Skip to main content

Immunopathology and Immunotherapy of Central Nervous System Cancer

  • Chapter
  • First Online:
Cancer Immunology

Abstract

Cancers of the central nervous system (CNS) are unique both in the immunopathology underlying their development and in the challenges they present to designing effective immune-based therapeutic strategies. The immune response in the CNS has fundamental differences from that seen elsewhere in the organism. Moreover, a series of evasion mechanisms have been described for CNS tumors, which limit effective recognition and effective antitumoral cytotoxic responses by the immune system. A series of therapeutic approaches are currently being developed for enhancing and focusing the immune system to elicit and enhance a therapeutic antitumoral response. In this chapter, an overview of the intricacies of the immune system in the CNS within the context of tumor immunology is presented. In addition, some of the most salient immunotherapeutic advances for treatment of CNS tumors are explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davis FG, Freels S, Grutsch J, Barlas S, Brem S. Survival rates in patients with primary malignant brain tumors stratified by patient age and tumor histological type: an analysis based on Surveillance, Epidemiology, and End Results (SEER) data, 1973–1991. J Neurosurg. 1998;88:1–10.

    Article  CAS  PubMed  Google Scholar 

  2. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10:459–66.

    Article  CAS  PubMed  Google Scholar 

  3. Parney IF. Basic concepts in glioma immunology. In: Yamanaka R, editor. Glioma. New York: Springer; 2012. p. 42–52.

    Chapter  Google Scholar 

  4. Harling-Berg C, Hallett J, Park J, Knopf P. Hierarchy of immune responses to antigen in the normal brain. In: Protective and pathological immune responses in the CNS. Berlin/New York: Springer; 2002. p. 1–22.

    Google Scholar 

  5. Gehrmann J, Banati R, Wiessnert C, Hossmann KA, Kreutzberg G. Reactive microglia in cerebral ischaemia: an early mediator of tissue damage? Neuropathol Appl Neurobiol. 1995;21:277–89.

    Article  CAS  PubMed  Google Scholar 

  6. Flavell K, Murray P. Hodgkin's disease and the Epstein-Barr virus. Mol Pathol. 2000;53:262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJ, Peto J, Meijer CJ, Muñoz N. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol. 1999;189:12–9.

    Article  CAS  PubMed  Google Scholar 

  8. Cobbs CS, Harkins L, Samanta M, Gillespie GY, Bharara S, King PH, Nabors LB, Cobbs CG, Britt WJ. Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res. 2002;62:3347–50.

    CAS  PubMed  Google Scholar 

  9. Fabry Z, Raine CS, Hart MN. Nervous tissue as an immune compartment: the dialect of the immune response in the CNS. Immunol Today. 1994;15:218–24.

    Article  CAS  PubMed  Google Scholar 

  10. Beschorner R, Nguyen TD, Gözalan F, Pedal I, Mattern R, Schluesener HJ, Meyermann R, Schwab JM. CD14 expression by activated parenchymal microglia/macrophages and infiltrating monocytes following human traumatic brain injury. Acta Neuropathol. 2002;103:541–9.

    Article  CAS  PubMed  Google Scholar 

  11. Owens T, Renno T, Taupin V, Krakowski M. Inflammatory cytokines in the brain: does the CNS shape immune responses? Immunol Today. 1994;15:566–71.

    Article  CAS  PubMed  Google Scholar 

  12. Ling EA, Wong WC. The origin and nature of ramified and amoeboid microglia: a historical review and current concepts. Glia. 1993;7:9–18.

    Article  CAS  PubMed  Google Scholar 

  13. Goldmann J, Kwidzinski E, Brandt C, Mahlo J, Richter D, Bechmann I. T cells traffic from brain to cervical lymph nodes via the cribroid plate and the nasal mucosa. J Leukoc Biol. 2006;80:797–801.

    Article  CAS  PubMed  Google Scholar 

  14. Cserr HF, Knopf PM. Cervical lymphatics, the blood-brain barrier and the immunoreactivity of the brain: a new view. Immunol Today. 1992;13:507–12.

    Article  CAS  PubMed  Google Scholar 

  15. Weller RO, Engelhardt B, Phillips MJ. Lymphocyte targeting of the central nervous system: a review of afferent and efferent CNS-immune pathways. Brain Pathol. 1996;6:275–88.

    Article  CAS  PubMed  Google Scholar 

  16. Brabb T, Von Dassow P, Ordonez N, Schnabel B, Duke B, Goverman J. In situ tolerance within the central nervous system as a mechanism for preventing autoimmunity. J Exp Med. 2000;192:871–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Heimberger AB, Sampson JH. Immunotherapy coming of age: what will it take to make it standard of care for glioblastoma? Neuro-Oncology. 2010;13:3–13.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Li W, Graeber MB. The molecular profile of microglia under the influence of glioma. Neuro-Oncology. 2012;14:958–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Quattrocchi KB, Miller CH, Cush S, Bernard SA, Dull ST, Smith M, Gudeman S, Varia MA. Pilot study of local autologous tumor infiltrating lymphocytes for the treatment of recurrent malignant gliomas. J Neuro-Oncol. 1999;45:141–57.

    Article  CAS  Google Scholar 

  20. Gigliotti F, Lee D, Insel RA, Scheld WM. IgG penetration into the cerebrospinal fluid in a rabbit model of meningitis. J Infect Dis. 1987;156:394–8.

    Article  CAS  PubMed  Google Scholar 

  21. Stemmler H-J, Schmitt M, Willems A, Bernhard H, Harbeck N, Heinemann V. Ratio of trastuzumab levels in serum and cerebrospinal fluid is altered in HER2-positive breast cancer patients with brain metastases and impairment of blood–brain barrier. Anti-Cancer Drugs. 2007;18:23–8.

    Article  CAS  PubMed  Google Scholar 

  22. Sonabend AM, Rolle CE, Lesniak MS. The role of regulatory T cells in malignant glioma. Anticancer Res. 2008;28:1143–50.

    PubMed  Google Scholar 

  23. Kostianovsky AM, Maier LM, Anderson RC, Bruce JN, Anderson DE. Astrocytic regulation of human monocytic/microglial activation. J Immunol. 2008;181:5425–32.

    Article  CAS  PubMed  Google Scholar 

  24. Kennedy BC, Showers CR, Anderson DE, Anderson L, Canoll P, Bruce JN, Anderson RC. Tumor-associated macrophages in glioma: friend or foe? J Oncol. 2013;2013:486912. https://doi.org/10.1155/2013/486912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Conti A, Gulì C, La Torre D, Tomasello C, Angileri FF, Aguennouz MH. Role of inflammation and oxidative stress mediators in gliomas. Cancers. 2010;2:693–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dunwiddie TV. The physiological role of adenosine in the central nervous system. Int Rev Neurobiol. 1985;27:63–139. Elsevier

    Article  CAS  PubMed  Google Scholar 

  27. Dunn GP, Fecci PE, Curry WT. Cancer immunoediting in malignant glioma. Neurosurgery. 2012;71:201–23.

    Article  PubMed  Google Scholar 

  28. Anderson RC, Anderson DE, Elder JB, Brown MD, Mandigo CE, Parsa AT, Goodman RR, McKhann GM, Sisti MB, Bruce JN. Lack of B7 expression, not human leukocyte antigen expression, facilitates immune evasion by human malignant gliomas. Neurosurgery. 2007;60:1129–36.

    Article  PubMed  Google Scholar 

  29. Badie B, Bartley B, Schartner J. Differential expression of MHC class II and B7 costimulatory molecules by microglia in rodent gliomas. J Neuroimmunol. 2002;133:39–45.

    Article  CAS  PubMed  Google Scholar 

  30. Schartner JM, Hagar AR, Van Handel M, Zhang L, Nadkarni N, Badie B. Impaired capacity for upregulation of MHC class II in tumor-associated microglia. Glia. 2005;51:279–85.

    Article  PubMed  Google Scholar 

  31. Wintterle S, Schreiner B, Mitsdoerffer M, Schneider D, Chen L, Meyermann R, Weller M, Wiendl H. Expression of the B7-related molecule B7-H1 by glioma cells: a potential mechanism of immune paralysis. Cancer Res. 2003;63:7462–7.

    CAS  PubMed  Google Scholar 

  32. Kjellman C, Olofsson SP, Hansson O, Von Schantz T, Lindvall M, Nilsson I, Salford LG, Sjögren HO, Widegren B. Expression of TGF-β isoforms, TGF-β receptors, and SMAD molecules at different stages of human glioma. Int J Cancer. 2000;89:251–8.

    Article  CAS  PubMed  Google Scholar 

  33. Merzak A, McCrea S, Koocheckpour S, Pilkington G. Control of human glioma cell growth, migration and invasion in vitro by transforming growth factor β 1. Br J Cancer. 1994;70:199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Payner T, Leaver HA, Knapp B, Whittle IR, Trifan OC, Miller S, Rizzo MT. Microsomal prostaglandin E synthase-1 regulates human glioma cell growth via prostaglandin E2–dependent activation of type II protein kinase A. Mol Cancer Ther. 2006;5:1817–26.

    Article  CAS  PubMed  Google Scholar 

  35. Badie B, Schartner J. Role of microglia in glioma biology. Microsc Res Tech. 2001;54:106–13.

    Article  CAS  PubMed  Google Scholar 

  36. Jansen T, Tyler B, Mankowski JL, Recinos VR, Pradilla G, Legnani F, Laterra J, Olivi A. FasL gene knock-down therapy enhances the antiglioma immune response. Neuro-Oncology. 2010;12:482–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Wagner S, Czub S, Greif M, Vince GH, Süss N, Kerkau S, Rieckmann P, Roggendorf W, Roosen K, Tonn JC. Microglial/macrophage expression of interleukin 10 in human glioblastomas. Int J Cancer. 1999;82:12–6.

    Article  CAS  PubMed  Google Scholar 

  38. Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 2004;4:71.

    Article  CAS  PubMed  Google Scholar 

  39. Wainwright DA, Sengupta S, Han Y, Lesniak MS. Thymus-derived rather than tumor-induced regulatory T cells predominate in brain tumors. Neuro-Oncology. 2011;13:1308–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Mitsuka K, Kawataki T, Satoh E, Asahara T, Horikoshi T, Kinouchi H. Expression of indoleamine 2, 3-dioxygenase and correlation with pathological malignancy in gliomas. Neurosurgery. 2013;72:1031–9.

    Article  PubMed  Google Scholar 

  41. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res. 2004;64:7011–21.

    Article  CAS  PubMed  Google Scholar 

  42. Wu A, Oh S, Gharagozlou S, Vedi RN, Ericson K, Low WC, Chen W, Ohlfest JR. In vivo vaccination with tumor cell lysate plus CpG oligodeoxynucleotides eradicates murine glioblastoma. J Immunother. 2007;30:789–97.

    Article  CAS  PubMed  Google Scholar 

  43. Hatiboglu MA, Wei J, Wu ASG, Heimberger AB. Immune therapeutic targeting of glioma cancer stem cells. Target Oncol. 2010;5:217–27.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ji B, Chen Q, Liu B, Wu L, Tian D, Guo Z, Yi W. Glioma stem cell-targeted dendritic cells as a tumor vaccine against malignant glioma. Yonsei Med J. 2013;54:92–100.

    Article  CAS  PubMed  Google Scholar 

  45. Badie B, Schartner JM. Flow cytometric characterization of tumor-associated macrophages in experimental gliomas. Neurosurgery. 2000;46:957–62.

    CAS  PubMed  Google Scholar 

  46. Komohara Y, Ohnishi K, Kuratsu J, Takeya M. Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J Pathol. 2008;216:15–24.

    Article  CAS  PubMed  Google Scholar 

  47. Rodrigues JC, Gonzalez GC, Zhang L, Ibrahim G, Kelly JJ, Gustafson MP, Lin Y, Dietz AB, Forsyth PA, Yong VW. Normal human monocytes exposed to glioma cells acquire myeloid-derived suppressor cell-like properties. Neuro-Oncology. 2009;12:351–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Boehm U, Klamp T, Groot M, Howard J. Cellular responses to interferon-gamma. Annu Rev Immunol. 1997;15:749–95.

    Article  CAS  PubMed  Google Scholar 

  49. Filipazzi P, Huber V, Rivoltini L. Phenotype, function and clinical implications of myeloid-derived suppressor cells in cancer patients. Cancer Immunol Immunother. 2012;61:255–63.

    Article  CAS  PubMed  Google Scholar 

  50. Lowther DE, Hafler DA. Regulatory T cells in the central nervous system. Immunol Rev. 2012;248:156–69.

    Article  PubMed  Google Scholar 

  51. Andaloussi AE, Lesniak MS. An increase in CD4+ CD25+ FOXP3+ regulatory T cells in tumor-infiltrating lymphocytes of human glioblastoma multiforme. Neuro-Oncology. 2006;8:234–43.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Heimberger AB, Abou-Ghazal M, Reina-Ortiz C, Yang DS, Sun W, Qiao W, Hiraoka N, Fuller GN. Incidence and prognostic impact of FoxP3+ regulatory T cells in human gliomas. Clin Cancer Res. 2008;14:5166–72.

    Article  CAS  PubMed  Google Scholar 

  53. Sonabend AM, Dana K, Lesniak MS. Targeting epidermal growth factor receptor variant III: a novel strategy for the therapy of malignant glioma. Expert Rev Anticancer Ther. 2007;7:S45–50.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang L, Alizadeh D, Van Handel M, Kortylewski M, Yu H, Badie B. Stat3 inhibition activates tumor macrophages and abrogates glioma growth in mice. Glia. 2009;57:1458–67.

    Article  PubMed  Google Scholar 

  55. Schaefer LK, Menter DG, Schaefer TS. Activation of stat3 and stat1 DNA binding and transcriptional activity in human brain tumour cell lines by gp130 cytokines. Cell Signal. 2000;12:143–51.

    Article  CAS  PubMed  Google Scholar 

  56. Wang T, Niu G, Kortylewski M, Burdelya L, Shain K, Zhang S, Bhattacharya R, Gabrilovich D, Heller R, Coppola D. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med. 2004;10:48.

    Article  PubMed  CAS  Google Scholar 

  57. Sherry MM, Reeves A, Wu JK, Cochran BH. STAT3 is required for proliferation and maintenance of multipotency in glioblastoma stem cells. Stem Cells. 2009;27:2383–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Brantley EC, Benveniste EN. Signal transducer and activator of transcription-3: a molecular hub for signaling pathways in gliomas. Mol Cancer Res. 2008;6:675–84.

    Article  CAS  PubMed  Google Scholar 

  59. Mitchell DA, Cui X, Schmittling RJ, Sanchez-Perez L, Snyder DJ, Congdon KL, Archer GE, Desjardins A, Friedman AH, Friedman HS. Monoclonal antibody blockade of IL-2 receptor α during lymphopenia selectively depletes regulatory T cells in mice and humans. Blood. 2011;118:3003–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sissons J, Carmichael A. Clinical aspects and management of cytomegalovirus infection. J Infect. 2002;44:78–83.

    Article  CAS  PubMed  Google Scholar 

  61. Cinatl J Jr, Vogel J-U, Kotchetkov R, Wilhelm Doerr H. Oncomodulatory signals by regulatory proteins encoded by human cytomegalovirus: a novel role for viral infection in tumor progression. FEMS Microbiol Rev. 2004;28:59–77.

    Article  CAS  PubMed  Google Scholar 

  62. Kossmann T, Morganti-Kossmann MC, Orenstein JM, Britt WJ, Wahl SM, Smith PD. Cytomegalovirus production by infected astrocytes correlates with transforming growth factor-β release. J Infect Dis. 2003;187:534–41.

    Article  CAS  PubMed  Google Scholar 

  63. Reddehase MJ. The immunogenicity of human and murine cytomegaloviruses. Curr Opin Immunol. 2000;12:390–6.

    Article  CAS  PubMed  Google Scholar 

  64. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–70.

    Article  CAS  PubMed  Google Scholar 

  65. Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases—elimination, equilibrium and escape. Curr Opin Immunol. 2014;27:16–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ruiz J, Cotorruelo J, Tudela V, Ullate P, Val-Bernal F, de Francisco A, Zubimendi J, Prieto M, Canga E, Arias M. Transmission of glioblastoma multiforme to two kidney transplant recipients from the same donor in the absence of ventricular shunt. Transplantation. 1993;55:682.

    Article  CAS  PubMed  Google Scholar 

  67. Pellegatta S, Cuppini L, Finocchiaro G. Brain cancer immunoediting: novel examples provided by immunotherapy of malignant gliomas. Expert Rev Anticancer Ther. 2011;11:1759–74.

    Article  CAS  PubMed  Google Scholar 

  68. Arrieta VA, Cacho-Díaz B, Zhao J, Rabadan R, Chen L, Sonabend AM. The possibility of cancer immune editing in gliomas. A critical review. Oncoimmunology. 2018;7:e1445458. https://doi.org/10.1080/2162402X.2018.1445458.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med. 2004;10:909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dillman RO, Duma CM, Schiltz PM, DePriest C, Ellis RA, Okamoto K, Beutel LD, de Leon C, Chico S. Intracavitary placement of autologous lymphokine-activated killer (LAK) cells after resection of recurrent glioblastoma. J Immunother. 2004;27:398–404.

    Article  PubMed  Google Scholar 

  71. Xu X, Stockhammer F, Schmitt M. Cellular-based immunotherapies for patients with glioblastoma multiforme. Clin Dev Immunol. 2012;2012

    Google Scholar 

  72. Sonabend AM, Ogden AT, Maier LM, Anderson DE, Canoll P, Bruce JN, Anderson RC. Medulloblasoma: challenges for effective immunotherapy. J Neuro-Oncol. 2012;108:1–10.

    Article  CAS  Google Scholar 

  73. Sloan AE, Dansey R, Zamorano L, Barger G, Hamm C, Diaz F, Baynes R, Wood G. Adoptive immunotherapy in patients with recurrent malignant glioma: preliminary results of using autologous whole-tumor vaccine plus granulocyte-macrophage colony–stimulating factor and adoptive transfer of anti-CD3–activated lymphocytes. Neurosurg Focus. 2000;9:1–8.

    Article  Google Scholar 

  74. Wykosky J, Gibo DM, Stanton C, Debinski W. Interleukin-13 receptor α2, EphA2, and Fos-related antigen 1 as molecular denominators of high-grade astrocytomas and specific targets for combinatorial therapy. Clin Cancer Res. 2008;14:199–208.

    Article  CAS  PubMed  Google Scholar 

  75. Dillman RO, Duma CM, Ellis RA, Cornforth AN, Schiltz PM, Sharp SL, DePriest MC. Intralesional lymphokine-activated killer cells as adjuvant therapy for primary glioblastoma. J Immunother. 2009;32:914–9.

    Article  PubMed  Google Scholar 

  76. Sankhla SK, Nadkarni J, Bhagwati S. Adoptive immunotherapy using lymphokine-activated killer (LAK) cells and interleukin-2 for recurrent malignant primary brain tumors. J Neuro-Oncol. 1996;27:133–40.

    Article  CAS  Google Scholar 

  77. Nitta T, Yagita H, Okumura K, Sato K, Ishii S. Preliminary trial of specific targeting therapy against malignant glioma. Lancet. 1990;335:368–71.

    Article  CAS  PubMed  Google Scholar 

  78. Barba D, Saris SC, Holder C, Rosenberg SA, Oldfield EH. Intratumoral LAK cell and interleukin-2 therapy of human gliomas. J Neurosurg. 1989;70:175–82.

    Article  CAS  PubMed  Google Scholar 

  79. Boiardi A, Silvani A, Ruffini PA, Rivoltini L, Parmiani G, Broggi G, Salmaggi A. Loco-regional immunotherapy with recombinant interleukin-2 and adherent lymphokine-activated killer cells (A-LAK) in recurrent glioblastoma patients. Cancer Immunol Immunother. 1994;39:193–7.

    Article  CAS  PubMed  Google Scholar 

  80. Boiardi A, Bartolomei M, Silvani A, Eoli M, Salmaggi A, Lamperti E, Milanesi I, Botturi A, Rocca P, Bodei L. Intratumoral delivery of mitoxantrone in association with 90-Y radioimmunotherapy (RIT) in recurrent glioblastoma. J Neuro-Oncol. 2005;72:125–31.

    Article  CAS  Google Scholar 

  81. Kruse CA, Cepeda L, Owens B, Johnson SD, Stears J, Lillehei KO. Treatment of recurrent glioma with intracavitary alloreactive cytotoxic T lymphocytes and interleukin-2. Cancer Immunol Immunother. 1997;45:77–87.

    Article  CAS  PubMed  Google Scholar 

  82. Plautz GE, Barnett GH, Miller DW, Cohen BH, Prayson RA, Krauss JC, Luciano M, Kangisser DB, Shu S. Systemic T cell adoptive immunotherapy of malignant gliomas. J Neurosurg. 1998;89:42–51.

    Article  CAS  PubMed  Google Scholar 

  83. Jeffes EW III, Beamer YB, Jacques S, Silberman RS, Vayuvegula B, Gupta S, Coss JS, Yamamoto RS, Granger GA. Therapy of recurrent high grade gliomas with surgery, and autologous mitogen activated IL-2 stimulated killer (MAK) lymphocytes: I. Enhancement of MAK lytic activity and cytokine production by PHA and clinical use of PHA. J Neuro-Oncol. 1993;15:141–55.

    Article  Google Scholar 

  84. Ishikawa E, Tsuboi K, Saijo K, Harada H, Takano S, Nose T, Ohno T. Autologous natural killer cell therapy for human recurrent malignant glioma. Anticancer Res. 2004;24:1861–71.

    PubMed  Google Scholar 

  85. Hayes RL, Koslow M, Hiesiger EM, Hymes KB, Hochster HS, Moore EJ, Pierz DM, Chen DK, Budzilovich GN, Ransohoff J. Improved long term survival after intracavitary interleukin-2 and lymphokine-activated killer cells for adults with recurrent malignant glioma. Cancer. 1995.); published online EpubSep;76:840–52. https://doi.org/10.1002/1097-0142(19950901)76:5<840::aid-cncr2820760519>3.0.co;2-r.

    Article  CAS  PubMed  Google Scholar 

  86. Lillehei KO, Mitchell DH, Johnson SD, McCleary EL, Kruse CA. Long-term follow-up of patients with recurrent malignant gliomas treated with adjuvant adoptive immunotherapy. Neurosurgery. 1991.); published online EpubJan;28:16–23. https://doi.org/10.1097/00006123-199101000-00003.

    Article  CAS  PubMed  Google Scholar 

  87. Merchant RE, Grant AJ, Merchant LH, Young HF. Adoptive immunotherapy for recurrent glioblastoma multiforme using lymphokine activated killer cells and recombinant interleukin-2. Cancer. 1988.); published online EpubAug;62:665–71. https://doi.org/10.1002/1097-0142(19880815)62:4<665::aid-cncr2820620403>3.0.co;2-o.

    Article  CAS  PubMed  Google Scholar 

  88. Clavreul A, Piard N, Tanguy J-Y, Gamelin E, Rousselet M-C, Leynia P, Menei P. Autologous tumor cell vaccination plus infusion of GM-CSF by a programmable pump in the treatment of recurrent malignant gliomas. J Clin Neurosci. 2010;17:842–8.

    Article  CAS  PubMed  Google Scholar 

  89. Wu A, Wiesner S, Xiao J, Ericson K, Chen W, Hall WA, Low WC, Ohlfest JR. Expression of MHC I and NK ligands on human CD133+ glioma cells: possible targets of immunotherapy. J Neuro-Oncol. 2007;83:121–31.

    Article  CAS  Google Scholar 

  90. Sobol R, Fakhrai H, Shawler D, Gjerset R, Dorigo O, Carson C, Khaleghi T, Koziol J, Shiftan T, Royston I. Interleukin-2 gene therapy in a patient with glioblastoma. Gene Ther. 1995;2:164–7.

    CAS  PubMed  Google Scholar 

  91. Okada H, Lieberman FS, Edington HD, Witham TF, Wargo MJ, Cai Q, Elder EH, Whiteside TL, Schold SC, Pollack IF. Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of recurrent glioblastoma: preliminary observations in a patient with a favorable response to therapy. J Neuro-Oncol. 2003;64:13–20.

    Google Scholar 

  92. Parney IF, Chang L-J, Farr-Jones MA, Hao C, Smylie M, Petruk KC. Technical hurdles in a pilot clinical trial of combined B7-2 and GM-CSF immunogene therapy for glioblastomas and melanomas. J Neuro-Oncol. 2006;78:71–80.

    Article  CAS  Google Scholar 

  93. Andrews DW, Resnicoff M, Flanders AE, Kenyon L, Curtis M, Merli G, Baserga R, Iliakis G, Aiken RD. Results of a pilot study involving the use of an antisense oligodeoxynucleotide directed against the insulin-like growth factor type I receptor in malignant astrocytomas. J Clin Oncol. 2001;19:2189–200.

    Article  CAS  PubMed  Google Scholar 

  94. Steiner HH, Bonsanto MM, Beckhove P, Brysch M, Geletneky K, Ahmadi R, Schuele-Freyer R, Kremer P, Ranaie G, Matejic D. Antitumor vaccination of patients with glioblastoma multiforme: a pilot study to assess feasibility, safety, and clinical benefit. J Clin Oncol. 2004;22:4272–81.

    Article  PubMed  Google Scholar 

  95. Yu JS, Wheeler CJ, Zeltzer PM, Ying H, Finger DN, Lee PK, Yong WH, Incardona F, Thompson RC, Riedinger MS, Zhang W, Prins RM, Black KL. Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res. 2001;61:842–7. published online EpubFeb 1

    CAS  PubMed  Google Scholar 

  96. Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature. 2007;449:419.

    Article  CAS  PubMed  Google Scholar 

  97. John SY, Liu G, Ying H, Yong WH, Black KL, Wheeler CJ. Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res. 2004;64:4973–9.

    Article  Google Scholar 

  98. Prins RM, Soto H, Konkankit V, Odesa SK, Eskin A, Yong WH, Nelson SF, Liau LM. Gene expression profile correlates with T-cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy. Clin Cancer Res. 2011;17:1603–15.

    Article  CAS  PubMed  Google Scholar 

  99. Wheeler CJ, Black KL, Liu G, Mazer M, Zhang X-x, Pepkowitz S, Goldfinger D, Ng H, Irvin D, John SY. Vaccination elicits correlated immune and clinical responses in glioblastoma multiforme patients. Cancer Res. 2008;68:5955–64.

    Article  CAS  PubMed  Google Scholar 

  100. Okada H, Kalinski P, Ueda R, Hoji A, Kohanbash G, Donegan TE, Mintz AH, Engh JA, Bartlett DL, Brown CK. Induction of CD8+ T-cell responses against novel glioma–associated antigen peptides and clinical activity by vaccinations with α-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol. 2011;29:330.

    Article  CAS  PubMed  Google Scholar 

  101. Yamanaka R, Homma J, Yajima N, Tsuchiya N, Sano M, Kobayashi T, Yoshida S, Abe T, Narita M, Takahashi M. Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: results of a clinical phase I/II trial. Clin Cancer Res. 2005;11:4160–7.

    Article  CAS  PubMed  Google Scholar 

  102. Fadul CE, Fisher JL, Hampton TH, Lallana EC, Li Z, Gui J, Szczepiorkowski ZM, Tosteson TD, Rhodes CH, Wishart HA. Immune response in patients with newly diagnosed glioblastoma multiforme treated with intranodal autologous tumor lysate-dendritic cell vaccination after radiation chemotherapy. J Immunother (Hagerstown, MD: 1997). 2011;34:382.

    Article  CAS  Google Scholar 

  103. Ardon H, Van Gool S, Lopes IS, Maes W, Sciot R, Wilms G, Demaerel P, Bijttebier P, Claes L, Goffin J. Integration of autologous dendritic cell-based immunotherapy in the primary treatment for patients with newly diagnosed glioblastoma multiforme: a pilot study. J Neuro-Oncol. 2010;99:261–72.

    Article  CAS  Google Scholar 

  104. Ardon H, De Vleeschouwer S, Van Calenbergh F, Claes L, Kramm CM, Rutkowski S, Wolff JE, Van Gool SW. Adjuvant dendritic cell-based tumour vaccination for children with malignant brain tumours. Pediatr Blood Cancer. 2010;54:519–25.

    Article  PubMed  Google Scholar 

  105. Sampson JH, Archer GE, Mitchell DA, Heimberger AB, Herndon JE, Lally-Goss D, McGehee-Norman S, Paolino A, Reardon DA, Friedman AH. An epidermal growth factor receptor variant III–targeted vaccine is safe and immunogenic in patients with glioblastoma multiforme. Mol Cancer Ther. 2009;8:2773–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. De Vleeschouwer S, Fieuws S, Rutkowski S, Van Calenbergh F, Van Loon J, Goffin J, Sciot R, Wilms G, Demaerel P, Warmuth-Metz M. Postoperative adjuvant dendritic cell–based immunotherapy in patients with relapsed glioblastoma multiforme. Clin Cancer Res. 2008;14:3098–104.

    Article  PubMed  Google Scholar 

  107. Liau LM, Prins RM, Kiertscher SM, Odesa SK, Kremen TJ, Giovannone AJ, Lin J-W, Chute DJ, Mischel PS, Cloughesy TF. Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res. 2005;11:5515–25.

    Article  CAS  PubMed  Google Scholar 

  108. Kikuchi T, Akasaki Y, Abe T, Fukuda T, Saotome H, Ryan JL, Kufe DW, Ohno T. Vaccination of glioma patients with fusions of dendritic and glioma cells and recombinant human interleukin 12. J Immunother. 2004;27:452–9.

    Article  CAS  PubMed  Google Scholar 

  109. Caruso DA, Orme LM, Neale AM, Radcliff FJ, Amor GM, Maixner W, Downie P, Hassall TE, Tang ML, Ashley DM. Results of a phase 1 study utilizing monocyte-derived dendritic cells pulsed with tumor RNA in children and young adults with brain cancer. Neuro-Oncology. 2004;6:236–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wheeler CJ, Das A, Liu G, John SY, Black KL. Clinical responsiveness of glioblastoma multiforme to chemotherapy after vaccination. Clin Cancer Res. 2004;10:5316–26.

    Article  CAS  PubMed  Google Scholar 

  111. Yamanaka R, Abe T, Yajima N, Tsuchiya N, Homma J, Kobayashi T, Narita M, Takahashi M, Tanaka R. Vaccination of recurrent glioma patients with tumour lysate-pulsed dendritic cells elicits immune responses: results of a clinical phase I/II trial. Br J Cancer. 2003;89:1172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Prins RM, Wang X, Soto H, Young E, Lisiero DN, Fong B, Everson R, Yong WH, Lai A, Li G. Comparison of glioma-associated antigen peptide-loaded versus autologous tumor lysate-loaded dendritic cell vaccination in malignant glioma patients. J Immunother (Hagerstown, MD: 1997). 2013;36:152.

    CAS  Google Scholar 

  113. Moscatello DK, Ramirez G, Wong AJ. A naturally occurring mutant human epidermal growth factor receptor as a target for peptide vaccine immunotherapy of tumors. Cancer Res. 1997;57:1419–24.

    CAS  PubMed  Google Scholar 

  114. Lateef SS, Gupta S, Jayathilaka LP, Krishnanchettiar S, Huang J-S, Lee B-S. An improved protocol for coupling synthetic peptides to carrier proteins for antibody production using DMF to solubilize peptides. J Biomol Tech. 2007;18:173.

    PubMed  PubMed Central  Google Scholar 

  115. Chang DZ, Lomazow W, Joy Somberg C, Stan R, Perales M-A. Granulocyte-macrophage colony stimulating factor: an adjuvant for cancer vaccines. Hematology. 2004;9:207–15.

    Article  CAS  PubMed  Google Scholar 

  116. Aparicio S, Caldas C. The implications of clonal genome evolution for cancer medicine. N Engl J Med. 2013;368:842–51.

    Article  CAS  PubMed  Google Scholar 

  117. Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, Mellman I, Prindiville SA, Viner JL, Weiner LM. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res. 2009;15:5323–37.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Ekstrand AJ, James CD, Cavenee WK, Seliger B, Pettersson RF, Collins VP. Genes for epidermal growth factor receptor, transforming growth factor α, and epidermal growth factor and their expression in human gliomas in vivo. Cancer Res. 1991;51:2164–72.

    CAS  PubMed  Google Scholar 

  119. Lallier TE. Cell lineage and cell migration in the neural crest. Ann N Y Acad Sci. 1991;615:158–71.

    Article  CAS  PubMed  Google Scholar 

  120. KURAMOTO T. Detection of MAGE-1 tumor antigen in brain tumor. Kurume Med J. 1997;44:43–51.

    Article  CAS  PubMed  Google Scholar 

  121. Sasaki M, Nakahira K, Kawano Y, Katakura H, Yoshimine T, Shimizu K, Kim SU, Ikenaka K. MAGE-E1, a new member of the melanoma-associated antigen gene family and its expression in human glioma. Cancer Res. 2001;61:4809–14.

    CAS  PubMed  Google Scholar 

  122. Kurpad SN, Zhao XG, Wikstrand CJ, Batra SK, McLendon RE, Bigner DD. Tumor antigens in astrocytic gliomas. Glia. 1995;15:244–56.

    Article  CAS  PubMed  Google Scholar 

  123. Okada H, Kohanbash G, Zhu X, Kastenhuber ER, Hoji A, Ueda R, Fujita M. Immunotherapeutic approaches for glioma. Crit Rev™ Immunol. 2009;29:1–42.

    Article  CAS  Google Scholar 

  124. Liu G, John SY, Zeng G, Yin D, Xie D, Black KL, Ying H. AIM-2: a novel tumor antigen is expressed and presented by human glioma cells. J Immunother. 2004;27:220–6.

    Article  CAS  PubMed  Google Scholar 

  125. Abdouh M, Facchino S, Chatoo W, Balasingam V, Ferreira J, Bernier G. BMI1 sustains human glioblastoma multiforme stem cell renewal. J Neurosci. 2009;29:8884–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Shono T, Tofilon PJ, Bruner JM, Owolabi O, Lang FF. Cyclooxygenase-2 expression in human gliomas: prognostic significance and molecular correlations. Cancer Res. 2001;61:4375–81.

    CAS  PubMed  Google Scholar 

  127. Saikali S, Avril T, Collet B, Hamlat A, Bansard J-Y, Drenou B, Guegan Y, Quillien V. Expression of nine tumour antigens in a series of human glioblastoma multiforme: interest of EGFRvIII, IL-13Rα2, gp100 and TRP-2 for immunotherapy. J Neuro-Oncol. 2007;81:139–48.

    Article  CAS  Google Scholar 

  128. Driggers L, Zhang J-G, Newcomb EW, Ge L, Hoa N, Jadus MR. Immunotherapy of pediatric brain tumor patients should include an immunoprevention strategy: a medical hypothesis paper. J Neuro-Oncol. 2010;97:159–69.

    Article  Google Scholar 

  129. Orzan F, Pellegatta S, Poliani P, Pisati F, Caldera V, Menghi F, Kapetis D, Marras C, Schiffer D, Finocchiaro G. Enhancer of Zeste 2 (EZH2) is up-regulated in malignant gliomas and in glioma stem-like cells. Neuropathol Appl Neurobiol. 2011;37:381–94.

    Article  CAS  PubMed  Google Scholar 

  130. Cheng L, Wu Q, Guryanova OA, Huang Z, Huang Q, Rich JN, Bao S. Elevated invasive potential of glioblastoma stem cells. Biochem Biophys Res Commun. 2011;406:643–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Jin F, Zhao L, Guo Y-J, Zhao W-J, Zhang H, Wang H-T, Shao T, Zhang S-L, Wei Y-J, Feng J. Influence of Etoposide on anti-apoptotic and multidrug resistance-associated protein genes in CD133 positive U251 glioblastoma stem-like cells. Brain Res. 2010;1336:103–11.

    Article  CAS  PubMed  Google Scholar 

  132. Kuan C-T, Wakiya K, Herndon JE, Lipp ES, Pegram CN, Riggins GJ, Rasheed A, Szafranski SE, McLendon RE, Wikstrand CJ. MRP3: a molecular target for human glioblastoma multiforme immunotherapy. BMC Cancer. 2010;10:468.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Ishiwata T, Teduka K, Yamamoto T, Kawahara K, Matsuda Y, Naito Z. Neuroepithelial stem cell marker nestin regulates the migration, invasion and growth of human gliomas. Oncol Rep. 2011;26:91–9.

    CAS  PubMed  Google Scholar 

  134. Ligon KL, Alberta JA, Kho AT, Weiss J, Kwaan MR, Nutt CL, Louis DN, Stiles CD, Rowitch DH. The oligodendroglial lineage marker OLIG2 is universally expressed in diffuse gliomas. J Neuropathol Exp Neurol. 2004;63:499–509.

    Article  CAS  PubMed  Google Scholar 

  135. Xu G, Jiang XD, Xu Y, Zhang J, Huang FH, Chen ZZ, Zhou DX, Shang JH, Zou YX, Cai YQ. Adenoviral-mediated interleukin-18 expression in mesenchymal stem cells effectively suppresses the growth of glioma in rats. Cell Biol Int. 2009;33:466–74.

    Article  CAS  PubMed  Google Scholar 

  136. Zhang JG, Kruse CA, Driggers L, Hoa N, Wisoff J, Allen JC, Zagzag D, Newcomb EW, Jadus MR. Tumor antigen precursor protein profiles of adult and pediatric brain tumors identify potential targets for immunotherapy. J Neuro-Oncol. 2008;88:65–76.

    Article  Google Scholar 

  137. Rossi M, Magnoni L, Miracco C, Mori E, Tosi P, Pirtoli L, Tini P, Oliveri G, Cosci E, Bakker A. β-catenin and Gli1 are prognostic markers in glioblastoma. Cancer Biol Ther. 2011;11:753–61.

    Article  PubMed  Google Scholar 

  138. Cui D, Xu Q, Wang K, Che X. Gli1 is a potential target for alleviating multidrug resistance of gliomas. J Neurol Sci. 2010;288:156–66.

    Article  CAS  PubMed  Google Scholar 

  139. Senetta R, Miracco C, Lanzafame S, Chiusa L, Caltabiano R, Galia A, Stella G, Cassoni P. Epidermal growth factor receptor and caveolin-1 coexpression identifies adult supratentorial ependymomas with rapid unfavorable outcomes. Neuro-Oncology. 2010;13:176–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Sivaparvathi M, Sawaya R, Wang SW, Rayford A, Yamamoto M, Liottat LA, Nicolson GL, Rao JS. Overexpression and localization of cathepsin B during the progression of human gliomas. Clin Exp Metastasis. 1995;13:49–56.

    Article  CAS  PubMed  Google Scholar 

  141. Kitange GJ, Carlson BL, Schroeder MA, Decker PA, Morlan BW, Wu W, Ballman KV, Giannini C, Sarkaria JN. Expression of CD74 in high grade gliomas: a potential role in temozolomide resistance. J Neuro-Oncol. 2010;100:177–86.

    Article  CAS  Google Scholar 

  142. Lewis-Tuffin LJ, Rodriguez F, Giannini C, Scheithauer B, Necela BM, Sarkaria JN, Anastasiadis PZ. Misregulated E-cadherin expression associated with an aggressive brain tumor phenotype. PLoS One. 2010;5:e13665.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Scarcella DL, Chow C, Gonzales MF, Economou C, Brasseur F, Ashley DM. Expression of MAGE and GAGE in high-grade brain tumors: a potential target for specific immunotherapy and diagnostic markers. Clin Cancer Res. 1999;5:335–41.

    CAS  PubMed  Google Scholar 

  144. Mennel H, Lell B. Ganglioside (GD 2) expression and intermediary filaments in astrocytic tumors. Clin Neuropathol. 2005;24:13–8.

    CAS  PubMed  Google Scholar 

  145. Yamamoto H, Swoger J, Greene S, Saito T, Hurh J, Sweeley C, Leestma J, Mkrdichian E, Cerullo L, Nishikawa A. β1, 6-N-acetylglucosamine-bearing N-glycans in human gliomas: implications for a role in regulating invasivity. Cancer Res. 2000;60:134–42.

    CAS  PubMed  Google Scholar 

  146. Kogiku M, Ohsawa I, Matsumoto K, Sugisaki Y, Takahashi H, Teramoto A, Ohta S. Prognosis of glioma patients by combined immunostaining for survivin, Ki-67 and epidermal growth factor receptor. J Clin Neurosci. 2008;15:1198–203.

    Article  CAS  PubMed  Google Scholar 

  147. Persson O, Salford LG, Fransson J, Widegren B, Borrebaeck CA, Holmqvist B. Distribution, cellular localization, and therapeutic potential of the tumor-associated antigen Ku70/80 in glioblastoma multiforme. J Neuro-Oncol. 2010;97:207–15.

    Article  CAS  Google Scholar 

  148. Bao L, Dunham K, Lucas K. MAGE-A1, MAGE-A3, and NY-ESO-1 can be upregulated on neuroblastoma cells to facilitate cytotoxic T lymphocyte-mediated tumor cell killing. Cancer Immunol Immunother. 2011;60:1299.

    Article  CAS  PubMed  Google Scholar 

  149. Zhang JG, Eguchi J, Kruse CA, Gomez GG, Fakhrai H, Schroter S, Ma W, Hoa N, Minev B, Delgado C. Antigenic profiling of glioma cells to generate allogeneic vaccines or dendritic cell–based therapeutics. Clin Cancer Res. 2007;13:566–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Elsir T, Eriksson A, Orrego A, Lindström MS, Nistér M. Expression of PROX1 Is a common feature of high-grade malignant astrocytic gliomas. J Neuropathol Exp Neurol. 2010;69:129–38.

    Article  CAS  PubMed  Google Scholar 

  151. Geiger K, Hendruschk S, Rieber E, Morgenroth A, Weigle B, Juratli T, Senner V, Schackert G, Temme A. The prostate stem cell antigen represents a novel glioma-associated antigen. Oncol Rep. 2011;26:13–21.

    CAS  PubMed  Google Scholar 

  152. Ferletta M, Uhrbom L, Olofsson T, Pontén F, Westermark B. Sox10 has a broad expression pattern in gliomas and enhances platelet-derived growth factor-B–induced gliomagenesis. Mol Cancer Res. 2007;5:891–7.

    Article  CAS  PubMed  Google Scholar 

  153. Schmitz M, Wehner R, Stevanovic S, Kiessling A, Rieger MA, Temme A, Bachmann M, Rieber EP, Weigle B. Identification of a naturally processed T cell epitope derived from the glioma-associated protein SOX11. Cancer Lett. 2007;245:331–6.

    Article  CAS  PubMed  Google Scholar 

  154. Gondi CS, Lakka SS, Dinh DH, Olivero WC, Gujrati M, Rao JS. RNAi-mediated inhibition of cathepsin B and uPAR leads to decreased cell invasion, angiogenesis and tumor growth in gliomas. Oncogene. 2004;23:8486.

    Article  CAS  PubMed  Google Scholar 

  155. Wykosky J, Gibo DM, Stanton C, Debinski W. EphA2 as a novel molecular marker and target in glioblastoma multiforme. Mol Cancer Res. 2005;3:541–51.

    Article  CAS  PubMed  Google Scholar 

  156. Ekstrand AJ, Longo N, Hamid ML, Olson JJ, Liu L, Collins VP, James CD. Functional characterization of an EGF receptor with a truncated extracellular domain expressed in glioblastomas with EGFR gene amplification. Oncogene. 1994;9:2313–20.

    CAS  PubMed  Google Scholar 

  157. Heimberger AB, Hlatky R, Suki D, Yang D, Weinberg J, Gilbert M, Sawaya R, Aldape K. Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastoma multiforme patients. Clin Cancer Res. 2005;11:1462–6.

    Article  CAS  PubMed  Google Scholar 

  158. Choi BD, Chen KS, Sampson JH. Tumors of the central nervous system, vol. 1. Dordrecht: Springer; 2011. p. 349–56.

    Google Scholar 

  159. Heimberger AB, Hussain S, Aldape K, Sawaya R, Archer G, Friedman H, Reardon D, Friedman A, Bigner D, Sampson J. Tumor-specific peptide vaccination in newly-diagnosed patients with GBM. J Clin Oncol. 2006;24:2529.

    Article  Google Scholar 

  160. Schmittling RJ, Archer GE, Mitchell DA, Heimberger A, Pegram C, Herndon JE II, Friedman HS, Bigner DD, Sampson JH. Detection of humoral response in patients with glioblastoma receiving EGFRvIII-KLH vaccines. J Immunol Methods. 2008;339:74–81.

    Article  CAS  PubMed  Google Scholar 

  161. Sampson J, Archer G, Bigner D, Davis T, Friedman H, Keler T, Mitchell D, Reardon D, Sawaya R, Heimberger A. Effect of EGFRvIII-targeted vaccine (CDX-110) on immune response and TTP when given with simultaneous standard and continuous temozolomide in patients with GBM. J Clin Oncol. 2008;26:2011.

    Article  Google Scholar 

  162. De AM. Heat shock proteins: facts, thoughts, and dreams. Shock (Augusta, GA). 1999;11:1–12.

    Google Scholar 

  163. Nishikawa M, Takemoto S, Takakura Y. Heat shock protein derivatives for delivery of antigens to antigen presenting cells. Int J Pharm. 2008;354:23–7.

    Article  CAS  PubMed  Google Scholar 

  164. Belli F, Testori A, Rivoltini L, Maio M, Andreola G, Sertoli MR, Gallino G, Piris A, Cattelan A, Lazzari I. Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: clinical and immunologic findings. J Clin Oncol. 2002;20:4169–80.

    Article  CAS  PubMed  Google Scholar 

  165. Bogdahn U, Hau P, Stockhammer G, Venkataramana N, Mahapatra A, Suri AA, Balasubramaniam A, Nair S, Oliushine V, Parfenov V. Targeted therapy for high-grade glioma with the TGF-β2 inhibitor trabedersen: results of a randomized and controlled phase IIb study. Neuro Oncol. 2010;13:132–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Yang I, Fang S, Parsa AT. Heat shock proteins in glioblastomas. Neurosurg Clin. 2010;21:111–23.

    Article  Google Scholar 

  167. Crane CA, Han SJ, Ahn B, Oehlke J, Kivett V, Fedoroff A, Butowski N, Chang SM, Clarke J, Berger MS. Individual patient-specific immunity against high-grade glioma after vaccination with autologous tumor derived peptides bound to the 96 KD chaperone protein. Clin Cancer Res. 2013;19:205–14.

    Article  CAS  PubMed  Google Scholar 

  168. Morantz RA, Wood GW, Foster M, Clark M, Gollahon K. Macrophages in experimental and human brain tumors: part 2: studies of the macrophage content of human brain tumors. J Neurosurg. 1979;50:305–11.

    Article  CAS  PubMed  Google Scholar 

  169. Morse JH, Turcotte JG, Merion RM, Campbell DA Jr, Burtch GD, Lucey MR. Development of a malignant tumor in a liver transplant graft procured from a donor with a cerebral neoplasm. Transplantation. 1990;50:875–6.

    Article  CAS  PubMed  Google Scholar 

  170. Buckner JC, Schomberg PJ, McGinnis WL, Cascino TL, Scheithauer BW, O'Fallon JR, Morton RF, Kuross SA, Mailliard JA, Hatfield AK. A phase III study of radiation therapy plus carmustine with or without recombinant interferon-α in the treatment of patients with newly diagnosed high-grade glioma. Cancer: Interdiscip Int J Am Cancer Soc. 2001;92:420–33.

    Article  CAS  Google Scholar 

  171. Olson JJ, McKenzie E, Skurski-Martin M, Zhang Z, Brat D, Phuphanich S. Phase I analysis of BCNU-impregnated biodegradable polymer wafers followed by systemic interferon alfa-2b in adults with recurrent glioblastoma multiforme. J Neuro-Oncol. 2008;90:293.

    Article  CAS  Google Scholar 

  172. Tabatabai G, Frank B, Möhle R, Weller M, Wick W. Irradiation and hypoxia promote homing of haematopoietic progenitor cells towards gliomas by TGF-β-dependent HIF-1α-mediated induction of CXCL12. Brain. 2006;129:2426–35.

    Article  PubMed  Google Scholar 

  173. Ehrhart E, Segarini P, Tsang M, Carroll AG, Barcellos-Hoff M-H. Latent transforming growth factor beta1 activation in situ: quantitative and functional evidence after low-dose gamma-irradiation. FASEB J. 1997;11:991–1002.

    Article  CAS  PubMed  Google Scholar 

  174. Schlingensiepen KH, Jaschinski F, Lang SA, Moser C, Geissler EK, Schlitt HJ, Kielmanowicz M, Schneider A. Transforming growth factor-beta 2 gene silencing with trabedersen (AP 12009) in pancreatic cancer. Cancer Sci. 2011;102:1193–200.

    Article  CAS  PubMed  Google Scholar 

  175. Jaschinski F, Rothhammer T, Jachimczak P, Seitz C, Schneider A, Schlingensiepen K-H. The antisense oligonucleotide trabedersen (AP 12009) for the targeted inhibition of TGF-β2. Curr Pharm Biotechnol. 2011;12:2203–13.

    Article  CAS  PubMed  Google Scholar 

  176. Gansbacher B, Zier K, Daniels B, Cronin K, Bannerji R, Gilboa E. Interleukin 2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity. J Exp Med. 1990;172:1217–24.

    Article  CAS  PubMed  Google Scholar 

  177. Colombo F, Barzon L, Franchin E, Pacenti M, Pinna V, Danieli D, Zanusso M, Palu G. Combined HSV-TK/IL-2 gene therapy in patients with recurrent glioblastoma multiforme: biological and clinical results. Cancer Gene Ther. 2005;12:835.

    Article  CAS  PubMed  Google Scholar 

  178. Fecci PE, Sweeney AE, Grossi PM, Nair SK, Learn CA, Mitchell DA, Cui X, Cummings TJ, Bigner DD, Gilboa E. Systemic anti-CD25 monoclonal antibody administration safely enhances immunity in murine glioma without eliminating regulatory T cells. Clin Cancer Res. 2006;12:4294–305.

    Article  CAS  PubMed  Google Scholar 

  179. Kohm AP, McMahon JS, Podojil JR, Begolka WS, DeGutes M, Kasprowicz DJ, Ziegler SF, Miller SD. Cutting Edge: anti-CD25 monoclonal antibody injection results in the functional inactivation, not depletion, of CD4+ CD25+ T regulatory cells. J Immunol. 2006;176:3301–5.

    Article  CAS  PubMed  Google Scholar 

  180. Jacobs JF, Punt CJ, Lesterhuis WJ, Sutmuller RP, Brouwer HM-LH, Scharenborg NM, Klasen IS, Hilbrands LB, Figdor CG, de Vries IJM. Dendritic cell vaccination in combination with anti-CD25 monoclonal antibody treatment: a phase I/II study in metastatic melanoma patients. Clin Cancer Res. 2010;16:5067–78.

    Article  CAS  PubMed  Google Scholar 

  181. Sampson JH, Schmittling RJ, Archer GE, Congdon KL, Nair SK, Reap EA, Desjardins A, Friedman AH, Friedman HS, Herndon JE II. A pilot study of IL-2Rα blockade during lymphopenia depletes regulatory T-cells and correlates with enhanced immunity in patients with glioblastoma. PLoS One. 2012;7:e31046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Yang M-Y, Zetler PM, Prins RM, Khan-Farooqi H, Liau LM. Immunotherapy for patients with malignant glioma: from theoretical principles to clinical applications. Expert Rev Neurother. 2006;6:1481–94. https://doi.org/10.1586/14737175.6.10.1481.

    Article  CAS  PubMed  Google Scholar 

  183. Hanaei S, Afshari K, Hirbod-Mobarakeh A, Mohajer B, Dastmalchi DA, Rezaei N. Therapeutic efficacy of specific immunotherapy for glioma: a systematic review and meta-analysis. Rev Neurosci. 2018;29:443–61.

    Article  CAS  PubMed  Google Scholar 

  184. Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE, Yung WK, Paleologos N, Nicholas MK, Jensen R, Vredenburgh J, Huang J, Zheng M, Cloughesy T. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol. 2009.); published online EpubOct;27:4733–40. https://doi.org/10.1200/JCO.2008.19.8721.

    Article  CAS  PubMed  Google Scholar 

  185. Kreisl TN, Kim L, Moore K, Duic P, Royce C, Stroud I, Garren N, Mackey M, Butman JA, Camphausen K, Park J, Albert PS, Fine HA. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol. 2009.); published online EpubFeb;27:740–5. https://doi.org/10.1200/JCO.2008.16.3055.

    Article  CAS  PubMed  Google Scholar 

  186. Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, Colman H, Chakravarti A, Pugh S, Won M, Jeraj R, Brown PD, Jaeckle KA, Schiff D, Stieber VW, Brachman DG, Werner-Wasik M, Tremont-Lukats IW, Sulman EP, Aldape KD, Curran WJ, Mehta MP. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014.); published online EpubFeb;370:699–708. https://doi.org/10.1056/NEJMoa1308573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018.); published online Epub03;359:1350–5. https://doi.org/10.1126/science.aar4060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Huang C, Zhu HX, Yao Y, Bian ZH, Zheng YJ, Li L, Moutsopoulos HM, Gershwin ME, Lian ZX. Immune checkpoint molecules. Possible future therapeutic implications in autoimmune diseases. J Autoimmun. 2019.); published online EpubNov;104:102333. https://doi.org/10.1016/j.jaut.2019.102333.

    Article  CAS  PubMed  Google Scholar 

  189. Reardon DA, Omuro A, Brandes AA, Rieger J, Wick A, Sepulveda J, Phuphanich S, de Souza P, Ahluwalia M, Lim SM, Vlahovic G, Sampson J. Neuro Oncol. 2017;19:iii21. (Abstract)

    Article  PubMed Central  Google Scholar 

  190. Arrieta VA, Iwamoto F, Lukas RV, Sachdev S, Rabadan R, Sonabend AM. Can patient selection and neoadjuvant administration resuscitate PD-1 inhibitors for glioblastoma? J Neurosurg. 2019.); published online EpubDec;132:1667–72. https://doi.org/10.3171/2019.9.JNS192523.

    Article  PubMed  Google Scholar 

  191. Desjardins A, Reardon DA, Herndon JE, Marcello J, Quinn JA, Rich JN, Sathornsumetee S, Gururangan S, Sampson J, Bailey L. Bevacizumab plus irinotecan in recurrent WHO grade 3 malignant gliomas. Clin Cancer Res. 2008;14:7068–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Drappatz J, Lee E, Hammond S, Grimm S, Norden A, Beroukhim R, Gerard M, Schiff D, Chi A, Batchelor T. Phase I study of panobinostat in combination with bevacizumab for recurrent high-grade glioma. J Neuro-Oncol. 2012;107:133–8.

    Article  CAS  Google Scholar 

  193. Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE, Yung WA, Paleologos N, Nicholas MK, Jensen R. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol. 2009;27:4733–40.

    Article  CAS  PubMed  Google Scholar 

  194. Gururangan S, Chi SN, Poussaint TY, Onar-Thomas A, Gilbertson RJ, Vajapeyam S, Friedman HS, Packer RJ, Rood BN, Boyett JM. Lack of efficacy of bevacizumab plus irinotecan in children with recurrent malignant glioma and diffuse brainstem glioma: a Pediatric Brain Tumor Consortium study. J Clin Oncol. 2010;28:3069–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Hofer S, Elandt K, Greil R, Hottinger AF, Huber U, Lemke D, Marosi C, Ochsenbein A, Pichler J, Roelcke U. Clinical outcome with bevacizumab in patients with recurrent high-grade glioma treated outside clinical trials. Acta Oncol. 2011;50:630–5.

    Article  CAS  PubMed  Google Scholar 

  196. Lorgis V, Maura G, Coppa G, Hassani K, Taillandier L, Chauffert B, Apetoh L, Ladoire S, Ghiringhelli F. Relation between bevacizumab dose intensity and high-grade glioma survival: a retrospective study in two large cohorts. J Neuro-Oncol. 2012;107:351–8.

    Article  CAS  Google Scholar 

  197. Burkhardt J-K, Riina H, Shin BJ, Christos P, Kesavabhotla K, Hofstetter CP, Tsiouris AJ, Boockvar JA. Intra-arterial delivery of bevacizumab after blood-brain barrier disruption for the treatment of recurrent glioblastoma: progression-free survival and overall survival. World Neurosurg. 2012;77:130–4.

    Article  PubMed  Google Scholar 

  198. Nagane M, Nishikawa R, Narita Y, Kobayashi H, Takano S, Shinoura N, Aoki T, Sugiyama K, Kuratsu J, Muragaki Y. Phase II study of single-agent bevacizumab in Japanese patients with recurrent malignant glioma. Jpn J Clin Oncol. 2012;42:887–95.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Reardon DA, Desjardins A, Peters KB, Gururangan S, Sampson JH, McLendon RE, Herndon JE II, Bulusu A, Threatt S, Friedman AH. Phase II study of carboplatin, irinotecan, and bevacizumab for bevacizumab naive, recurrent glioblastoma. J Neuro-Oncol. 2012;107:155–64.

    Article  CAS  Google Scholar 

  200. Sathornsumetee S, Desjardins A, Vredenburgh JJ, McLendon RE, Marcello J, Herndon JE, Mathe A, Hamilton M, Rich JN, Norfleet JA. Phase II trial of bevacizumab and erlotinib in patients with recurrent malignant glioma. Neuro-Oncology. 2010;12:1300–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Verhoeff J, Lavini C, Van Linde M, Stalpers L, Majoie C, Reijneveld J, Van Furth W, Richel D. Bevacizumab and dose-intense temozolomide in recurrent high-grade glioma. Ann Oncol. 2010;21:1723–7.

    Article  CAS  PubMed  Google Scholar 

  202. Vredenburgh JJ, Desjardins A, Herndon JE, Marcello J, Reardon DA, Quinn JA, Rich JN, Sathornsumetee S, Gururangan S, Sampson J. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol. 2007;25:4722–9.

    Article  CAS  PubMed  Google Scholar 

  203. Neyns B, Sadones J, Chaskis C, Dujardin M, Everaert H, Lv S, Duerinck J, Tynninen O, Nupponen N, Michotte A. Phase II study of sunitinib malate in patients with recurrent high-grade glioma. J Neuro-Oncol. 2011;103:491–501.

    Article  CAS  Google Scholar 

  204. Paganelli G, Bartolomei M, Ferrari M, Cremonesi M, Broggi G, Maira G, Sturiale C, Grana C, Prisco G, Gatti M. Pre-targeted locoregional radioimmunotherapy with 90Y-biotin in glioma patients: phase I study and preliminary therapeutic results. Cancer Biother Radiopharm. 2001;16:227–35.

    Article  CAS  PubMed  Google Scholar 

  205. Papanastassiou V, Pizer B, Coakham H, Bullimore J, Zananiri T, Kemshead J. Treatment of recurrent and cystic malignant gliomas by a single intracavity injection of 131I monoclonal antibody: feasibility, pharmacokinetics and dosimetry. Br J Cancer. 1993;67:144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Bigner DD, Brown M, Coleman RE, Friedman AH, Friedman HS, McLendon RE, Bigner SH, Zhao X-G, Wikstrand CJ, Pegram CN. Phase I studies of treatment of malignant gliomas and neoplastic meningitis with131I-radiolabeled monoclonal antibodies anti-tenascin 81C6 and anti-chondroitin proteoglycan sulfate Me1-14 F (ab′) 2-a preliminary report. J Neuro-Oncol. 1995;24:109–22.

    Article  CAS  Google Scholar 

  207. Reardon DA, Akabani G, Coleman RE, Friedman AH, Friedman HS, Herndon JE, McLendon RE, Pegram CN, Provenzale JM, Quinn JA. Salvage radioimmunotherapy with murine Iodine-131–labeled antitenascin monoclonal antibody 81C6 for patients with recurrent primary and metastatic malignant brain tumors: Phase II study results. J Clin Oncol. 2006;24:115–22.

    Article  CAS  PubMed  Google Scholar 

  208. Reardon DA, Zalutsky MR, Akabani G, Coleman RE, Friedman AH, Herndon JE, McLendon RE, Pegram CN, Quinn JA, Rich JN. A pilot study: 131I-antitenascin monoclonal antibody 81c6 to deliver a 44-Gy resection cavity boost. Neuro-Oncology. 2008;10:182–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Cokgor I, Akabani G, Kuan C-T, Friedman HS, Friedman AH, Coleman RE, McLendon RE, Bigner SH, Zhao X-G, Garcia-Turner AM. Phase I trial results of iodine-131–labeled antitenascin monoclonal antibody 81C6 treatment of patients with newly diagnosed malignant gliomas. J Clin Oncol. 2000;18:3862–72.

    Article  CAS  PubMed  Google Scholar 

  210. Reardon DA, Akabani G, Coleman RE, Friedman AH, Friedman HS, Herndon JE, Cokgor I, McLendon RE, Pegram CN, Provenzale JM. Phase II trial of murine 131I-labeled antitenascin monoclonal antibody 81C6 administered into surgically created resection cavities of patients with newly diagnosed malignant gliomas. J Clin Oncol. 2002;20:1389–97.

    Article  CAS  PubMed  Google Scholar 

  211. Riva P, Arista A, Franceschi G, Frattarelli M, Sturiale C, Riva N, Casi M, Rossitti R. Local treatment of malignant gliomas by direct infusion of specific monoclonal antibodies labeled with 131I: comparison of the results obtained in recurrent and newly diagnosed tumors. Cancer Res. 1995;55:5952s–6s.

    CAS  PubMed  Google Scholar 

  212. Patel SJ, Shapiro WR, Laske DW, Jensen RL, Asher AL, Wessels BW, Carpenter SP, Shan JS. Safety and feasibility of convection-enhanced delivery of Cotara for the treatment of malignant glioma: initial experience in 51 patients. Neurosurgery. 2005;56:1243–53.

    Article  PubMed  Google Scholar 

  213. Crombet Ramos T, Figueredo J, Catala M, Sandra G, Selva JC, Cruz TM, Toledo C, Silva S, Pestano Y, Ramos M. Treatment of high-grade glioma patients with the humanized anti-epidermal growth factor receptor (EGFR) antibody h-R3: report from a phase I/II trial. Cancer Biol Ther. 2006;5:375–9.

    Article  Google Scholar 

  214. Wen PY, Schiff D, Cloughesy TF, Raizer JJ, Laterra J, Smitt M, Wolf M, Oliner KS, Anderson A, Zhu M. A phase II study evaluating the efficacy and safety of AMG 102 (rilotumumab) in patients with recurrent glioblastoma. Neuro Oncol. 2011;13(4):437–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Hopkins K, Chandler C, Bullimore J, Sandeman D, Coakham H, Kemshead J. A pilot study of the treatment of patients with recurrent malignant gliomas with intratumoral yttrium-90 radioimmunoconjugates. Radiother Oncol. 1995;34:121–31.

    Article  CAS  PubMed  Google Scholar 

  216. Brady LW, Miyamoto C, Woo DV, Rackover M, Emrich J, Bender H, Dadparvar S, Steplewski Z, Koprowski H, Black P. Malignant astrocytomas treated with iodine-125 labeled monoclonal antibody 425 against epidermal growth factor receptor: a phase II trial. Int J Radiat Oncol* Biol* Phys. 1992;22:225–30.

    Article  CAS  Google Scholar 

  217. Casacó A, López G, García I, Arsenio Rodríguez J, Fernández R, Figueredo J, Torres L, Perera Pintado A, Batista J, Leyva R. Phase I single-dose study of intracavitary-administered Nimotuzumab labeled with 188-Re in adult recurrent high-grade glioma. Cancer Biol Ther. 2008;7:333–9.

    Article  PubMed  Google Scholar 

  218. Paganelli G, Grana C, Chinol M, Cremonesi M, De Cicco C, De Braud F, Robertson C, Zurrida S, Casadio C, Zoboli S. Antibody-guided three-step therapy for high grade glioma with yttrium-90 biotin. Eur J Nucl Med. 1999;26:348–57.

    Article  CAS  PubMed  Google Scholar 

  219. Riva P, Arista A, Tison V, Sturiale C, Franceschi G, Spinelli A, Riva N, Casi M, Moscatelli G, Frattarelli M. Intralesional radioimmunotherapy of malignant gliomas. An effective treatment in recurrent tumors. Cancer. 1994;73:1076–82.

    Article  CAS  PubMed  Google Scholar 

  220. Riva P, Franceschi G, Frattarelli M, Riva N, Guiducci G, Cremonini AM, Giuliani G, Casi M, Gentile R, Jekunen AA. 131I radioconjugated antibodies for the locoregional radioimmunotherapy of high-grade malignant glioma: phase I and II study. Acta Oncol. 1999;38:351–9.

    Article  CAS  PubMed  Google Scholar 

  221. Riva P, Franceschi G, Arista A, Frattarelli M, Riva N, Cremonini AM, Giuliani G, Casi M. Local application of radiolabeled monoclonal antibodies in the treatment of high grade malignant gliomas. Cancer. 1997;80:2733–42.

    Article  CAS  PubMed  Google Scholar 

  222. Snelling L, Miyamoto CT, Bender H, Brady LW, Steplewski Z, Class R, Emrich J, Rackover MA. Epidermal growth factor receptor 425 monoclonal antibodies radiolabeled with iodine-125 in the adjuvant treatment of high-grade astrocytomas. Hybridoma. 1995;14:111–4.

    Article  CAS  PubMed  Google Scholar 

  223. Pöpperl G, Götz C, Rachinger W, Schnell O, Gildehaus FJ, Tonn JC, Tatsch K. Serial O-(2-[18F] fluoroethyl)-L-tyrosine PET for monitoring the effects of intracavitary radioimmunotherapy in patients with malignant glioma. Eur J Nucl Med Mol Imaging. 2006;33:792–800.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Bartolomei M, Mazzetta C, Handkiewicz-Junak D, Bodei L. Combined treatment of glioblastoma patients with locoregional pre-targeted^ sup 90^ Y-biotin radioimmunotherapy and temozolomide. Q J Nucl Med Mol Imaging. 2004;48:220.

    CAS  PubMed  Google Scholar 

  225. Blumenthal DT, Yalon M, Vainer GW, Lossos A, Yust S, Tzach L, Cagnano E, Limon D, Bokstein F. Pembrolizumab: first experience with recurrent primary central nervous system (CNS) tumors. J Neurooncol. 2016.); published online Epub09;129:453–60. https://doi.org/10.1007/s11060-016-2190-1.

    Article  CAS  PubMed  Google Scholar 

  226. Cloughesy TF, Mochizuki AY, Orpilla JR, Hugo W, Lee AH, Davidson TB, Wang AC, Ellingson BM, Rytlewski JA, Sanders CM, Kawaguchi ES, Du L, Li G, Yong WH, Gaffey SC, Cohen AL, Mellinghoff IK, Lee EQ, Reardon DA, O'Brien BJ, Butowski NA, Nghiemphu PL, Clarke JL, Arrillaga-Romany IC, Colman H, Kaley TJ, de Groot JF, Liau LM, Wen PY, Prins RM. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med. 2019.); published online EpubMar;25:477–86. https://doi.org/10.1038/s41591-018-0337-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Schalper KA, Rodriguez-Ruiz ME, Diez-Valle R, López-Janeiro A, Porciuncula A, Idoate MA, Inogés S, de Andrea C, López-Diaz de Cerio A, Tejada S, Berraondo P, Villarroel-Espindola F, Choi J, Gúrpide A, Giraldez M, Goicoechea I, Gallego Perez-Larraya J, Sanmamed MF, Perez-Gracia JL, Melero I. Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nat Med. 2019.); published online EpubMar;25:470–6. https://doi.org/10.1038/s41591-018-0339-5.

    Article  CAS  PubMed  Google Scholar 

  228. Zhao J, Chen AX, Gartrell RD, Silverman AM, Aparicio L, Chu T, Bordbar D, Shan D, Samanamud J, Mahajan A, Filip I, Orenbuch R, Goetz M, Yamaguchi JT, Cloney M, Horbinski C, Lukas RV, Raizer J, Rae AI, Yuan J, Canoll P, Bruce JN, Saenger YM, Sims P, Iwamoto FM, Sonabend AM, Rabadan R. Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat Med. 2019.); published online EpubMar;25:462–9. https://doi.org/10.1038/s41591-019-0349-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. de Groot J, Penas-Prado M, Alfaro-Munoz KD, Hunter K, Pei B, O'brien B, Weathers SP, Loghin M, Matsouka CK, Yung WKA, Mandel J, Wu J, Yuan Y, Zhou S, Fuller GN, Huse J, Rao G, Weinberg JS, Prabhu SS, McCutcheon IE, Lang FF, Ferguson SD, Sawaya R, Colen R, Yadav SS, Blando J, Vence L, Allison J, Sharma P, Heimberger AB. Window-of-opportunity clinical trial of pembrolizumab in patients with recurrent glioblastoma reveals predominance of immune-suppressive macrophages. Neuro Oncol. 2019.; published online EpubNov; https://doi.org/10.1093/neuonc/noz185.

  230. Lukas RV, Rodon J, Becker K, Wong ET, Shih K, Touat M, Fassò M, Osborne S, Molinero L, O'Hear C, Grossman W, Baehring J. Clinical activity and safety of atezolizumab in patients with recurrent glioblastoma. J Neurooncol. 2018.); published online EpubNov;140:317–28. https://doi.org/10.1007/s11060-018-2955-9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hanaei, S., Arrieta, V.A., Sonabend, A.M. (2020). Immunopathology and Immunotherapy of Central Nervous System Cancer. In: Rezaei, N. (eds) Cancer Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-57949-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57949-4_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57948-7

  • Online ISBN: 978-3-030-57949-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics