosslinked polymethacrylate/carbon nanotubes. Mater. Res. Exp. 6(085541), 1–11 (2019)

    Google Scholar 

  95. S. Akhtar, A.A. Khan, Q. Husain, Potential of immobilized bitter gourd (Momordica charantia) peroxidases in the decolorization and removal of textile dyes from polluted wastewater and dyeing effluent. Chemosphere 60(3), 291–301 (2005)

    Article  CAS  Google Scholar 

  96. S.V. Mohan, K.K. Prasad, N.C. Rao, P. Sarma, Acid azo dye degradation by free and immobilized horseradish peroxidase (HRP) catalyzed process. Chemosphere 58(8), 1097–1105 (2005)

    Article  CAS  Google Scholar 

  97. M. Bilal, H.M.N. Iqbal, H. Hu, W. Wang, X. Zhang, Development of horseradish peroxidase-based cross-linked enzyme aggregates and their environmental exploitation for bioremediation purposes. J. Environ. Manag. 188, 137–143 (2017)

    Article  CAS  Google Scholar 

  98. M. Ahmaruzzaman, Adsorption of phenolic compounds on low-cost adsorbents: a review. Adv. Colloid Interf. Sci. 143(1), 48–67 (2008)

    Article  CAS  Google Scholar 

  99. R. Evans, Revised emergency planning and community right-to-know act (EPCRA), section 313, toxic chemical release reporting for calendar year 1998, Oak Ridge Y-12 Plant, TN (US) (2000)

    Google Scholar 

  100. R. Zhai, B. Zhang, Y. Wan, C. Li, J. Wang, J. Liu, Chitosan–halloysite hybrid-nanotubes: horseradish peroxidase immobilization and applications in phenol removal. Chem. Eng. J. 214, 304–309 (2013)

    Article  CAS  Google Scholar 

  101. S. Wang, H. Fang, Y. Wen, M. Cai, W. Liu, S. He, X. Xu, Applications of HRP-immobilized catalytic beads to the removal of 2,4-dichlorophenol from wastewater. RSC Adv. 5(71), 57286–57292 (2015)

    Article  CAS  Google Scholar 

  102. T. Ahmad, R.M. Aadil, H. Ahmed, U.U. Rahman, B.C.V. Soares, S.L.Q. Souza, T.C. Pimentel, H. Scudino, J.T. Guimarães, E.A. Esmerino, M.Q. Freitas, R.B. Almada, S.M.R. Vendramel, M.C. Silva, A.G. Cruz, Treatment and utilization of dairy industrial waste: a review. Trends Food Sci. Technol. 88, 361–372 (2019)

    Article  CAS  Google Scholar 

  103. B.E. Erickson, Acid whey: is the waste product an untapped goldmine? Chem. Eng. News 95(6), 26–30 (2017)

    Google Scholar 

  104. M. Krewinkel, M. Gosch, E. Rentschler, L. Fischer, Epilactose production by 2 cellobiose 2-epimerases in natural milk. J. Dairy Sci. 97(1), 155–161 (2014)

    Article  CAS  Google Scholar 

  105. Q. Chen, Y. Xiao, W. Zhang, T. Zhang, B. Jiang, T. Stressler, L. Fischer, W. Mu, Current research on cellobiose 2-epimerase: enzymatic properties, mechanistic insights, and potential applications in the dairy industry. Trends Food Sci. Technol. 82, 167–176 (2018)

    Article  CAS  Google Scholar 

  106. J.R. Abril, J.W. Stull, Lactose hydrolysis in acid whey with subsequent glucose isomerisation. J. Sci. Food Agric. 48(4), 511–514 (1989)

    Article  CAS  Google Scholar 

  107. E.A. Arndt, R.L. Wehling, Development of hydrolyzed and hydrolyzed-lsomerized syrups from cheese whey ultrafiltration permeate and their utilization in ice cream. J. Food Sci. 54(4), 880–884 (1989)

    Article  CAS  Google Scholar 

  108. C.P. Chiu, F.V. Kosikowski, Conversion of glucose in lactase-hydrolyzed whey permeate to fructose with immobilized glucose isomerase. J. Dairy Sci. 69(4), 959–964 (1986)

    Article  CAS  Google Scholar 

  109. A. Illanés, Whey upgrading by enzyme biocatalysis. Electron. J. Biotechnol. 14, 6 (2011)

    Article  Google Scholar 

  110. A. Illanes, L. Wilson, L. Raiman, Design of immobilized enzyme reactors for the continuous production of fructose syrup from whey permeate. Bioprocess Eng. 21(6), 509–515 (1999)

    Article  CAS  Google Scholar 

  111. P. Torres, F. Batista-Viera, Immobilized trienzymatic system with enhanced stabilization for the biotransformation of lactose. Molecules 22, 2 (2017)

    Article  Google Scholar 

  112. P.C. Lorenzen, J. Breiter, I. Clawin-Rädecker, A. Dau, A novel bi-enzymatic system for lactose conversion. Int. J. Food Sci. Technol. 48(7), 1396–1403 (2013)

    Article  CAS  Google Scholar 

  113. J.V. Hupkes, R. van Tilburg, Production and properties of an immobilized glucose isomerase. Starch 28(10), 356–360 (1976)

    Article  CAS  Google Scholar 

  114. K. Beerens, T. Desmet, W. Soetaert, Enzymes for the biocatalytic production of rare sugars. J. Ind. Microbiol. Biotechnol. 39(6), 823–834 (2012)

    Article  CAS  Google Scholar 

  115. T. Iida, K. Okuma, Properties of three rare sugars D-psicose, D-allose, D-tagatose and their applications. Oleoscience 13(9), 435–440 (2013)

    Article  CAS  Google Scholar 

  116. J. Jayamuthunagai, G. Srisowmeya, M. Chakravarthy, P. Gautam, D-Tagatose production by permeabilized and immobilized Lactobacillus plantarum using whey permeate. Bioresour. Technol. 235, 250–255 (2017)

    Article  CAS  Google Scholar 

  117. Z. Xu, S. Li, F. Fu, G. Li, X. Feng, H. Xu, P. Ouyang, Production of D-tagatose, a functional sweetener, utilizing alginate immobilized Lactobacillus fermentum CGMCC2921 cells. Appl. Biochem. Biotechnol. 166(4), 961–973 (2012)

    Article  CAS  Google Scholar 

  118. C. Bertoldo, G. Antranikian, Starch-hydrolyzing enzymes from thermophilic archaea and bacteria. Curr. Opin. Chem. Biol. 6(2), 151–160 (2002)

    Article  CAS  Google Scholar 

  119. A.V. Presecki, Z.F. Blazevic, D. Vasic-Racki, Complete starch hydrolysis by the synergistic action of amylase and glucoamylase: impact of calcium ions. Bioprocess Biosyst. Eng. 36(11), 1555–1562 (2013)

    Article  CAS  Google Scholar 

  120. K. Gupta, A.K. Jana, S. Kumar, M. Maiti, Immobilization of α-amylase and amyloglucosidase onto ion-exchange resin beads and hydrolysis of natural starch at high concentration. Bioprocess Biosyst. Eng. 36(11), 1715–1724 (2013)

    Article  CAS  Google Scholar 

  121. D. Park, S. Haam, K. Jang, I.S. Ahn, W.S. Kim, Immobilization of starch-converting enzymes on surface-modified carriers using single and co-immobilized systems: properties and application to starch hydrolysis. Process Biochem. 40(1), 53–61 (2005)

    Article  CAS  Google Scholar 

  122. I. Roy, M.N. Gupta, Hydrolysis of starch by a mixture of glucoamylase and pullulanase entrapped individually in calcium alginate beads. Enzym. Microb. Technol. 34(1), 26–32 (2004)

    Article  CAS  Google Scholar 

  123. M. Soleimani, A. Khani, K. Najafzadeh, α-Amylase immobilization on the silica nanoparticles for cleaning performance towards starch soils in laundry detergents. J. Mol. Catal. B Enzym. 74(1–2), 1–5 (2012)

    Article  CAS  Google Scholar 

  124. M. Salgaonkar, S.S. Nadar, V.K. Rathod, Combi-metal organic framework (Combi-MOF) of α-amylase and glucoamylase for one pot starch hydrolysis. Int. J. Biol. Macromol. 113, 464–475 (2018)

    Article  CAS  Google Scholar 

  125. N.A. Edama, A. Sulaiman, K.H.K. Hamid, S.N.A. Rahim, A.S. Baharuddin, M.N. Mokhtar, Encapsulation of multi-enzymes on waste clay material: preparation, characterization and application for tapioca starch hydrolysis. Appl. Mech. Mater. 548–549, 77–82 (2014)

    Article  Google Scholar 

  126. S. Talekar, A. Joshi, S. Kambale, S. Jadhav, S. Nadar, M. Ladole, A tri-enzyme magnetic nanobiocatalyst with one pot starch hydrolytic activity. Chem. Eng. J. 325, 80–90 (2017)

    Article  CAS  Google Scholar 

  127. M. Roberfroid, Prebiotics: the concept revisited. J. Nutr. 137(3), 830S–837S (2007)

    Article  CAS  Google Scholar 

  128. G. Tzortzis, J. Vulevic, Galacto-oligosaccharide prebiotics, in Prebiotics and Probiotics Science and Technology, ed. by D. Charalampopoulos, R. A. Rastall, (Springer, New York, 2009), pp. 207–244

    Chapter  Google Scholar 

  129. A. Gosling, G.W. Stevens, A.R. Barber, S.E. Kentish, S.L. Gras, Recent advances refining galactooligosaccharide production from lactose. Food Chem. 121(2), 307–318 (2010)

    Article  CAS  Google Scholar 

  130. H. Yin, J.B. Bultema, L. Dijkhuizen, S.S. van Leeuwen, Reaction kinetics and galactooligosaccharide product profiles of the β-galactosidases from Bacillus circulans, Kluyveromyces lactis and Aspergillus oryzae. Food Chem. 225, 230–238 (2017)

    Article  CAS  Google Scholar 

  131. A.R. Park, D.K. Oh, Galacto-oligosaccharide production using microbial β-galactosidase: current state and perspectives. Appl. Microbiol. Biotechnol. 85(5), 1279–1286 (2010)

    Article  CAS  Google Scholar 

  132. D.P. Torres, M. Gonçalves, J.A. Teixeira, L.R. Rodrigues, Galacto-oligosaccharides: production, properties, applications, and significance as prebiotics. Compr. Rev. Food Sci. Food Saf. 9(5), 438–454 (2010)

    Article  CAS  Google Scholar 

  133. M.A. Boon, A.E.M. Janssen, K. Van’t Riet, Effect of temperature and enzyme origin on the enzymatic synthesis of oligosaccharides. Enzym. Microb. Technol. 26(2–4), 271–281 (2000)

    Article  CAS  Google Scholar 

  134. P. Urrutia, B. Rodriguez-Colinas, L. Fernandez-Arrojo, A.O. Ballesteros, L. Wilson, A. Illanes, F.J. Plou, Detailed analysis of galactooligosaccharides synthesis with β-galactosidase from Aspergillus oryzae. J. Agric. Food Chem. 61(5), 1081–1087 (2013)

    Article  CAS  Google Scholar 

  135. R.E. Huber, G. Kurz, K. Wallenfels, A quantitation of the factors which affect the hydrolase and transgalactosylase activities of β-galactosidase (E. coli) on lactose. Biochemistry 15(9), 1994–2001 (1976)

    Article  CAS  Google Scholar 

  136. C.W. Chen, C.C. Ou-Yang, C.W. Yeh, Synthesis of galactooligosaccharides and transgalactosylation modeling in reverse micelles. Enzym. Microb. Technol. 33(4), 497–507 (2003)

    Article  CAS  Google Scholar 

  137. S.X. Chen, D.Z. Wei, Z.H. Hu, Synthesis of galacto-oligosaccharides in AOT/isooctane reverse micelles by β-galactosidase. J. Mol. Catal. B Enzym. 16(2), 109–114 (2001)

    Article  Google Scholar 

  138. R. Gaur, H. Pant, R. Jain, S.K. Khare, Galacto-oligosaccharide synthesis by immobilized Aspergillus oryzae β-galactosidase. Food Chem. 97(3), 426–430 (2006)

    Article  CAS  Google Scholar 

  139. C. Guerrero, C. Aburto, S. Suárez, C. Vera, A. Illanes, Effect of the type of immobilization of β-galactosidase on the yield and selectivity of synthesis of transgalactosylated oligosaccharides. Biocatal. Agric. Biotechnol. 16, 353–363 (2018)

    Article  Google Scholar 

  140. L.M. Huerta, C. Vera, C. Guerrero, L. Wilson, A. Illanes, Synthesis of galacto-oligosaccharides at very high lactose concentrations with immobilized β-galactosidases from Aspergillus oryzae. Process Biochem. 46(1), 245–252 (2011)

    Article  CAS  Google Scholar 

  141. M.P. Klein, C.R. Hackenhaar, A.S.G. Lorenzoni, R.C. Rodrigues, T.M.H. Costa, J.L. Ninow, P.F. Hertz, Chitosan crosslinked with genipin as support matrix for application in food process: support characterization and β-d-galactosidase immobilization. Carbohydr. Polym. 137, 184–190 (2016)

    Article  CAS  Google Scholar 

  142. S. Suárez, C. Guerrero, C. Vera, A. Illanes, Effect of particle size and enzyme load on the simultaneous reactions of lactose hydrolysis and transgalactosylation with glyoxyl-agarose immobilized β-galactosidase from Aspergillus oryzae. Process Biochem. 73, 56–64 (2018)

    Article  Google Scholar 

  143. P. Urrutia, C. Bernal, L. Wilson, A. Illanes, Use of chitosan heterofunctionality for enzyme immobilization: β-galactosidase immobilization for galacto-oligosaccharide synthesis. Int. J. Biol. Macromol. 116, 182–193 (2018)

    Article  CAS  Google Scholar 

  144. T. Yovcheva, T. Vasileva, A. Viraneva, D. Cholev, I. Bodurov, M. Marudova, V. Bivolarski, I. Iliev, Effect of immobilization conditions on the properties of β-galactosidase immobilized in xanthan/chitosan multilayers. Int. J. Phys. Conf. Ser. (2017). https://doi.org/10.1088/1742-6596/794/1/012032

  145. P. Urrutia, C. Bernal, S. Escobar, C. Santa, M. Mesa, L. Wilson, A. Illanes, Influence of chitosan derivatization on its physicochemical characteristics and its use as enzyme support. J. Appl. Polym. Sci. 131, 8 (2014)

    Article  Google Scholar 

  146. P. Urrutia, C. Mateo, J.M. Guisan, L. Wilson, A. Illanes, Immobilization of Bacillus circulans β-galactosidase and its application in the synthesis of galacto-oligosaccharides under repeated-batch operation. Biochem. Eng. J. 77, 41–48 (2013)

    Article  CAS  Google Scholar 

  147. C. Giacomini, A. Villarino, L. Franco-Fraguas, F. Batista-Viera, Immobilization of β-galactosidase from Kluyveromyces lactis on silica and agarose: comparison of different methods. J. Mol. Catal. B Enzym. 4(5–6), 313–327 (1998)

    Article  CAS  Google Scholar 

  148. M.P. Klein, L.P. Fallavena, J.D.N. Schöffer, M.A.Z. Ayub, R.C. Rodrigues, J.L. Ninow, P.F. Hertz, High stability of immobilized β-D-galactosidase for lactose hydrolysis and galactooligosaccharides synthesis. Carbohydr. Polym. 95(1), 465–470 (2013)

    Article  CAS  Google Scholar 

  149. Z. Mozaffar, K. Nakanishi, R. Matsuno, Continuous production of galacto-oligosaccharides from lactose using immobilized β-galactosidase from Bacillus circulans. Appl. Microbiol. Biotechnol. 25(3), 224–228 (1986)

    CAS  Google Scholar 

  150. Z. Mozaffar, K. Nakanishi, R. Matsuno, Mechanism for reversible inactivation of immobilized β-galactosidase from Bacillus circulans during continuous production of galacto-oligosaccharides. Appl. Microbiol. Biotechnol. 25(3), 229–231 (1986)

    CAS  Google Scholar 

  151. K. Banjanac, M. Carević, M. Ćorović, A. Milivojević, N. Prlainović, A. Marinković, D. Bezbradica, Novel β-galactosidase nanobiocatalyst systems for application in the synthesis of bioactive galactosides. RSC Adv. 6(99), 97216–97225 (2016)

    Article  CAS  Google Scholar 

  152. I. González-Delgado, Y. Segura, G. Morales, M.J. López-Muñoz, Production of high galacto-oligosaccharides by Pectinex Ultra SP-L: optimization of reaction conditions and immobilization on glyoxyl-functionalized silica. J. Agric. Food Chem. 65(8), 1649–1658 (2017)

    Article  Google Scholar 

  153. M. Misson, X. Du, B. Jin, H. Zhang, Dendrimer-like nanoparticles based β-galactosidase assembly for enhancing its selectivity toward transgalactosylation. Enzym. Microb. Technol. 84, 68–77 (2016)

    Article  CAS  Google Scholar 

  154. C. Guerrero, C. Vera, F. Plou, A. Illanes, Influence of reaction conditions on the selectivity of the synthesis of lactulose with microbial β-galactosidases. J. Mol. Catal. B Enzym. 72(3–4), 206–212 (2011)

    Article  CAS  Google Scholar 

  155. P.S. Panesar, S. Kumari, Lactulose: production, purification and potential applications. Biotechnol. Adv. 29(6), 940–948 (2011)

    Article  CAS  Google Scholar 

  156. R. Benavente, B.C. Pessela, J.A. Curiel, B. De Las Rivas, R. Muñoz, J.M. Guisán, J.M. Mancheño, A. Cardelle-Cobas, A.I. Ruiz-Matute, N. Corzo, Improving properties of a novel β-galactosidase from Lactobacillus plantarum by covalent immobilization. Molecules 20(5), 7874–7889 (2015)

    Article  CAS  Google Scholar 

  157. A. Cardelle-Cobas, A. Olano, G. Irazoqui, C. Giacomini, F. Batista-Viera, N. Corzo, M. Corzo-Martínez, Synthesis of oligosaccharides derived from lactulose (OsLu) using soluble and immobilized Aspergillus oryzae β-galactosidase. Front. Bioeng. Biotechnol. 4, 21 (2016)

    Article  Google Scholar 

  158. C. Guerrero, F. Valdivia, C. Ubilla, N. Ramírez, M. Gómez, C. Aburto, C. Vera, A. Illanes, Continuous enzymatic synthesis of lactulose in packed-bed reactor with immobilized Aspergillus oryzae β-galactosidase. Bioresour. Technol. 278, 296–302 (2019)

    Article  CAS  Google Scholar 

  159. C. Guerrero, C. Vera, N. Serna, A. Illanes, Immobilization of Aspergillus oryzae β-galactosidase in an agarose matrix functionalized by four different methods and application to the synthesis of lactulose. Bioresour. Technol. 232, 53–63 (2017)

    Article  CAS  Google Scholar 

  160. C. Guerrero, C. Vera, A. Illanes, Synthesis of lactulose in batch and repeated-batch operation with immobilized β-galactosidase in different agarose functionalized supports. Bioresour. Technol. 230, 56–66 (2017)

    Article  CAS  Google Scholar 

  161. V.D. Nguyen, G. Styevkó, L.P. Ta, A.T.M. Tran, E. Bujna, P. Orbán, M.S. Dam, Q.D. Nguyen, Immobilization and some properties of commercial enzyme preparation for production of lactulose-based oligosaccharides. Food Bioprod. Process. 107, 97–103 (2018)

    Article  CAS  Google Scholar 

  162. Y.S. Song, Y.J. Suh, C. Park, S.W. Kim, Improvement of lactulose synthesis through optimization of reaction conditions with immobilized β-galactosidase. Korean J. Chem. Eng. 30(1), 160–165 (2013)

    Article  CAS  Google Scholar 

  163. O.J. Concha, M.E. Zúñiga Hansen, Enzymatic depolymerization of sugar beet pulp: production and characterization of pectin and pectic-oligosaccharides as a potential source for functional carbohydrates. Chem. Eng. J. 192, 29–36 (2012)

    Article  Google Scholar 

  164. S. Baldassarre, N. Babbar, S. Van Roy, W. Dejonghe, M. Maesen, S. Sforza, K. Elst, Continuous production of pectic oligosaccharides from onion skins with an enzyme membrane reactor. Food Chem. 267, 101–110 (2018)

    Article  CAS  Google Scholar 

  165. Y.A. Ramírez-Tapias, A.S. Lapasset Laumann, C.N. Britos, C.W. Rivero, J.A. Trelles, Saccharification of citrus wastes by immobilized polygalacturonase in an improved alginate matrix. 3 Biotech 7(6), 380 (2017)

    Article  Google Scholar 

  166. C.S. Raina, S. Singh, A.S. Bawa, D.C. Saxena, Some characteristics of acetylated, cross-linked and dual modified Indian rice starches. Eur. Food Res. Technol. 223(4), 561–570 (2006)

    Article  CAS  Google Scholar 

  167. E. Rudnik, G. Matuschek, N. Milanov, A. Kettrup, Thermal properties of starch succinates. Thermochim. Acta 427(1–2), 163–166 (2005)

    Article  CAS  Google Scholar 

  168. S. Chakraborty, B. Sahoo, I. Teraoka, L.M. Miller, R.A. Gross, Enzyme-catalyzed regioselective modification of starch nanoparticles. Macromolecules 38(1), 61–68 (2005)

    Article  CAS  Google Scholar 

  169. H. Horchani, M. Chaâbouni, Y. Gargouri, A. Sayari, Solvent-free lipase-catalyzed synthesis of long-chain starch esters using microwave heating: optimization by response surface methodology. Carbohydr. Polym. 79(2), 466–474 (2010)

    Article  CAS  Google Scholar 

  170. M. Perwez, M.J. Ahmed, M. Sardar, Preparation and characterization of reusable magnetic combi-CLEA of cellulase and hemicellulase. Enzym. Microb. Technol. 131, 109389 (2019)

    Article  CAS  Google Scholar 

  171. K. Periyasamy, L. Santhalembi, G. Mortha, M. Aurousseau, A. Boyer, S. Subramanian, Bioconversion of lignocellulosic biomass to fermentable sugars by immobilized magnetic cellulolytic enzyme cocktails. Langmuir 34(22), 6546–6555 (2018)

    Article  CAS  Google Scholar 

  172. J. Wang, K. Li, Y. He, Y. Wang, X. Han, Y. Yan, Enhanced performance of lipase immobilized onto Co2+-chelated magnetic nanoparticles and its application in biodiesel production. Fuel 255, 115794 (2019)

    Article  CAS  Google Scholar 

  173. H. Zhang, Y. Zou, Y. Shen, X. Gao, X. Zheng, X. Zhang, Y. Chen, J. Guo, Dominated effect analysis of the channel size of silica support materials on the catalytic performance of immobilized lipase catalysts in the transformation of unrefined waste cooking oil to biodiesel. Bioenergy Res. 7(4), 1541–1549 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carminna Ottone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ottone, C., Romero, O., Urrutia, P., Bernal, C., Illanes, A., Wilson, L. (2021). Enzyme Biocatalysis and Sustainability. In: Piumetti, M., Bensaid, S. (eds) Nanostructured Catalysts for Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-58934-9_14

Download citation

Publish with us

Policies and ethics