Skip to main content

Tanycytes and Their Pivotal Role in Seasonal Physiological Adaptations

  • Chapter
  • First Online:
Neuroendocrine Clocks and Calendars

Part of the book series: Masterclass in Neuroendocrinology ((MANEURO,volume 10))

  • 520 Accesses

Abstract

Tanycytes are glial cells whose cell soma are embedded in the ependymal layer surrounding the ventral region of the third ventricle in the hypothalamus. They send projections into the surrounding hypothalamus, with processes terminating in the neuropil of the hypothalamus, or extended to contact portal blood vessels in the median eminence or the surrounding pars tuberalis. Photoperiodic regulation of gene expression occurs in tanycytes through local signals emanating in the pars tuberalis. Of considerable importance across vertebrate taxa is photoperiodic regulation of type II (Dio2) and type III (Dio3) deiodinase enzyme gene expression in tanycytes as these regulate local thyroid hormone availability. This chapter explores the evidence for photoperiodic regulation of thyroid hormone and retinoic acid signalling by tanycytes, and considers this in relation to their other key functions, including their potential as a stem cell niche in the adult brain, their role as part of the blood brain barrier in transporting nutrients and hormones into the brain, and their role in regulating neuroendocrine secretion in the median eminence by virtue of their anatomical proximity to neuronal terminals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adam CL, Findlay PA, Miller DW (2006) Blood-brain leptin transport and appetite and reproductive neuroendocrine responses to intracerebroventricular leptin injection in sheep: influence of photoperiod. Endocrinology 147:4589–4598

    Article  CAS  PubMed  Google Scholar 

  • Ahamad R, Lahuna O, Sidibe A, Daulat A, Zhang Q, Luka M, Guillaume J-L, Gallet S, Guillonneau F, Hamroune J, Polo S, Prévot V, Delagrange P, Dam J, Jockers R (2020) GPR50-Ctail cleavage and nuclear translocation: a new signal transduction mode for G protein-coupled receptors. Cell Mol Life Sci. https://doi.org/10.1007/s00018-019-03440-7

  • Anderson GM, Hardy SL, Valent M, Billings HJ, Connors JM, Goodman RL (2003) Evidence that thyroid hormones act in the ventromedial preoptic area and the premammillary region of the brain to allow the termination of the breeding season in the ewe. Endocrinology 145:5252–5258

    Google Scholar 

  • Arendt J, Symons AM, English J, Poulton AL, Tobler I (1988) How does melatonin control seasonal reproductive cycles. Reprod Nutr Dev 28:387–397

    Article  CAS  PubMed  Google Scholar 

  • Balland E, Dam J, Langlet F, Caron E, Steculorum S, Messina A, Rasika S, Falluel-Morel A, Anouar Y, Dehouck B, Trinquet E, Jockers R, Bouret SG, Prevot V (2014) Hypothalamic tanycytes are an ERK-Gated conduit for leptin into the brain. Cell Metab 19:293–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett P, Ivanova E, Graham ES, Ross AW, Wilson D, Ple H, Mercer JG, Ebling FJP, Schuhler S, Dupre SM, Loudon A, Morgan PJ (2006) Photoperiodic regulation of cellular retinoic acid binding protein 1, GPR50 and nestin in tanycytes of the third ventricle ependymal layer of the Siberian hamster. J Endocrinol 191:687–698

    Article  CAS  PubMed  Google Scholar 

  • Barrett P, Ebling FJP, Schuhler S, Wilson D, Ross AW, Warner A, Jethwa P, Boelen A, Visser TJ, Ozanne DM, Archer ZA, Mercer JG, Morgan PJ (2007) Hypothalamic thyroid hormone catabolism acts as a gatekeeper for the seasonal control of body weight and reproduction. Endocrinology 148:3608–3617

    Article  CAS  PubMed  Google Scholar 

  • Bartness TJ, Goldman BD (1989) Mammalian pineal melatonin: a clock for all seasons. Experientia 45:939–945

    Article  CAS  PubMed  Google Scholar 

  • Batailler M, Derouet L, Butruille L, Migaud M (2016) Sensitivity to the photoperiod and migratory features of neuroblasts in the adult sheep hypothalamus. Brain Struct Funct 221:3301–3314

    Article  CAS  PubMed  Google Scholar 

  • Bechtold DA, Sidibe A, Saer BRC, Li J, Hand LE, Ivanova EA, Darras VM, Dam J, Jockers R, Luckman SM, Loudon ASI (2012) A role for the melatonin-related receptor GPR50 in leptin signalling, adaptive thermogenesis and torpor. Curr Biol 22:70–77

    Article  CAS  PubMed  Google Scholar 

  • Benford H, Boborea M, Pollatzek E, Lossow K, Hermans-Borgmeyer I, Liu B, Meyherf W, Kasparov S, Dale N (2017) A sweet taste receptor-dependent mechanism of glucosensing in hypothalamic tanycytes. Glia 65:773–789

    Article  PubMed  PubMed Central  Google Scholar 

  • Bockers TM, Bockman J, Salem A, Nikowitz P, Lerchl A, Huppertz M, Wittkowski W, Kreutz MR (1997) Initial expression of the common α-chain in hypophyseal pars tuberalis-specific cells in spontaneous recrudescent hamsters. Endocrinology 138:4101–4108

    Article  CAS  PubMed  Google Scholar 

  • Bolborea M, Helfer G, Ebling FJP, Barrett P (2015) Dual signal transduction pathways activated by TSH receptors in rat primary tanycyte cultures. J Mol Endocrinol 54:241–250

    Article  CAS  PubMed  Google Scholar 

  • Brawer JR, Gustafson AW (1979) Changes in the fine structure of tanycytes during the annual reproductive cycle of the male little brown bat Myotis lucifugus lucifugus. Am J Anat 154:497–507

    Article  CAS  PubMed  Google Scholar 

  • Butler MP, Turner KW, Park JH, Schoomer EE, Zucker I, Gorman MR (2010) Seasonal regulation of reproduction: altered role of melatonin under naturalistic conditions in hamsters. Proc R Soc Lond B 277:2867–2874

    Google Scholar 

  • Butruille L, Bataliller M, Mazur D, Prevot V, Miguad M (2018) Seasonal reorganization of hypothalamic neurogenic niche in adult sheep. Brain Struct Funct 223:91–109

    Article  PubMed  Google Scholar 

  • Campbell JN, Maccosko EZ, Fenselau H, Pers TH, Lyubetskaya A, Tenen D, Goldman M, Verstegen AMJ, Resch JM, McCarroll SA, Rosen ED, Lowell BB, Tsai LT (2017) A molecular census of arcuate hypothalamus and median eminence cell types. Nat Neurosci 20:484–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaker Z, George C, Petrovska M, Caron J-P, Lacube P, Caille I, Holzenberger M (2016) Hypothalamic neurogenesis persists in the aging brain and is controlled by energy-sensing IGF-1 pathway. Neurobiol Aging 41:64–72

    Article  CAS  PubMed  Google Scholar 

  • Clasadonte J, Prevot V (2017) The special relationship: glia-neuron interactions in the neuroendocrine hypothalamus. Nat Rev Endocrinol 14:25–44

    Article  PubMed  CAS  Google Scholar 

  • Coppola A, Liu Z-W, Andrews ZB, Paradis E, Roy M-C, Friedman JM, Ricquier D, Richard D, Horvath TL, Gao X-B, Sabrina D (2007) A central thermogenic-like mechanism in feeding regulation: an interplay between the arcuate nucleus, T3 and UCP2. Cell Metab 5:21–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dark J, Spears N, Whaling CS, Wade GN, Meyer JS, Zucker I (1990) Long day lengths promote brain growth in meadow voles. Dev Brain Res 53:264–269

    Article  CAS  Google Scholar 

  • Frayling C, Britton R, Dale D (2011) ATP-mediated glucosensing by hypothalamic tanycytes. J Physiol 589:2275–2286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldman BD, Gwinner E, Karsch FJ, Saunders D, Zucker I, Ball GF (2004) Circannual rhythms and photoperiodism. In: Dunlap JC, Loros JJ, DeCoursey PJ (eds) Chronobiology—biological timekeeping. Sinauer Associates, Sunderland, MA, pp 107–142

    Google Scholar 

  • Guerra M, Blazquez JL, Peruzzo B, Pelaez B, Radriguez S, Toranzo D, Pastor F, Rodriguez EM (2010) Cell organization of the rat pars tuberalis. Evidence for open communication between pars tuberalis, cerebrospinal fluid and tanycytes. Cell Tissue Res 339:359–381

    Article  PubMed  Google Scholar 

  • Hagedoorn J (1965) Seasonal changes in the ependymal of the third ventricle of the skunk, Mephitis mephitis nigra. Anat Rec 151:453. (Abstract)

    Google Scholar 

  • Hann N, Goodman T, Najdl-Samiei A, Stratford CM, Rice R, El Agha E, Bellusci S, Hajihosseini MK (2013) Fgf10-expressing tanycytes add new neurons to the appetite/energy-balance regulating centers of the postnatal and adult hypothalamus. J Neurosci 33:6170–6180

    Article  CAS  Google Scholar 

  • Hanon EA, Lincln GA, Fustin J-M, Dardente H, Masson-Pevet M, Morgan PJ, Hazlerigg DG (2008) Ancestral TSH mechanism signals summer in a photoperiodic mammal. Curr Biol 18:1147–1152

    Article  CAS  PubMed  Google Scholar 

  • Hanon EA, Routledge H, Dardente M, Masson-Pevet M, Morgan PJ, Hazlerigg DG (2009) Effect of photoperiod on the thyroid stimulating hormone neuroendocrine system in the European hamster (Cricetus cricetus). J Neuroendocrinol 22:51–55

    Article  PubMed  CAS  Google Scholar 

  • Hartfuss E, Galli R, Heins N, Gotz M (2001) Characterization of CNS precursor subtypes and radial glia. Dev Biol 229:15–30

    Article  CAS  PubMed  Google Scholar 

  • Heideman PD, Sylvester CJ (1997) Reproductive photoresponsiveness in unmanipulated male Fischer F344 laboratory rats. Biol Reprod 57:134–138

    Article  CAS  PubMed  Google Scholar 

  • Helfer G, Tups A (2016) Hypothalamic Wnt signalling and its role in energy balance regulation. J Neuroendocrinol 28:12368

    Article  CAS  PubMed  Google Scholar 

  • Helfer G, Ross AW, Russell L, Thomson LM, Shearer KD, Goodman TH, McCaffery PJ, Morgan PJ (2012) Photoperiod regulates Vitamin A and Wnt/β-catenin signalling in F344 rats. Endocrinology 153:815–824

    Article  CAS  PubMed  Google Scholar 

  • Helfer G, Ross AW, Morgan PJ (2013) Neuromedin U partly mimics thyroid-stimulating hormone and triggers Wnt/β-Catenin signalling in the photoperiodic response of F344 rats. J Neuroendocrinol 25:1264–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helfer G, Ross AW, Thomson LM, Mayer CD, Stoney PN, McCaffery PJ, Morgan PJ (2016) A neuroendocrine role for chemerin in hypothalamic remodelling and photoperiodic control of energy balance. Sci Rep 6:e26830

    Article  CAS  Google Scholar 

  • Herwig A, Wilson D, Logie TJ, Boelen A, Morgan PJ, Mercer JG, Barrett P (2009) Photoperiod and acute energy deficits interact on components of the thyroid hormone system in hypothalamic tanycytes of the Siberian hamster. Am J Physiol Regul Integr Comp Physiol 296:R1307–R1315

    Article  CAS  PubMed  Google Scholar 

  • Herwig A, Petri I, Barrett P (2012) Hypothalamic gene expression rapidly changes in response to photoperiod in juvenile Siberian hamsters (Phodopus sungorus). J Neuroendocrinol 24:991–998

    Article  CAS  PubMed  Google Scholar 

  • Herwig A, de Vries EM, Bolborea M, Wilson D, Mercer JG, Ebling FJP, Morgan PJ, Barrett P (2013) Hypothalamic ventricular ependymal thyroid hormone deiodinases are an important element of circannual timing in the Siberian hamster (Phodopus sungorus). PLoS One 8:e62003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horstmann E (1954) Die Faserglia des Salachiergehirns. Z Zellforsch 39:588–617

    Article  CAS  PubMed  Google Scholar 

  • Herwig A, Campbell G, Mayer CD, Boelen A, Anderson R, Ross AW, Mercer JG, Barrett P (2014) A thyroid hormone challenge in hypothyroid rats identifies T3 regulated genes in the hypothalamus and in models with altered energy balance and glucose homeostasis. Thyroid 24:1575–1593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, DeVries GJ, Bittman EL (1998) Photoperiod regulates neuronal bromodeoxyuridine labelling in the brain of a seasonally breeding mammal. J Neurobiol 36:410–420

    Article  CAS  PubMed  Google Scholar 

  • Kameda Y, Arai Y, Nishimaki T (2003) Ultrastructural localization of vimentin immunoreactivity and gene expression in tanycytes and their alterations in hamsters kept under different photoperiods. Cell Tissue Res 314:251–262

    Article  CAS  PubMed  Google Scholar 

  • Krol E, Douglas A, Dardente H, Birnie MJ, Van der Vinne V, Eijer WG, Gerkema MP, Hazlerigg DG, Hut RA (2012) Strong pituitary and hypothalamic responses to photoperiod but not 6-methoxy-2-benzoxalinone in female common voles (Microtus arvalis). Gen Comp Endocrinol 179:289–295

    Article  CAS  PubMed  Google Scholar 

  • Langlet F, Levin BE, Luquet S, Mazzone M, Messina A, Dunn-Myenell AA, Balland E, Lacome A, Mazur D, Carmeliet P, Bouret SG, Prevot V, Dehouck B (2013) Tanycytic VEGF-A boosts blood-hypothalamus barrier plasticity and access of metabolic signal to the arcuate nucleus in response to fasting. Cell Metab 17:607–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazutkaite G, Solda A, Lossow K, Meyherhof W, Dale N (2017) Amino acid sensing in hypothalamic tanycytes via umami taste receptors. Mol Metab 6:1480–1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DA, Bedont JL, Pak T, Wang H, Song J, Miranda-Angulo A, Takiar V, Charubhumi V, Balordi F, Takebayashi H, Aja S, Ford E, Fishell G, Blackshaw S (2012) Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat Neurosci 15:700–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lomet D, Cognie J, Chesneau D, Dubois E, Hazlerigg D, Dardente H (2018) The impact of thyroid hormone in seasonal breeding has a restricted transcriptional signature. Cell Mol Life Sci 75:905–919

    Article  CAS  PubMed  Google Scholar 

  • Migaud M, Batailler M, Pillon D, Franceschini I, Malpaux B (2011) Seasonal changes in cell proliferation in the adult sheep brain and pars tuberalis. J Biol Rhythm 26:486–496

    Article  Google Scholar 

  • Milesi S, Simmoneaux V, Klosen V (2017) Down regulation of deiodinase 3 is the earliest event in photoperiod and photorefractory activation of the gonadotropic axis in seasonal hamsters. Sci Rep 7:e17739

    Article  CAS  Google Scholar 

  • Miranda-Angulo AL, Byerly MS, Mesa J, Wang H, Blackshaw S (2014) Rax regulates hypothalamic tanycyte differentiation and barrier function in mice. J Comp Neurol 522:876–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan PJ, Barrett P, Howell HE, Helliwell R (1994) Melatonin receptors: localization, molecular pharmacology and physiological significance. Neurochem Int 24:101–146

    Article  CAS  PubMed  Google Scholar 

  • Muller J, Heuer H (2014) Expression pattern of thyroid hormone transporters in the postnatal mouse brain. Front Endocrinol 5:92

    Google Scholar 

  • Mullier A, Bouret SG, Prevot V, Dehouck B (2010) differential distribution of tight junction proteins suggests a role for tanycytes in blood-hypothalamus barrier regulation in the adult mouse brain. J Comp Neurol 518:943–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy M, Jethwa PH, Warner A, Barrett P, Nilaweera KN, Brameld JM, Ebling FJP (2012) Effects of manipulating hypothalamic triiodothyronine concentrations on seasonal body weight and torpor cycles in Siberian hamsters. Endocrinology 153:101–112

    Article  CAS  PubMed  Google Scholar 

  • Murphy M, Samms R, Warner A, Bolborea M, Fowler MJ, Brameld JM, Tsintzas K, Kharitonenkov A, Adams AC, Coskun T, Ebling FJP (2013) Increased responses to the actions of fibroblast growth factor 21 on energy balance and body weight in a seasonal model of adiposity. J Neuroendocrinol 25:180–189

    Article  CAS  PubMed  Google Scholar 

  • Nakane Y, Ikegami K, Iigo M, Ono H, Takeda K, Takahashi D, Uesaka M, Kimijima M, Hashimoto R, Arai N, Suga T, Kosuge K, Abe T, Maeda R, Senga T, Amiya N, Azuma T, Amano M, Abe H, Yamamoto N, Yoshimura T (2013) The saccus vasculosus of fish is a sensor of seasonal changes in day length. Nat Commun 4:2108

    Article  PubMed  CAS  Google Scholar 

  • Nakane Y, Yoshimura T (2014) Universality and diversity in the signal transduction pathway that regulates seasonal reproduction in vertebrates. Front Neurosci 8:e115

    Article  Google Scholar 

  • Nakao N, Takagi T, Ligo M, Tsukamoto T, Yasuo S, Masuda T, Yangisawa T, Ebihara S, Yoshimura T (2006) Possible involvement of organic anion transporting polypeptide 1c1 in the photoperiodic response of gonads in birds. Endocrinology 147:1067–1073

    Article  CAS  PubMed  Google Scholar 

  • Nilaweera N, Herwig A, Bolborea M, Campbell G, Mayer CD, Morgan PJ, Ebling FJP, Barrett P (2011) Photoperiodic regulation of glycogen metabolism, glycolysis and glutamine synthesis in tanycytes of the Siberian hamster suggests novel roles of tanycytes in hypothalamic function. Glia 59:1695–1705

    Article  PubMed  Google Scholar 

  • Petri I, Diedrich V, Wilson D, Fernandez-Calleja J, Herwig A, Steinlechner S, Barrett P (2016) Orchestration of gene expression across the seasons: Hypothalamic gene expression in natural photoperiod throughout the year in the Siberian hamster. Sci Rep 6:e29689

    Article  Google Scholar 

  • Prevot V, Croix D, Bouret S, Dutoit S, Tramu G, Sefano GB, Beauvillain JC (1999) Definitive evidence for the existence of morphological plasticity in the external zone of the median eminence during the rat estrous cycle: implication of neuro-glio-endothelial interactions in gonadotrophin-releasing hormone release. Neuroscience 94:809–819

    Article  CAS  PubMed  Google Scholar 

  • Reppert SM, Weaver DR (2001) Molecular analysis of mammalian circadian rhythms. Annu Rev Physiol 63:647–676

    Article  CAS  PubMed  Google Scholar 

  • Revel FG, Saboureau M, Pevet P, Mikkelsen JD, Simmoneaux V (2006) Melatonin regulates type 2 deiodinase gene expression in the Syrian hamster. Endocrinology 147:4680–4687

    Article  CAS  PubMed  Google Scholar 

  • Roberts LM, Woodford K, Zhou M, Black DS, Haggerty JE, Tate EH, Grindstaff KK, Mengesha W, Raman C, Zerangue N (2008) Expression of the thyroid hormone transporters monocarboxylate transporter-8 (SLC16A2) and organic ion transporter-14 (SLCO1C1) at the blood-brain barrier. Endocrinology 149:6251–6261

    Article  CAS  PubMed  Google Scholar 

  • Robins SC, Stewart I, McNay DE, Taylor V, Giachino C, Goetz M, Ninkovic J, Briancon N, Maratos-Flier E, Flier JS, Kokoeva MV, Placzek M (2013) alpha-tanycytes of the adult hypothalamic third ventricle include distinct populations of FGF-responsive neural progenitors. Nature. Communications 4:2049

    CAS  Google Scholar 

  • Rodriguez EM, Blazquez JL, Pastor FE, Pelaex B, Pena P, Peruzzo B, Amat P (2005) Hypothalamic tanycytes: a key component of brain-endocrine interaction. Int Rev Cytol 247:89–164

    Article  CAS  PubMed  Google Scholar 

  • Ross AW, Webster CA, Mercer JG, Moar KM, Ebling FJ, Schuhler S, Barrett P, Morgan PJ (2004) Photoperiodic regulation of hypothalamic retinoid signalling: association of retinoid X receptor γ with body weight. Endocrinology 145:13–20

    Article  CAS  PubMed  Google Scholar 

  • Ross AW, Bell LM, Littlewood PA, Mercer JG, Barrett P, Morgan PJ (2005) Temporal changes in gene expression in the arcuate nucleus precede seasonal responses in adiposity and reproduction. Endocrinology 146:1940–1947

    Article  CAS  PubMed  Google Scholar 

  • Ross AW, Johnson CE, Bell LM, Reilly L, Duncan JS, Barrett P, Heideman PD, Morgan PJ (2009) Divergent regulation of hypothalamic neuropeptide Y and agouti-related protein by photoperiod in F344 rats with differential food intake and growth. J Neuroendocrinol 21:610–619

    Article  CAS  PubMed  Google Scholar 

  • Ross AW, Helfer G, Russell L, Darras VM, Morgan PJ (2011) Thyroid hormone signalling genes are regulated by photoperiod in the hypothalamus of F344 rats. PLoS One 6:e21351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rousseau K, Atcha Z, Cagampang FRA, Le Rouzic P, Stirland AJ, Ivanov T, Ebling FJP, Klingspor M, Loudon ASI (2002) Photoperiodic regulation of leptin resistance in the seasonally breeding Siberian hamster (Phodopus sungorus). Endocrinology 143:3083–3095

    Article  CAS  PubMed  Google Scholar 

  • Sanez de Miera C, Hanon EA, Dardente H, Birnie M, Simmoneaux V, Lincoln GA, Hazlerigg DG (2013) Circannual variation in thyroid hormone deiodinases in short-day breeder. J Neuroendocrinol 25:412–421

    Article  CAS  Google Scholar 

  • Shearer KD, Goodman TH, Ross AW, Reilly L, Morgan PJ, McCaffery PJ (2010) Photoperiod regulation of retinoic acid signalling in the hypothalamus. J Neurochem 112:246–257

    Article  CAS  PubMed  Google Scholar 

  • Shearer KD, Stoney PN, Nanescu SE, Helfer G, Barrett P, Ross AW, Morgan PJ, McCaffery P (2012) Photoperiodic expression of tow RALDH enzymes and the regulation of cell proliferation by retinoic acid in the rat hypothalamus. J Neurochem 122:789–799

    Article  CAS  PubMed  Google Scholar 

  • Sherry DF, Hoshooley JS (2010) Seasonal hippocampal plasticity in food-storing birds. Philos Trans R Soc Lond B Biol Sci 365:933–943

    Article  PubMed  PubMed Central  Google Scholar 

  • Stevenson TJ, Prendergast BJ (2014) Reversible DNA methylation regulates seasonal photoperiodic time measurement. Proc Natl Acad Sci USA 111:4645–4646

    Article  CAS  Google Scholar 

  • Tups A, Stohr S, Helwig M, Barrett P, Krol E, Schachtner J, Mercer JG, Klingspor M (2012) Seasonal leptin resistance is associated with impaired signalling via JAK2-STAT3 but not ERK, possibly mediated by reduced hypothalamic GRB2 protein. J Comp Physiol B 182:553–567

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Yamamura T, Watanabe M, Yasuo S, Nakao N, Dawson A, Ebihara S, Yoshimura T (2007) Hypothalamic expression of thyroid hormone-activating and –inactivating enzyme genes in relation to photorefractoriness in birds and mammals. Am J Physiol Regul Integr Comp Physiol 292:R568–R572

    Article  CAS  PubMed  Google Scholar 

  • Wittkowski W, Muller K (1976) Untersuchungen am infundibulum des Igles. Verh Anat Ges 70:S49–S54

    Google Scholar 

  • Wood S, Loudon ASL (2018) The pars tuberalis: the site of the circannual clock in mammals? Gen Comp Endocrinol 258:222–235

    Article  CAS  PubMed  Google Scholar 

  • Yamamura T, Yasuo S, Hirunagi K, Ebihara S, Yoshimura T (2006) T3 implantation mimics photoperiodically reduced encasement of nerve terminals by glial processes in the median eminence of Japanese quail. Cell Tissue Res 324:175–179

    Article  CAS  PubMed  Google Scholar 

  • Yasuo S, Watanabe M, Takagi T, Follet BK, Ebihara S, Yoshimura T (2005) The reciprocal switching of two thyroid hormone-activating and -inactivation enzyme genes is involved in the photoperiodic gonadal response of Japanese quail. Endocrinology 146:2551–2554

    Article  CAS  PubMed  Google Scholar 

  • Yoo S, Blackshaw S (2018) Regulation and function of neurogenesis in the adult mammalian hypothalamus. Prog Neurobiol 170:53–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimura T, Yasuo S, Watanabe M, Iigo M, Yamamura T, Hirunagi K, Ebinhara S (2003) Light-induced hormone conversion of T4 to T3 regulates photoperiodic response of gonads in birds. Nature 426:178–181

    Article  CAS  PubMed  Google Scholar 

Further Recommended Reading

  • Dardente H, Wood S, Ebling F, Sáenz de Miera C (2019) An integrative view of mammalian seasonal neuroendocrinology. J Neuroendocrinol 31(5):e12729

    Article  PubMed  CAS  Google Scholar 

  • Helfer G, Barrett P, Morgan PJ (2019) A unifying hypothesis for control of body weight and reproduction in seasonally breeding mammals. J Neuroendocrinol 31(3):e12680. This is an excellent review, formulating our knowledge to date on the relationship between the pars tuberalis, tanycytes and hypothalamus into a hypothesis centering around neurogenic potential of tanycytes to unify seasonal regulation in both long and short-day responsive mammals.

    Google Scholar 

  • Prevot V, Dehouck B, Sharif A, Ciofi P, Giacobini P, Clasadonte J (2018) The versatile tanycyte: a hypothalamic integrator of reproduction and energy metabolism Endocr Rev 39(3):333–368. An excellent review providing further information on the tanycyte-blood brain barrier relationship and tanycyte plasticity.

    Google Scholar 

  • Rodríguez E, Guerra M, Peruzzo B, Blázquez JL (2019) Tanycytes: a rich morphological history to underpin future molecular and physiological investigations. J Neuroendocrinol 31:e12690. This paper brings together a wealth of observations on tanycytes which should be taken into consideration when formulating and testing hypotheses on molecular mechanisms in the role of tanycytes at the interface between the periphery and hypothalamus.

    Google Scholar 

Download references

Acknowledgments

We would like to thank Pat Bain at the Rowett Institute for the constructing the figures for this chapter. This work was supported by the Scottish Government Rural and Environment Science and Analytical Services Division to the Rowett Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perry Barrett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barrett, P., Morgan, P.J. (2020). Tanycytes and Their Pivotal Role in Seasonal Physiological Adaptations. In: Ebling, F.J.P., Piggins, H.D. (eds) Neuroendocrine Clocks and Calendars. Masterclass in Neuroendocrinology, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-55643-3_3

Download citation

Publish with us

Policies and ethics