Skip to main content

Adsorption of Cations on Minerals

  • Chapter
  • First Online:
Adsorption at Natural Minerals/Water Interfaces

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 461 Accesses

Abstract

The adsorption of cations on minerals plays an important role theoretically in surface and colloidal chemistry, and applicably in various engineering processes such as water treatment, agriculture and flotation of minerals. This chapter introduces the fundamentals of the adsorption of cations on minerals, the measurements, and classifies the applications. Then, structure and surface chemistry of clay minerals, which have been proved to be the most workable mineral in cations adsorption, are introduced. Other oxide minerals, such as goethite, are present for their structure and adsorption behavior as well. After that, the chapter summarizes and differentiates the adsorption on the basis of different types of cations, namely lead, mercury, copper, chromium and other cations. It tries to present the research results through a novel classification, rather than the types of adsorbents. The gaps between fundamental research and engineering applications are discussed, as well as the further research opportunities are present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carroll, D.: Ion exchange in clays and other minerals. Geol. Soc. Am. Bull. 70, 749–779 (1959)

    Article  CAS  Google Scholar 

  2. Jiang, M.Q., Jin, X.Y., Lu, X.Q., Chen, Z.L.: Adsorption of Pb (II), Cd (II), Ni (II) and Cu (II) onto natural kaolinite clay. Desalination 252, 33–39 (2010)

    Article  CAS  Google Scholar 

  3. Erdem, E., Karapinar, N., Donat, R.: The removal of heavy metal cations by natural zeolites. J. Colloid Interf. Sci. 280, 309–314 (2004)

    Article  CAS  Google Scholar 

  4. Davis, J.A., Fuller, C.C., Cook, A.D.: A model for trace metal sorption processes at the calcite surface: adsorption of Cd2+ and subsequent solid solution formation. Geochim. Cosmochim. Acta 51, 1477–1490 (1987)

    Article  CAS  Google Scholar 

  5. Hayes, K.F., Leckie, J.O.: In: Mechanism of Lead Ion Adsorption at the Goethite-Water Interface. ACS Publications (1986)

    Google Scholar 

  6. Tahir, S., Rauf, N.: Thermodynamic studies of Ni (II) adsorption onto bentonite from aqueous solution. J. Chem. Thermodyn. 35 (2003)

    Google Scholar 

  7. Adebowale, K.O., Unuabonah, I.E., Olu-Owolabi, B.I.: The effect of some operating variables on the adsorption of lead and cadmium ions on kaolinite clay. J. Hazard. Mater. 134, 130–139 (2006)

    Article  CAS  Google Scholar 

  8. Zhao, D., Yang, X., Zhang, H., Chen, C., Wang, X.: Effect of environmental conditions on Pb (II) adsorption on β-MnO2. Chem. Eng. J. 164, 49–55 (2010)

    Article  CAS  Google Scholar 

  9. Sheng, G., Wang, S., Hu, J., Lu, Y., Li, J., Dong, Y., Wang, X.: Adsorption of Pb (II) on diatomite as affected via aqueous solution chemistry and temperature. Colloid Surf. A 339, 159–166 (2009)

    Article  CAS  Google Scholar 

  10. Liang, P., Qin, Y., Hu, B., Li, C., Peng, T., Jiang, Z.: Study of the adsorption behavior of heavy metal ions on nanometer-size titanium dioxide with ICP-AES. Fresen J. Anal. Chem. 368, 638–640 (2000)

    Article  CAS  Google Scholar 

  11. Dong, D., Derry, L.A., Lion, L.W.: Pb scavenging from a freshwater lake by Mn oxides in heterogeneous surface coating materials. Water Res. 37, 1662–1666 (2003)

    Article  CAS  Google Scholar 

  12. Eren, E., Afsin, B.: An investigation of Cu (II) adsorption by raw and acid-activated bentonite: a combined potentiometric, thermodynamic, XRD, IR, DTA study. J. Hazard. Mater. 151, 682–691 (2008)

    Article  CAS  Google Scholar 

  13. Abdel-Samad, H., Watson, P.R.: An XPS study of the adsorption of lead on goethite (α–FeOOH). Appl. Surf. Sci. 136, 46–54 (1998)

    Article  CAS  Google Scholar 

  14. Li, H., Mu, S., Weng, X., Zhao, Y., Song, S.: Rutile flotation with Pb2+ ions as activator: adsorption of Pb2+ at rutile/water interface. Colloid Surf. A 506, 431–437 (2016)

    Article  CAS  Google Scholar 

  15. Strawn, D.G., Scheidegger, A.M., Sparks, D.L.: Kinetics and mechanisms of Pb (II) sorption and desorption at the aluminum oxide–water interface. Environ. Sci. Technol. 32, 2596–2601 (1998)

    Article  CAS  Google Scholar 

  16. Fu, F., Wang, Q.: Removal of heavy metal ions from wastewaters: a review. J. Environ. Manag. 92, 407–418 (2011)

    Article  CAS  Google Scholar 

  17. Babel, S., Kurniawan, T.A.: Low-cost adsorbents for heavy metals uptake from contaminated water: a review. J. Hazard. Mater. 97, 219–243 (2003)

    Article  CAS  Google Scholar 

  18. Uddin, M.K.: A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J. 308, 438–462 (2017)

    Article  CAS  Google Scholar 

  19. Li, Y.H., Wang, S., Wei, J., Zhang, X., Xu, C., Luan, Z., Wu, D., Wei, B.: Lead adsorption on carbon nanotubes. Chem. Phys. Lett. 357, 263–266 (2002)

    Article  CAS  Google Scholar 

  20. Sekar, M., Sakthi, V., Rengaraj, S.: Kinetics and equilibrium adsorption study of lead (II) onto activated carbon prepared from coconut shell. J. Colloid Interf. Sci. 279, 307–313 (2004)

    Article  CAS  Google Scholar 

  21. Bhattacharyya, K.G., Gupta, S.S.: Kaolinite, montmorillonite, and their modified derivatives as adsorbents for removal of Cu (II) from aqueous solution. Sep. Purif. Technol. 50, 388–397 (2006)

    Article  CAS  Google Scholar 

  22. Li, N., Bai, R.: Copper adsorption on chitosan–cellulose hydrogel beads: behaviors and mechanisms. Sep. Purif. Technol. 42, 237–247 (2005)

    Article  CAS  Google Scholar 

  23. Tan, G., Xiao, D.: Adsorption of cadmium ion from aqueous solution by ground wheat stems. J. Hazard. Mater. 164, 1359–1363 (2009)

    Article  CAS  Google Scholar 

  24. Boparai, H.K., Joseph, M., O’Carroll, D.M.: Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J. Hazard. Mater. 186, 458–465 (2011)

    Article  CAS  Google Scholar 

  25. Nabais, J.V., Carrott, P., Carrott, M.R., Belchior, M., Boavida, D., Diall, T., Gulyurtlu, I.: Mercury removal from aqueous solution and flue gas by adsorption on activated carbon fibres. Appl. Surf. Sci. 252, 6046–6052 (2006)

    Article  CAS  Google Scholar 

  26. Owlad, M., Aroua, M.K., Daud, W.A.W., Baroutian, S.: Removal of hexavalent chromium-contaminated water and wastewater: a review. Water Air Soil Poll. 200, 59–77 (2009)

    Article  CAS  Google Scholar 

  27. Schneider, R., Cavalin, C., Barros, M., Tavares, C.: Adsorption of chromium ions in activated carbon. Chem. Eng. J. 132, 355–362 (2007)

    Article  CAS  Google Scholar 

  28. Strawn, D.G., Sparks, D.L.: The use of XAFS to distinguish between inner-and outer-sphere lead adsorption complexes on montmorillonite. J. Colloid Interf. Sci. 216, 257–269 (1999)

    Article  CAS  Google Scholar 

  29. Oubagaranadin, J.U.K., Murthy, Z.: Adsorption of divalent lead on a montmorillonite–illite type of clay. Ind. Eng. Chem. Res. 48, 10627–10636 (2009)

    Article  CAS  Google Scholar 

  30. Weaver, C.E., Pollard, L.D.: The Chemistry of Clay Minerals. Elsevier (2011)

    Google Scholar 

  31. El-Bayaa, A., Badawy, N., AlKhalik, E.A.: Effect of ionic strength on the adsorption of copper and chromium ions by vermiculite pure clay mineral. J. Hazard. Mater. 170, 1204–1209 (2009)

    Article  CAS  Google Scholar 

  32. Coles, C.A., Yong, R.N.: Aspects of kaolinite characterization and retention of Pb and Cd. Appl. Clay Sci. 22, 39–45 (2002)

    Article  CAS  Google Scholar 

  33. Gu, X., Evans, L.J.: Surface complexation modelling of Cd (II), Cu (II), Ni (II), Pb (II) and Zn (II) adsorption onto kaolinite. Geochim. Cosmochim. Acta 72, 267–276 (2008)

    Article  CAS  Google Scholar 

  34. Zhao, D., Chen, S., Yang, S., Yang, X., Yang, S.: Investigation of the sorption behavior of Cd (II) on GMZ bentonite as affected by solution chemistry. Chem. Eng. J. 166, 1010–1016 (2011)

    Article  CAS  Google Scholar 

  35. Jia, F., Wang, Q., Wu, J., Li, Y.: Two-dimensional molybdenum disulfide as a superb adsorbent for removing Hg2+ from water. Acs. Sustain. Chem. Eng. 5, 7410–7419 (2017)

    Article  CAS  Google Scholar 

  36. Liu, C., Jia, F., Wang, Q., Yang, B., Song, S.: Two-dimensional molydbenum disulfide as adsorbent for high-efficient Pb(II) removal from water. Appl. Mater. Today 9, 220–228 (2017)

    Article  Google Scholar 

  37. Jia, F., Zhang, X., Song, S.: AFM study on the adsorption of Hg2+ on natural molybdenum disulfide in aqueous solutions. Phys. Chem. Chem. Phys. 19, 3837–3844 (2017)

    Article  CAS  Google Scholar 

  38. Jia, F., Liu, C., Yang, B., Zhang, X., Yi, H., Ni, J., Song, S.: Thermal modification of the molybdenum disulfide surface for tremendous improvement of Hg2+ adsorption from aqueous solution. Acs. Sustain. Chem. Eng. 6, 9065–9073 (2018)

    Article  CAS  Google Scholar 

  39. Jean, G.E., Bancroft, G.M.: Heavy metal adsorption by sulphide mineral surfaces. Geochim. Cosmochim. Acta 50, 1455–1463 (1986)

    Article  CAS  Google Scholar 

  40. McKenzie, R.: The adsorption of lead and other heavy metals on oxides of manganese and iron. Soil Res. 18, 61–73 (1980)

    Article  CAS  Google Scholar 

  41. McBride, M.: Environmental Chemistry of Soils. Oxford University Press, New York (1994)

    Google Scholar 

  42. Dzombak, D.A.: Surface Complexation Modeling: Hydrous Ferric Oxide. Wiley (1990)

    Google Scholar 

  43. Sturchio, N.C., Chiarello, R.P., Cheng, L., Lyman, P.F., Bedzyk, M.J., Qian, Y., You, H., Yee, D., Geissbuhler, P., Sorensen, L.B.: Lead adsorption at the calcite-water interface: synchrotron X-ray standing wave and X-ray reflectivity studies. Geochim. Cosmochim. Acta 61, 251–263 (1997)

    Article  CAS  Google Scholar 

  44. Qian, Y., Sturchio, N.C., Chiarello, R.P., Lyman, P.F., Lee, T.L., Bedzyk, M.J.: Lattice location of trace elements within minerals and at their surfaces with X-ray standing waves. Science-New York Then Washington, 1555–1555 (1994)

    Google Scholar 

  45. Brown, J.R., Bancroft, G.M., Fyfe, W.S., McLean, R.A.: Mercury removal from water by iron sulfide minerals. An electron spectroscopy for chemical analysis (ESCA) study. Environ. Sci. Technol. 13, 1142–1144 (1979)

    Article  CAS  Google Scholar 

  46. Özverdi, A., Erdem, M.: Cu2+, Cd2+ and Pb2+ adsorption from aqueous solutions by pyrite and synthetic iron sulphide. J. Hazard. Mater. 137, 626–632 (2006)

    Article  CAS  Google Scholar 

  47. Richard, F.C., Bourg, A.C.: Aqueous geochemistry of chromium: a review. Water Res. 25, 807–816 (1991)

    Article  CAS  Google Scholar 

  48. Aoki, T., Munemori, M.: Recovery of chromium (VI) from wastewaters with iron (III) hydroxide—I: adsorption mechanism of chromium (VI) on iron (III) hydroxide. Water Res. 16, 793–796 (1982)

    Article  CAS  Google Scholar 

  49. Lu, A., Zhong, S., Chen, J., Shi, J., Tang, J., Lu, X.: Removal of Cr (VI) and Cr (III) from aqueous solutions and industrial wastewaters by natural clino-pyrrhotite. Environ. Sci. Technol. 40, 3064–3069 (2006)

    Article  CAS  Google Scholar 

  50. Albadarin, A.B., Mangwandi, C., Ala’a, H., Walker, G.M., Allen, S.J., Ahmad, M.N.: Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent. Chem. Eng. J. 179, 193–202 (2012)

    Article  CAS  Google Scholar 

  51. Garcıa-Sánchez, A., Alvarez-Ayuso, E.: Sorption of Zn, Cd and Cr on calcite. Application to purification of industrial wastewaters. Miner. Eng. 15, 539–547 (2002)

    Article  Google Scholar 

  52. Yang, L., Yang, Q., Jia, F. et al.: Cr(VI) Removal from water with amorphous graphite concentrate contaminated by iron. Min. Proc. Ext. Met. Rev. 38(2) (2017)

    Google Scholar 

  53. Waldron, K.J., Robinson, N.J.: How do bacterial cells ensure that metalloproteins get the correct metal? Nat. Rev. Microbiol. 7, 25–35 (2009)

    Article  CAS  Google Scholar 

  54. Andreini, C., Bertini, I., Rosato, A.: A hint to search for metalloproteins in gene banks. Bioinformatics 20, 1373–1380 (2004)

    Article  CAS  Google Scholar 

  55. Lemire, J.A., Harrison, J.J., Turner, R.J.: Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 11, 371–384 (2013)

    Article  CAS  Google Scholar 

  56. Ayres, P.G., Millardet, A.: France’s forgotten mycologist. Mycologist 18, 23–26 (2004)

    Article  Google Scholar 

  57. Kwakye-Awuah, B., Williams, C., Kenward, M., Radecka, I.: Antimicrobial action and efficiency of silver-loaded zeolite X. J. Appl. Microbiol. 104, 1516–1524 (2008)

    Article  CAS  Google Scholar 

  58. Ōya, A., Banse, T., Ohashi, F., Ōtani, S.: An antimicrobial and antifungal agent derived from montmorillonite. Appl. Clay Sci. 6, 135–142 (1991)

    Article  Google Scholar 

  59. Garrido-Ramirez, E.G., Theng, B.K.G., Mora, M.L.: Appl. Clay Sci. 47, 182 (2010)

    Article  CAS  Google Scholar 

  60. Gil, A., Gandia, L.M., Vicente, M.A.: Catal Rev Sci Eng 42, 145 (2000)

    Article  CAS  Google Scholar 

  61. Zhang, Y., Song, S., Zhang, M., Tuo, B.: Surf. Rev. Lett. 15, 329 (2008)

    Article  Google Scholar 

  62. Li, J., Mu, Z., Xu, X., Tian, H., Duan, M., Li, L., Hao, Z., Qiao, S., Lu, G.: Micropor. Mesopor. Mat. 114, 214 (2008)

    Article  CAS  Google Scholar 

  63. Rao, F., Song, S., Lopez-valdivieso, A.: Synthesis and characterization of Ag-PILC through the formation of Ag@Montmorillonite nanocomposite. NANO: Brief Reports and Reviews 10, 1–9 (2015)

    Google Scholar 

  64. Rao, F., Song, S., Lopez-valdivieso, A.: Synthesis of Ag-PILC through direct insertion of silver nanoparticles into smectite interlayers. Mater. Technol. 27, 186–190 (2012)

    Article  CAS  Google Scholar 

  65. Mohammadzadeh Pakdel, P., Peighambardoust, S.J.: Review on recent progress in chitosan-based hydrogels for wastewater treatment application. Carbohydr. Polym. 201, 264–279 (2018)

    Article  CAS  Google Scholar 

  66. Han, H., Lu, X., Liu, L., Yang, W., Shi, W., He, X.: Bioinspired and microgel-tackified adhesive hydrogel with rapid self-healing and high stretchability. Macromolecules 52, 72–80 (2018)

    Google Scholar 

  67. Yang, X., Qin, Z., Wu, H., Lv, H., Yu, X.: Tuning hydrogel mechanics by kinetically dependent cross-linking. Macromolecules 52, 1249–1256 (2019)

    Article  CAS  Google Scholar 

  68. Wang, W., Zhao, Y., Yi, H., Chen, T., Kang, S., Li, H., Song, S.: Preparation and characterization of self- assembly hydrogels with exfoliated montmorillonite nanosheets and chitosan. Nanotechnology 29, 025605 (2018)

    Article  CAS  Google Scholar 

  69. Feng, Q., Wei, K., Lin, S., Xu, Z., Sun, Y., Shi, P., Li, G., Bian, L.: Mechanically resilient, injectable, and bioadhesive supramolecular gelatin hydrogels crosslinked by weak host-guest interactions assist cell infiltration and in situ tissue regeneration. Biomaterials 101, 217–228 (2016)

    Article  CAS  Google Scholar 

  70. Boardman, S., Lad, R., Green, D., Thornton, P.: Chitosan hydrogels for targeted dye and protein adsorption. J. Appl. Polym. Sci. 134, 1–10 (2017)

    Article  CAS  Google Scholar 

  71. Salzano de Luna, M., Castaldo, R., Altobelli, R., Gioiella, L., Filippone, G., Gentile, G., Ambrogi, V.: Chitosan hydrogels embedding hyper-crosslinked polymer particles as reusable broad-spectrum adsorbents for dye removal. Carbohydr. Polym. 177, 347–354 (2017)

    Article  CAS  Google Scholar 

  72. Maity, J., Ray, S.: Removal of Cu (II) ion from water using sugar cane bagasse cellulose and gelatin based composite hydrogels. Int. J. Biol. Macromol. 97, 238–248 (2017)

    Article  CAS  Google Scholar 

  73. Hu, Z., Omer, A., Ouyang, X., Yu, D.: Fabrication of carboxylated cellulose nanocrystal/sodium alginate hydrogel beads for adsorption of Pb(II) from aqueous solution. Int. J. Biol. Macromol. 108, 149–157 (2018)

    Article  CAS  Google Scholar 

  74. Heng, L., Guo, X., Guo, T., Wang, B., Jiang, L.: Strengthening of polymer ordered porous materials based on a layered nanocomposite internal structure. Nanoscale 8, 13507–13512 (2016)

    Article  CAS  Google Scholar 

  75. Liu, C., Liu, H., Zhang, K., Dou, M., Pan, B., He, X., Lu, C.: Partly reduced graphene oxide aerogels induced by proanthocyanidins for efficient dye removal. Bioresour. Technol. 282, 148–155 (2019)

    Article  CAS  Google Scholar 

  76. Kumararaja, K., Manjaiah, P., Datta, S., Shabeer, T., Sarkar, B.: Chitosan-g-poly (acrylic acid) -bentonite composite: a potential immobilizing agent of heavy metals in soil. Cellulose 25, 3985–3999 (2018)

    Article  CAS  Google Scholar 

  77. Ma, Y., Lv, L., Guo, Y., Fu, Y., Shao, Q., Wu, T., Guo, S., Sun, K., Guo, X., Wujcik, E.K., Guo, Z.: Porous lignin based poly (acrylic acid)/organo-montmorillonite nanocomposites: swelling behaviors and rapid removal of Pb (II) ions. Polymer 128, 12–23 (2017)

    Article  CAS  Google Scholar 

  78. Ji, J., Zeng, C., Ke, Y., Pei, Y.: Preparation of poly(acrylamide-co-acrylic acid)/silica nanocomposite microspheres and their performance as a plugging material for deep profile control. J. Appl. Polym. Sci. 134, 1–11 (2017)

    Article  Google Scholar 

  79. Liang, T., Yan, C., Li, X., Zhou, S., Wang, H.: Polyacrylic acid grafted silica fume as an excellent adsorbent for dysprosium(III) removal from industrial wastewater. Water Sci. Technol. 77, 1570–1580 (2018)

    Article  CAS  Google Scholar 

  80. Wan, Y., Wang, T., Lu, H., Xu, X., Zuo, C., Wang, Y., Teng, C.: Design and synthesis of graphene/SnO2/polyacrylamide nanocomposites as anode material for lithium-ion batteries. Rsc. Adv. 8, 11744–11748 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rao, F., Li, Z., Garcia, R.E. (2021). Adsorption of Cations on Minerals. In: Song, S., Li, B. (eds) Adsorption at Natural Minerals/Water Interfaces. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-54451-5_5

Download citation

Publish with us

Policies and ethics