Skip to main content
Log in

Mammalian pineal melatonin: A clock for all seasons

  • Multi-author Review
  • Published:
Experientia Aims and scope Submit manuscript

Summary

The central role of the pineal gland and its hormone melatonin (MEL) in mammalian photoperiodic responses is discussed in terms of: 1) evidence for the involvement of MEL in photoperiodism, 2) which feature of the MEL secretion profile might be most important for regulating photoperiodic responses, 3) evidence for the modulation of responses to changes in daylength based on previous photoperiod exposure (i.e., photoperiodic history) and 4) how the MEL signal might be processed at its target sites to elicit physiological responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  1. Almeida, O. F. X., and Lincoln, G. A., Reproductive refractoriness in rams and accompanying changes in the patterns of melatonin and prolactin secretion. Biol. Reprod.30 (1984) 143–158 (abst.).

    Article  CAS  PubMed  Google Scholar 

  2. Bartness, T. J., and Goldman, B. D., Effects of melatonin long-day responses in short-day housed adult Siberian hamsters. Am. J. Physiol.255 (1988) R823-R830.

    CAS  PubMed  Google Scholar 

  3. Bartness, T. J., and Goldman, B. D., Peak duration of serum melatonin and short day responses in adult Siberian hamsters. Am. J. Physiol.255 (1988) R812-R822.

    CAS  PubMed  Google Scholar 

  4. Bittman, E. L., Hamster refractoriness: The role of insesitivity of pineal target tissues. Science202 (1978) 648–650.

    Article  CAS  PubMed  Google Scholar 

  5. Bittman, E. L., and Karsch, K. J., Nightly duration of pineal melatonin secretion determines the reproductive response to inhibitory day length in the ewe. Biol. Reprod.30 (1984) 585–593.

    Article  CAS  PubMed  Google Scholar 

  6. Bittman, E. L., and Zucker, I., Photoperiodic termination of hamster refractoriness: Participation of the pineal gland. Biol. Reprod.24 (1981) 568–572.

    Article  CAS  PubMed  Google Scholar 

  7. Blank, J. L., and Desjardins, C., Photic cues induce multiple neuroendocrine adjustments in testicular function. Am. J. Physiol.238 (1985) R181-R189.

    Google Scholar 

  8. Carter, D. S., and Goldman, B. D., Antigonadal effects of timed melatonin infusion in pinealectomized male Djungarian hamsters (Phodopus sungorus sungorus): Duration is the critical parameter. Endocrinology113 (1983) 1261–1267.

    Article  CAS  PubMed  Google Scholar 

  9. Carter, D. S., and Goldman, B. D., Progonadal role of the pineal in the Djungarian hamster (Phodopus sungorus sungorus): Mediation by melatonin. Endocrinology113 (1983) 1268–1273.

    Article  CAS  PubMed  Google Scholar 

  10. Carter, D. S., Hall, V. D., Tamarkin, L., and Goldman, B. D., Pineal is required for testicular maintenance in the Turkish hamster (Mesocricetus brandti). Endocrinology111 (1982) 863–871.

    Article  CAS  PubMed  Google Scholar 

  11. Darrow, J. M., and Goldman, B. D., Circadian regulation of pineal melatonin and reproduction in the Djungarian hamster. J. biol. Rhythms1 (1986) 39–54.

    Article  Google Scholar 

  12. Dowell, S. F., and Lynch, G. R., Duration of the melatonin pulse in the hypothalamus controls testicular function in pinealectomized mice (Peromyscus leucopus). Biol. Reprod.36 (1987) 1095–1101.

    Article  CAS  PubMed  Google Scholar 

  13. Duncan, M. J., Goldman, B. D., Di Pinto, M. N., and Stetson, M. H., Testicular function and pelage color have different critical daylengths in the Djungarian hamster,Phodopus sungorus sungorus. Endocrinology116 (1985) 424–430.

    Article  CAS  PubMed  Google Scholar 

  14. Elliott, J. A., Circadian rhythms and photoperiodic time measurement in mammals. Fedn Proc.35 (1976) 2339–2346.

    CAS  Google Scholar 

  15. Elliott, J. A., Bartness, T. J., and Goldman, B. D., Effect of melatonin infusion duration and frequency on gonad, lipid and body mass in pinealectomized male Siberian hamsters. J. biol. Rhythms (1989) in press.

  16. Elliott, J. A., and Goldman, B. D., Seasonal reporduction: Photoperiodism and biological clocks, in: Neuroendocrinology of Reproduction, p. 377–423. Ed. N. T. Adler, Plenum Press, New York 1981.

    Google Scholar 

  17. Follett, B. K., and Robinson, J. E., Photoperiod and gonadotrophin secretion in birds. Prog. Reprod. Biol.5 (1980) 39–61.

    CAS  Google Scholar 

  18. Glass, J. D., and Lynch, G. R., Melatonin: Identification of sites of antigonadal action in mouse brain. Science214 (1981) 821–823.

    Article  CAS  PubMed  Google Scholar 

  19. Goldman, B. D., The physiology of melatonin in mammals, in: Pineal Research Reviews, pp. 145–182. Ed. R. J. Reiter, Alan R. Liss, New York 1983.

    Google Scholar 

  20. Goldman, B. D., Darrow, J. M., and Yogev, L., Effects of timed melatonin infusions on reproductive development in the Djungarian hamster (Phodopus sungorus). Endocrinology114 (1984) 2074–2083.

    Article  CAS  PubMed  Google Scholar 

  21. Goldman, B. D., and Elliott, J. A., Photoperiodism and seasonality in hamsters: Role of the pineal gland, in: Processing of Environmental Information in Vertebrates, p. 203–218. Ed. M. H. Stetson, Springer-Verlag, New York 1989.

    Google Scholar 

  22. Goldman, B. D., Hall, V., Hollister, C., Roychoudhury, P., and Tamarkin, L., Effects of melatonin on the reproductive system in intact and pinealectomized male hamsters maintained under various photoperiods. Endocrinology104 (1979) 82–88.

    Article  CAS  PubMed  Google Scholar 

  23. Gwinner, E., Circannual Rhythms. Springer-Verlag, Berlin 1986.

    Book  Google Scholar 

  24. Gwinner, E., Dittami, J., Ganshirt, G., Hall, M., and Wozniak, J., Endogenous and exogenous components in the control of the annual reproductive cycle of the European starling. Proc. 18th Int. Ornith. Congr. 1989, p. 501–515.

  25. Hastings, M. H., Walker, A. P., and Roberts, A. C., Intrahypothalamic melatonin blocks photoperiodic responsiveness in the male Syrian hamster. Neuroscience24 (1988) 987–991.

    Article  CAS  PubMed  Google Scholar 

  26. Hoffmann, K., Illnerova, H., and Vanecek, J., Effect of photoperiod and of one minute light at night-time on the pineal rhythm of N-acetyltransferase activity in the Djungarian hamstersPhodopus sungorus. Biol. Reprod.24 (1981) 551–556.

    Article  CAS  PubMed  Google Scholar 

  27. Hoffmann, K., Illnerova, H., and Vanecek, J., Change in duration of the nighttime melatonin peak may be a signal driving photoperiodic responses in the Djungarian hamster (Phodopus sungorus). Neurosci. Lett.67 (1986) 68–72.

    Article  CAS  PubMed  Google Scholar 

  28. Hong, S. M., Rollag, M. D., and Stetson, M. H., Maintenance of testicular funtion in Turkish hamsters: interaction of photoperiod and the pineal gland. Biol. Reprod.347 (1986) 527–531.

    Article  Google Scholar 

  29. Hong, S. M., and Stetson, M. H., Detailed diurnal rhythm of sensitivity to melatonin injections in Turkish hamsters,Mesocricetus brandti. J. Pineal Res.4 (1987) 69–78.

    Article  CAS  PubMed  Google Scholar 

  30. Horton, T. H., Growth and maturation inMicrotus montanus: effects of photoperiods before and after weaning. Can. J. Zool.62 (1984) 1741–1746.

    Article  Google Scholar 

  31. Horton, T. H., Cross-fostering of voles demonstrates in utero effect of photoperiod. Biol. Reprod.334 (1985) 934–939.

    Article  Google Scholar 

  32. Illnerova, H., Hoffmann, K., and Vanecek, J., Adjustment of the rat pineal N-acetyltransferase rhythm to change from long to short photoperiod depends on the direction of the extension of the dark period. Brain Res.362 (1986) 403–408.

    Article  CAS  PubMed  Google Scholar 

  33. Karsch, F. J., Bittman, E. L., Foster, D. L., Goodman, R. L., Legan, S. J., and Robinson, J. E., Neuroendocrine basis of seasonal reproduction. Rec. Prog. Horm. Res.40 (1984) 185–232.

    CAS  PubMed  Google Scholar 

  34. Karsch, F. J., Bittman, E. L., Robinson, J. E., Yellon, S. M., Wayne, N. L., Olster, D. H., and Kaynard, A. H., Melatonin and photorefractoriness: Loss of response to the melatonin signal leads to seasonal reproductive transitions in the ewe. Biol. Reprod.34 (1986) 265–274.

    Article  CAS  PubMed  Google Scholar 

  35. Karsch, F. J., Malpaux, B., Wayne, N. L., and Robinson, J. E., Characteristics of the melatonin signal that provide the photoperiodic code for timing seasonal reproduction in the ewe. Reprod. Nutr. Develop.28 (1988) 459–472.

    Article  CAS  Google Scholar 

  36. Lynch, G. R., Sullivan, J. K., Heath, H. W., and Tamarkin, L., Daily melatonin rhythms in photoperiod sensitive and insensitive whitefooted mice (Peromyscus leucopus). in: The Pineal and Its Hormones, p. 67–73. Ed. R. J. Reiter, Alan R. Liss, New York 1982.

    Google Scholar 

  37. Malpaux, B., Robinson, J. E., Brown, M. B., and Karsch, F. J., Importance of changing photoperiod and melatonin secretory pattern in determining the length of the breeding season in the Suffolk ewe. J. Repord. Fert.83 (1988) 461–470.

    Article  CAS  Google Scholar 

  38. Malpaux, B., Robinson, J. E. and Karsch, F. J., Reproductive refractioriness of the ewe to inductive photoperiod is not caused by inappropriate secretion of melatonin. Biol. Reprod.36 (1987) 1333–1341.

    Article  CAS  PubMed  Google Scholar 

  39. Mason-Pevet, M., Pevet, P., and Vivien-Roels, B., Pinealectomy and constant release of melatonin or 5-methoxytryptamine induce atrophy in the European hamster. J. Pineal Res.4 (1987) 79–88.

    Article  Google Scholar 

  40. Maywood, E., Buttery R., Vance, G., Herbert, J., and Hastings, M. H., Gonadal responses to programmed melatonin infusions in the Syrian hamster: effects of infusion frequency and suprachiasmatic lesions. Soc. Neurosci. (1989) Abst.

  41. Nelson, R. J., Dark, J. and Zucker, I., Influence of photoperiod, nutrition and water availability on male California voles (Microtus californicus). J. Reprod. Fert.69 (1983) 473–477.

    Article  CAS  Google Scholar 

  42. Nelson, R. J., and Desjardins, C., Water availability affects reproduction in deer mice. Biol. Reprod.37 (1987) 257–260.

    Article  CAS  PubMed  Google Scholar 

  43. Noteborn, H. P. J. M., Reinharz, A. C., Pevet, P., Ebels, I., and Salemink, C. A., Neurohypophyseal hormone-like peptides in the ovine pineal gland using reverse-phase liquid chromatography and radioimmunoassay. Peptides8 (1988) 455–462.

    Article  Google Scholar 

  44. Parsons, B., McEwen, B. S., and Pfaff, D. W., A discontinuous schedule of estradiol treatment is sufficient to activate progesterone-facilitated feminine sexual behavior and to increase cytosol receptors for progestins in the hypothalamus of the rat. Endocrinology110 (1982) 613–624.

    Article  CAS  PubMed  Google Scholar 

  45. Pevet, P., 5-Methyxyindoles, pineal, and seasonal reproduction—a new approach, in: The Pineal Gland: Current State of Pineal Research, p. 163–166. Elsevier, Amsterdam 1985.

    Google Scholar 

  46. Pevet, P., 5-Methoxyindoles pineal peptides and reproduction, in: The Pineal Gland, p. 81–102. Eds G. M. Brown and S. D. Wainwright. Pergamon Press, Oxford 1985.

    Google Scholar 

  47. Reiter, R. J., The pineal and its hormones in the control of reproduction in mammals. Endocr. Rev.1 (1980) 109–131.

    Article  CAS  PubMed  Google Scholar 

  48. Reiter, R. J., Petterborg, L. J., and Philo, R. C., Refractoriness to the antigonadotrophic effects of melatonin in male hamsters and its interruption by exposure of the animals to long daily photoperiods. Life Sci.25 (1979) 1571–1576.

    Article  CAS  PubMed  Google Scholar 

  49. Reiter, R. J., Vaughan, M. K., Blask, D. E., and Johnson, L. Y., Melatonin: Its inhibition of pineal antigonadotropic activity in male hamsters. Science185 (1974) 1169–1171.

    Article  CAS  PubMed  Google Scholar 

  50. Reppert, S. M., Chex, R. A. Anderson, A., and Klein, D. C., Maternal-fetal transfer of melatonin in the non-human primate. Pediatr. Res.13 (1979) 788.

    Article  CAS  PubMed  Google Scholar 

  51. Reppert, S. M. Duncan, M. J., and Goldman, B. D., Photic influences on the developing mammal, in: Melatonin and the Pineal Gland, p. 116–128. Eds, D. Evered and S. Clark. Ciba Foundation Symposium. Pitman, London 1985.

    Google Scholar 

  52. Reppert, S. M., Weaver, D. R., Rivkees, S. A., and Stopa, E. G., Putative melatonin receptors in a human biological clock. Science242 (1988) 78–81.

    Article  CAS  PubMed  Google Scholar 

  53. Robinson, J. E., and Karsch, F. J., Refractoriness to inductive day lengths terminates the breeding season of the Suffolk ewe. Biol. Reprod.31 (1984) 656–663.

    Article  CAS  PubMed  Google Scholar 

  54. Robinson, J. E., Wayne, N. L., and Karsch, F. J., Refractoriness to inhibitory day lengths initiates the breeding season, of the Suffolk ewe. Biol. Reprod.32 (1985) 1024–1030.

    Article  CAS  PubMed  Google Scholar 

  55. Rollag, M. D., Panke, E. S., and Reiter, R. J., Pineal melatonin content in male hamsters throughout the seasonal reproductive cycle. Proc. Soc. exp. Biol. Med.165 (1980) 330–334.

    Article  CAS  PubMed  Google Scholar 

  56. Schwab, R. G., Circannual testicular periodicity in the European starling in the absence of photoperiodic changes, in: Biochronometry, p. 428–447. Ed. M. Menaker. National Academy of Sciences Washington, D. C., 1971.

    Google Scholar 

  57. Stetson, M. H., Elliott, J. A., and Goldman, B. D., Maternal transfer of photoperiodic information influences the photoperiodic response of prepubertal Djungarian hamsters (Phodopus sungorus sungorus). Biol. Reprod.34 (1986) 664–669.

    Article  CAS  PubMed  Google Scholar 

  58. Stetson, M. H., Sarafidis, E., and Rollag, M. D., Sensitivity of adult male Djungarian hamsters (Phodopus sungorus sungorus) to melatonin injections throughout the day: Effects on the reproductive system and the pineal. Biol. Reprod.35 (1986) 618–623.

    Article  CAS  PubMed  Google Scholar 

  59. Stetson, M. H., and Watson-Whitmyre, M., Effects of exogenous and endogenous melatonin on gonadal function in hamsters. Biol. Reprod.34 (1986) 664–669.

    Article  CAS  PubMed  Google Scholar 

  60. Stetson, M. H., Watson-Whitmyre, M., and Matt, K., Termination of photorefractoriness in golden hamsters-photoperiodic requirements. J. exp. Zool.202 (1977) 81–88.

    Article  CAS  PubMed  Google Scholar 

  61. Tamarkin, L., Hollister, C. W., Lefebvre, N. G., and Goldman, B. D., Melatonin induction of gonadal quiescence in pinealectomized Syrian hamsters. Science198 (1977) 953–955.

    Article  CAS  PubMed  Google Scholar 

  62. Tamarkin, L., Westrom, W. K., Hamill, A. I., and Goldman, B. D., Effect of melatonin on the reproductive systems of male and female hamsters: A diurnal rhythm in sensitivity to melatonin. Endocrinology99 (1976) 1534–1541.

    Article  CAS  PubMed  Google Scholar 

  63. Turek, F. W., Desjardins, C., and Menaker, M., Melatonin antigonadal and progonadal effects in male golden hamsters. Science190 (1975) 280–282.

    Article  CAS  PubMed  Google Scholar 

  64. Turek, F. W., Desjardins, C., and Menaker, M., Differential effects of melatonin on testes of photoperiodic and nonperiodic rodents. Biol. Reprod.15 (1976) 94–97.

    Article  CAS  PubMed  Google Scholar 

  65. Vanecek, J., Melatonin bindings sites. J. Neurochem.51 (1988) 1436–1440.

    Article  CAS  PubMed  Google Scholar 

  66. Vanecek, J., and Illnerova, H., Effect of short and long photoperiods on pineal N-acetyltransferase rhythm and on growth of testes and brown adipose tissue in developing rats. Neuroendocrinology41 (1985) 186–191.

    Article  CAS  PubMed  Google Scholar 

  67. Vanecek, J., Pavlik, A., and Illnerova, H., Hypothalamic melatonin receptor sites revealed by autoradiography. Brain Res.435 (1978) 359–362.

    Article  Google Scholar 

  68. Wade, G. N., Bartness, T. J., and Alexander, J. R., Photoperiod and body weight in Syrian hamsters: Skeleton photoperiod, response magnitude and development of photorefractoriness. Physiol. Behav.37 (1986) 863–868.

    Article  CAS  PubMed  Google Scholar 

  69. Wayne, N. L., Malpaux, B., and Karsch, F. J., How does melatonin code for day length in the ewe: Duration of nocturnal melatonin release or coincidence of melatonin with a light-entrained sensitive period. Biol. Reprod.39 (1988) 66–75.

    Article  CAS  PubMed  Google Scholar 

  70. Weaver, D. R., Keohan, J. T., and Reppert, S. M., Definition of a prenatal sensitive period of maternal-fetal communication of day length. Am. J. Physiol.253 (1987) E701-E704.

    CAS  PubMed  Google Scholar 

  71. Weaver, D. R., Namboodiri, M. A. A., and Reppert, S. M., Iodinated melatonin mimics melatonin action and reveals discrete binding sites in fetal brain. FEBS Lett.228 (1988) 123–127.

    Article  CAS  PubMed  Google Scholar 

  72. Weaver, D. R., and Reppert, S. M.. Maternal melatonin communicates daylength to the fetus in Djungarian hamsters. Endocrinology119 (1986) 2861–2863.

    Article  CAS  PubMed  Google Scholar 

  73. Williams, L. M., Hastings, M. H., and Morgan, P. J., Localization of melatonin binding sites by in vitro autoradiography in the brain of the Syrian hamster and effect of neurone-specific lesions. J. Endocr. (1988) Abst.

  74. Williams, L. M., and Morgan, P. J., Demonstration of melatoninbinding sites on the pars tuberalis of the rat. J. Endocr.119 (1988) R1-R3.

    Article  CAS  PubMed  Google Scholar 

  75. Yellon, S. M., Bittman, E. L., Lehman, M. N., Olster, D. H., Robinson, J. E., and Karsch, F. J., Improtance of duration of nocturnal melatonin secretion in determining the reproductive response to inductive photoperiod in the ewe. Biol. Reprod.32 (1985) 523–529.

    Article  CAS  PubMed  Google Scholar 

  76. Yellon, S. M., and Longo, L. D., Melatonin rhythms in fetal and maternal circulation during pregnancy in sheep. Am. J. Physiol.252 (1987) E799-E802.

    CAS  PubMed  Google Scholar 

  77. Zemdegs, I. Z., McMillen, I. C., Walker, D. W., Thorburn, G. D., and Nowak, R., Diurnal rhythms in plasma melatonin concentrations in the fetal sheep and pregnant ewe during late gestation. Endocrinology123 (1988) 284–289.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartness, T.J., Goldman, B.D. Mammalian pineal melatonin: A clock for all seasons. Experientia 45, 939–945 (1989). https://doi.org/10.1007/BF01953051

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01953051

Key words

Navigation