Skip to main content

DAMP-Promoted Efferent Innate Immune Responses in Human Diseases: Fibrosis

  • Chapter
  • First Online:
Damage-Associated Molecular Patterns in Human Diseases

Abstract

In Chapter 6, a selected clinically oriented update of the topic of controlled and dysregulated fibrotic processes is presented, as already briefly outlined in Vol. 1 of the book Damage-Associated Molecular Patterns in Human Diseases: Injury-Induced Innate Immune Responses. After a concise overview of the role of the extracellular matrix (ECM) in homeostasis, its contribution to pathological fibrogenesis is outlined. Thus, prolonged or severe tissue injuries can lead to excessive ECM production that results in an altered mechanical environment associated with increased ECM stiffness that, via mechanotransductive pathways, is considered a powerful driver of progressive fibrosis. The molecular mechanisms of mechanotransduction are described by focusing on various mechanosensors that mediate interaction between the ECM and cells such as fibroblasts (i.e., mechanisms of “inside-out and outside-in” signaling). In this context, evidence is discussed suggesting an interplay between DAMP-triggered pathways on the one side and mechanotransduction-mediated positive feed-forward loops, on the other hand. Particular focus is directed to the transforming growth factor-beta (denoted as an inducible DAMP) that triggers pathways in conjunction with mechanotransducing pathways. These processes are suggested to constitute self-perpetuating loops that potently propagate activation of myofibroblasts as the key cells in mediating fibrosis in a broad range of pathologies. The chapter is finished with a brief overview of epigenetic mechanisms reported to be involved in fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Desmoulière A, Redard M, Darby I, Gabbiani G. Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol. 1995;146:56–66. http://www.ncbi.nlm.nih.gov/pubmed/7856739.

    PubMed  PubMed Central  Google Scholar 

  2. Waring P, Müllbacher A. Cell death induced by the Fas/Fas ligand pathway and its role in pathology. Immunol Cell Biol. 1999;77:312–7. http://www.ncbi.nlm.nih.gov/pubmed/10457197.

    Article  PubMed  CAS  Google Scholar 

  3. Horowitz JC, Thannickal VJ. Mechanisms for the resolution of organ fibrosis. Physiology. 2019;34:43–55. http://www.ncbi.nlm.nih.gov/pubmed/30540232.

    Article  PubMed  CAS  Google Scholar 

  4. Land WG. Damage-associated molecular patterns in human diseases. In: Injury-induced innate immune responses, vol. 1. Cham: Springer International Publishing AG; 2018. https://www.springer.com/de/book/9783319786544.

    Google Scholar 

  5. Anderson KR, Sutton MG, Lie JT. Histopathological types of cardiac fibrosis in myocardial disease. J Pathol. 1979;128:79–85. https://doi.org/10.1002/path.1711280205.

    Article  PubMed  CAS  Google Scholar 

  6. Biernacka A, Frangogiannis NG. Aging and cardiac fibrosis. Aging Dis. 2011;2:158–73. http://www.ncbi.nlm.nih.gov/pubmed/21837283.

    PubMed  PubMed Central  Google Scholar 

  7. Shinde AV, Frangogiannis NG. Fibroblasts in myocardial infarction: a role in inflammation and repair. J Mol Cell Cardiol. 2014;70:74–82. https://linkinghub.elsevier.com/retrieve/pii/S0022282813003477.

    Article  PubMed  CAS  Google Scholar 

  8. Hinz B. The extracellular matrix and transforming growth factor-β1: tale of a strained relationship. Matrix Biol. 2015;47:54–65. https://linkinghub.elsevier.com/retrieve/pii/S0945053X15001055.

    Article  PubMed  CAS  Google Scholar 

  9. Wynn TA. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol. 2004;4:583–94. https://doi.org/10.1038/nri1412.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Hynes RO, Naba A. Overview of the matrisome—an inventory of extracellular matrix constituents and functions. Cold Spring Harb Perspect Biol. 2012;4:a004903. https://doi.org/10.1101/cshperspect.a004903.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014;15:786–801. http://www.ncbi.nlm.nih.gov/pubmed/25415508.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Humphrey JD, Dufresne ER, Schwartz MA. Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol. 2014;15:802–12. http://www.ncbi.nlm.nih.gov/pubmed/25355505.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Iozzo RV, Schaefer L. Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol. 2015;42:11–55. http://linkinghub.elsevier.com/retrieve/pii/S0945053X15000402.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Naba A, Clauser KR, Ding H, Whittaker CA, Carr SA, Hynes RO. The extracellular matrix: tools and insights for the “omics” era. Matrix Biol. 2016;49:10–24. http://www.ncbi.nlm.nih.gov/pubmed/26163349.

    Article  PubMed  CAS  Google Scholar 

  15. Kryczka J, Boncela J. Proteases revisited: roles and therapeutic implications in fibrosis. Mediators Inflamm. 2017;2017:1–14. https://www.hindawi.com/journals/mi/2017/2570154/.

    Article  CAS  Google Scholar 

  16. Cui N, Hu M, Khalil RA. Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci. 2017;147:1–73. http://www.ncbi.nlm.nih.gov/pubmed/28413025.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Herrera C, Escalante T, Rucavado A, Fox JW, Gutiérrez JM. Metalloproteinases in disease: identification of biomarkers of tissue damage through proteomics. Expert Rev Proteomics. 2018;15:967–82. http://www.ncbi.nlm.nih.gov/pubmed/30348024.

    Article  PubMed  CAS  Google Scholar 

  18. van Goor H, Melenhorst WB, Turner AJ, Holgate ST. Adamalysins in biology and disease. J Pathol. 2009;219:277–86. http://www.ncbi.nlm.nih.gov/pubmed/19662664.

    Article  PubMed  CAS  Google Scholar 

  19. Arpino V, Brock M, Gill SE. The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biol. 2015;44–46:247–54. http://www.ncbi.nlm.nih.gov/pubmed/25805621.

    Article  PubMed  CAS  Google Scholar 

  20. Khokha R, Murthy A, Weiss A. Metalloproteinases and their natural inhibitors in inflammation and immunity. Nat Rev Immunol. 2013;13:649–65. http://www.nature.com/articles/nri3499.

    Article  PubMed  CAS  Google Scholar 

  21. Handorf AM, Zhou Y, Halanski MA, Li W-J. Tissue stiffness dictates development, homeostasis, and disease progression. Organogenesis. 2015;11:1–15. https://doi.org/10.1080/15476278.2015.1019687.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tam SN, Smith ML, Stamenović D. Modeling tensional homeostasis in multicellular clusters. Int J Numer Method Biomed Eng. 2017;33:e02801. http://www.ncbi.nlm.nih.gov/pubmed/27163337.

    Article  Google Scholar 

  23. Herrera J, Henke CA, Bitterman PB. Extracellular matrix as a driver of progressive fibrosis. J Clin Invest. 2018;128:45–53. https://www.jci.org/articles/view/93557.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hinz B. Tissue stiffness, latent TGF-beta1 activation, and mechanical signal transduction: implications for the pathogenesis and treatment of fibrosis. Curr Rheumatol Rep. 2009;11:120–6. http://www.ncbi.nlm.nih.gov/pubmed/19296884.

    Article  PubMed  CAS  Google Scholar 

  25. Hinz B. Matrix mechanics and regulation of the fibroblast phenotype. Periodontol 2000. 2013;63:14–28. https://doi.org/10.1111/prd.12030.

    Article  PubMed  Google Scholar 

  26. Wells RG, Discher DE. Matrix elasticity, cytoskeletal tension, and TGF-beta: the insoluble and soluble meet. Sci Signal. 2008;1:pe13. https://doi.org/10.1126/stke.110pe13.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Engler AJ, Carag-Krieger C, Johnson CP, Raab M, Tang H-Y, Speicher DW, et al. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell Sci. 2008;121:3794–802. https://doi.org/10.1242/jcs.029678.

    Article  PubMed  CAS  Google Scholar 

  28. Jahed Z, Shams H, Mehrbod M, Mofrad MRK. Mechanotransduction pathways linking the extracellular matrix to the nucleus. Int Rev Cell Mol Biol. 2014;310:171–220. http://www.ncbi.nlm.nih.gov/pubmed/24725427.

    Article  PubMed  CAS  Google Scholar 

  29. Ringer P, Colo G, Fässler R, Grashoff C. Sensing the mechano-chemical properties of the extracellular matrix. Matrix Biol. 2017;64:6–16. http://www.ncbi.nlm.nih.gov/pubmed/28389162.

    Article  PubMed  CAS  Google Scholar 

  30. Dupont S. Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction. Exp Cell Res. 2016;343:42–53. http://www.ncbi.nlm.nih.gov/pubmed/26524510.

    Article  PubMed  CAS  Google Scholar 

  31. Herum KM, Lunde IG, McCulloch AD, Christensen G. The soft- and hard-heartedness of cardiac fibroblasts: mechanotransduction signaling pathways in fibrosis of the heart. J Clin Med. 2017;6:53. http://www.mdpi.com/2077-0383/6/5/53.

    Article  PubMed Central  CAS  Google Scholar 

  32. Martino F, Perestrelo AR, Vinarský V, Pagliari S, Forte G. Cellular mechanotransduction: from tension to function. Front Physiol. 2018;9:824. https://doi.org/10.3389/fphys.2018.00824/full.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Santos A, Lagares D. Matrix stiffness: the conductor of organ fibrosis. Curr Rheumatol Rep. 2018;20:2. http://www.ncbi.nlm.nih.gov/pubmed/29349703.

    Article  PubMed  CAS  Google Scholar 

  34. Zent J, Guo L-W. Signaling mechanisms of myofibroblastic activation: outside-in and inside-out. Cell Physiol Biochem. 2018;49:848–68. http://www.ncbi.nlm.nih.gov/pubmed/30184544.

    Article  PubMed  CAS  Google Scholar 

  35. Rossman KL, Der CJ, Sondek J. GEF means go: turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol. 2005;6:167–80. http://www.ncbi.nlm.nih.gov/pubmed/15688002.

    Article  PubMed  CAS  Google Scholar 

  36. Guilluy C, Swaminathan V, Garcia-Mata R, O’Brien ET, Superfine R, Burridge K. The Rho GEFs LARG and GEF-H1 regulate the mechanical response to force on integrins. Nat Cell Biol. 2011;13:722–7. http://www.nature.com/articles/ncb2254.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110:673–87. http://www.ncbi.nlm.nih.gov/pubmed/12297042.

    Article  PubMed  CAS  Google Scholar 

  38. Horton ER, Byron A, Askari JA, Ng DHJ, Millon-Frémillon A, Robertson J, et al. Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly. Nat Cell Biol. 2015;17:1577–87. http://www.nature.com/articles/ncb3257.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Oakes PW, Gardel ML. Stressing the limits of focal adhesion mechanosensitivity. Curr Opin Cell Biol. 2014;30:68–73. https://linkinghub.elsevier.com/retrieve/pii/S095506741400074X.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Molkentin JD, Bugg D, Ghearing N, Dorn LE, Kim P, Sargent MA, et al. Fibroblast-specific genetic manipulation of p38 mitogen-activated protein kinase in vivo reveals its central regulatory role in fibrosis. Circulation. 2017;136:549–61. https://doi.org/10.1161/CIRCULATIONAHA.116.026238.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Hörner M, Chatelle C, Mühlhäuser WWD, Stocker DR, Coats M, Weber W, et al. Optogenetic control of focal adhesion kinase signaling. Cell Signal. 2018;42:176–83. http://www.ncbi.nlm.nih.gov/pubmed/29074139.

    Article  PubMed  CAS  Google Scholar 

  42. Zhao T, Li R, Tan X, Zhang J, Fan C, Zhao Q, et al. Simulated microgravity reduces focal adhesions and alters cytoskeleton and nuclear positioning leading to enhanced apoptosis via suppressing FAK/RhoA-mediated mTORC1/NF-κB and ERK1/2 pathways. Int J Mol Sci. 2018;19:1994. http://www.ncbi.nlm.nih.gov/pubmed/29986550.

    Article  PubMed Central  CAS  Google Scholar 

  43. Vogel V. Unraveling the mechanobiology of extracellular matrix. Annu Rev Physiol. 2018;80:353–87. http://www.ncbi.nlm.nih.gov/pubmed/29433414.

    Article  PubMed  CAS  Google Scholar 

  44. Klapholz B, Brown NH. Talin—the master of integrin adhesions. J Cell Sci. 2017;130:2435–46. http://www.ncbi.nlm.nih.gov/pubmed/28701514.

    Article  PubMed  CAS  Google Scholar 

  45. Zaidel-Bar R, Itzkovitz S, Ma’ayan A, Iyengar R, Geiger B. Functional atlas of the integrin adhesome. Nat Cell Biol. 2007;9:858–67. http://www.nature.com/articles/ncb0807-858.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Sang M, Ma L, Sang M, Zhou X, Gao W, Geng C. LIM-domain-only proteins: multifunctional nuclear transcription coregulators that interacts with diverse proteins. Mol Biol Rep. 2014;41:1067–73. http://www.ncbi.nlm.nih.gov/pubmed/24379077.

    Article  PubMed  CAS  Google Scholar 

  47. Schiller HB, Friedel CC, Boulegue C, Fässler R. Quantitative proteomics of the integrin adhesome show a myosin II-dependent recruitment of LIM domain proteins. EMBO Rep. 2011;12:259–66. https://doi.org/10.1038/embor.2011.5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Hall A. Rho family GTPases. Biochem Soc Trans. 2012;40:1378–82. http://www.ncbi.nlm.nih.gov/pubmed/23176484.

    Article  PubMed  CAS  Google Scholar 

  49. Varney SD, Betts CB, Zheng R, Wu L, Hinz B, Zhou J, et al. Hic-5 is required for myofibroblast differentiation by regulating mechanically dependent MRTF-A nuclear accumulation. J Cell Sci. 2016;129:774–87. https://doi.org/10.1242/jcs.170589.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Shibanuma M, Kim-Kaneyama J, Ishino K, Sakamoto N, Hishiki T, Yamaguchi K, et al. Hic-5 communicates between focal adhesions and the nucleus through oxidant-sensitive nuclear export signal. Mol Biol Cell. 2003;14:1158–71. https://doi.org/10.1091/mbc.02-06-0099.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Kim-Kaneyama J, Suzuki W, Ichikawa K, Ohki T, Kohno Y, Sata M, et al. Uni-axial stretching regulates intracellular localization of Hic-5 expressed in smooth-muscle cells in vivo. J Cell Sci. 2005;118:937–49. https://doi.org/10.1242/jcs.01683.

    Article  PubMed  CAS  Google Scholar 

  52. Julian L, Olson MF. Rho-associated coiled-coil containing kinases (ROCK). Small GTPases. 2014;5:e29846. http://www.ncbi.nlm.nih.gov/pubmed/25010901.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Narumiya S, Thumkeo D. Rho signaling research: history, current status and future directions. FEBS Lett. 2018;592:1763–76. https://doi.org/10.1002/1873-3468.13087.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Boyle ST, Kular J, Nobis M, Ruszkiewicz A, Timpson P, Samuel MS. Acute compressive stress activates RHO/ROCK-mediated cellular processes. Small GTPases. 2018:1–17. http://www.ncbi.nlm.nih.gov/pubmed/29455593.

  55. Yuan Y, Li M, To CH, Lam TC, Wang P, Yu Y, et al. The Role of the RhoA/ROCK signaling pathway in mechanical strain-induced scleral myofibroblast differentiation. Investig Opthalmol Vis Sci. 2018;59:3619. http://www.ncbi.nlm.nih.gov/pubmed/30029249.

    Article  CAS  Google Scholar 

  56. Knipe RS, Probst CK, Lagares D, Franklin A, Spinney JJ, Brazee PL, et al. The Rho kinase isoforms ROCK1 and ROCK2 each contribute to the development of experimental pulmonary fibrosis. Am J Respir Cell Mol Biol. 2018;58:471–81. https://doi.org/10.1165/rcmb.2017-0075OC.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Amano M, Nakayama M, Kaibuchi K. Rho-kinase/ROCK: a key regulator of the cytoskeleton and cell polarity. Cytoskeleton (Hoboken). 2010;67:545–54. https://doi.org/10.1002/cm.20472.

    Article  CAS  Google Scholar 

  58. Zhang J, Fan G, Zhao H, Wang Z, Li F, Zhang P, et al. Targeted inhibition of focal adhesion kinase attenuates cardiac fibrosis and preserves heart function in adverse cardiac remodeling. Sci Rep. 2017;7:43146. http://www.ncbi.nlm.nih.gov/pubmed/28225063.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Fletcher DA, Mullins RD. Cell mechanics and the cytoskeleton. Nature. 2010;463:485–92. http://www.ncbi.nlm.nih.gov/pubmed/20110992.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Chen T-J, Wu C-C, Tang M-J, Huang J-S, Su F-C. Complexity of the tensegrity structure for dynamic energy and force distribution of cytoskeleton during cell spreading. PLoS One. 2010;5:e14392. https://doi.org/10.1371/journal.pone.0014392.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Tang DD, Gerlach BD. The roles and regulation of the actin cytoskeleton, intermediate filaments and microtubules in smooth muscle cell migration. Respir Res. 2017;18:54. http://www.ncbi.nlm.nih.gov/pubmed/28390425.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Houdusse A, Sweeney HL. How Myosin Generates Force on Actin Filaments. Trends Biochem Sci. 2016;41:989–97. http://www.ncbi.nlm.nih.gov/pubmed/27717739

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Koenderink GH, Paluch EK. Architecture shapes contractility in actomyosin networks. Curr Opin Cell Biol. 2018;50:79–85. http://www.ncbi.nlm.nih.gov/pubmed/29482169.

    Article  PubMed  CAS  Google Scholar 

  64. Lee S, Kumar S. Actomyosin stress fiber mechanosensing in 2D and 3D. F1000Research. 2016;5:2261. http://www.ncbi.nlm.nih.gov/pubmed/27635242.

    Article  CAS  Google Scholar 

  65. Burridge K, Guilluy C. Focal adhesions, stress fibers and mechanical tension. Exp Cell Res. 2016;343:14–20. http://www.ncbi.nlm.nih.gov/pubmed/26519907.

    Article  PubMed  CAS  Google Scholar 

  66. Shutova MS, Svitkina TM. Mammalian nonmuscle myosin II comes in three flavors. Biochem Biophys Res Commun. 2018;506:394–402. http://www.ncbi.nlm.nih.gov/pubmed/29550471.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Parmacek MS. Myocardin-Related Transcription Factors. Circ Res. 2007;100:633–44. http://www.ncbi.nlm.nih.gov/pubmed/17363709

    Article  PubMed  CAS  Google Scholar 

  68. Panciera T, Azzolin L, Cordenonsi M, Piccolo S. Mechanobiology of YAP and TAZ in physiology and disease. Nat Rev Mol Cell Biol. 2017;18:758–70. http://www.ncbi.nlm.nih.gov/pubmed/28951564.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Totaro A, Panciera T, Piccolo S. YAP/TAZ upstream signals and downstream responses. Nat Cell Biol. 2018;20:888–99. http://www.nature.com/articles/s41556-018-0142-z.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Meng Z, Moroishi T, Guan K-L. Mechanisms of Hippo pathway regulation. Genes Dev. 2016;30:1–17. http://www.ncbi.nlm.nih.gov/pubmed/26728553.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Lin KC, Park HW, Guan K-L. Regulation of the Hippo pathway transcription factor TEAD. Trends Biochem Sci. 2017;42:862–72. http://www.ncbi.nlm.nih.gov/pubmed/28964625.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Piersma B, Bank RA, Boersema M. Signaling in fibrosis: TGF-β, WNT, and YAP/TAZ converge. Front Med. 2015;2:59. http://www.ncbi.nlm.nih.gov/pubmed/26389119.

    Article  Google Scholar 

  73. Mannaerts I, Leite SB, Verhulst S, Claerhout S, Eysackers N, Thoen LFR, et al. The Hippo pathway effector YAP controls mouse hepatic stellate cell activation. J Hepatol. 2015;63:679–88. https://linkinghub.elsevier.com/retrieve/pii/S0168827815002949.

    Article  PubMed  CAS  Google Scholar 

  74. Liu F, Lagares D, Choi KM, Stopfer L, Marinković A, Vrbanac V, et al. Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. Am J Physiol Lung Cell Mol Physiol. 2015;308:L344–57. https://doi.org/10.1152/ajplung.00300.2014.

    Article  PubMed  CAS  Google Scholar 

  75. Piersma B, de Rond S, Werker PMN, Boo S, Hinz B, van Beuge MM, et al. YAP1 is a driver of myofibroblast differentiation in normal and diseased fibroblasts. Am J Pathol. 2015;185:3326–37. https://linkinghub.elsevier.com/retrieve/pii/S000294401500499X.

    Article  PubMed  CAS  Google Scholar 

  76. Johnson LA, Rodansky ES, Haak AJ, Larsen SD, Neubig RR, Higgins PDR. Novel Rho/MRTF/SRF inhibitors block matrix-stiffness and TGF-β-induced fibrogenesis in human colonic myofibroblasts. Inflamm Bowel Dis. 2014;20:154–65. https://academic.oup.com/ibdjournal/article/20/1/154-165/4578875.

    Article  PubMed  Google Scholar 

  77. Miralles F, Posern G, Zaromytidou A-I, Treisman R. Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell. 2003;113:329–42. http://www.ncbi.nlm.nih.gov/pubmed/12732141.

    Article  PubMed  CAS  Google Scholar 

  78. Kuwahara K, Barrientos T, Pipes GCT, Li S, Olson EN. Muscle-specific signaling mechanism that links actin dynamics to serum response factor. Mol Cell Biol. 2005;25:3173–81. https://doi.org/10.1128/MCB.25.8.3173-3181.2005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Mouilleron S, Langer CA, Guettler S, McDonald NQ, Treisman R. Structure of a pentavalent G-actin*MRTF-A complex reveals how G-actin controls nucleocytoplasmic shuttling of a transcriptional coactivator. Sci Signal. 2011;4:ra40. https://doi.org/10.1126/scisignal.2001750.

    Article  PubMed  CAS  Google Scholar 

  80. Staus DP, Weise-Cross L, Mangum KD, Medlin MD, Mangiante L, Taylor JM, et al. Nuclear RhoA signaling regulates MRTF-dependent SMC-specific transcription. Am J Physiol Heart Circ Physiol. 2014;307:H379–90. https://doi.org/10.1152/ajpheart.01002.2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Speight P, Kofler M, Szászi K, Kapus A. Context-dependent switch in chemo/mechanotransduction via multilevel crosstalk among cytoskeleton-regulated MRTF and TAZ and TGFβ-regulated Smad3. Nat Commun. 2016;7:11642. http://www.ncbi.nlm.nih.gov/pubmed/27189435.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Wang N, Tytell JD, Ingber DE. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol. 2009;10:75–82. http://www.nature.com/articles/nrm2594.

    Article  PubMed  CAS  Google Scholar 

  83. Chambliss AB, Khatau SB, Erdenberger N, Robinson DK, Hodzic D, Longmore GD, et al. The LINC-anchored actin cap connects the extracellular milieu to the nucleus for ultrafast mechanotransduction. Sci Rep. 2013;3:1087. http://www.nature.com/articles/srep01087.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Cho S, Irianto J, Discher DE. Mechanosensing by the nucleus: from pathways to scaling relationships. J Cell Biol. 2017;216:305–15. https://doi.org/10.1083/jcb.201610042.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Miroshnikova YA, Nava MM, Wickström SA. Emerging roles of mechanical forces in chromatin regulation. J Cell Sci. 2017;130:2243–50. https://doi.org/10.1242/jcs.202192.

    Article  PubMed  CAS  Google Scholar 

  86. Horn HF. LINC complex proteins in development and disease. Curr Top Dev Biol. 2014;109:287–321. https://linkinghub.elsevier.com/retrieve/pii/B9780123979209000044.

    Article  PubMed  Google Scholar 

  87. Kirby TJ, Lammerding J. Emerging views of the nucleus as a cellular mechanosensor. Nat Cell Biol. 2018;20:373–81. http://www.nature.com/articles/s41556-018-0038-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Haque F, Lloyd DJ, Smallwood DT, Dent CL, Shanahan CM, Fry AM, et al. SUN1 interacts with nuclear lamin A and cytoplasmic nesprins to provide a physical connection between the nuclear lamina and the cytoskeleton. Mol Cell Biol. 2006;26:3738–51. https://doi.org/10.1128/MCB.26.10.3738-3751.2006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Nishioka Y, Imaizumi H, Imada J, Katahira J, Matsuura N, Hieda M. SUN1 splice variants, SUN1_888, SUN1_785, and predominant SUN1_916, variably function in directional cell migration. Nucleus. 2016;7:572–84. https://doi.org/10.1080/19491034.2016.1260802.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Nikolova V, Leimena C, McMahon AC, Tan JC, Chandar S, Jogia D, et al. Defects in nuclear structure and function promote dilated cardiomyopathy in lamin A/C-deficient mice. J Clin Invest. 2004;113:357–69. http://www.jci.org/articles/view/19448.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Ho CY, Jaalouk DE, Vartiainen MK, Lammerding J. Lamin A/C and emerin regulate MKL1-SRF activity by modulating actin dynamics. Nature. 2013;497:507–11. http://www.nature.com/articles/nature12105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Ding X, Xu R, Yu J, Xu T, Zhuang Y, Han M. SUN1 is required for telomere attachment to nuclear envelope and gametogenesis in mice. Dev Cell. 2007;12:863–72. https://linkinghub.elsevier.com/retrieve/pii/S1534580707001189.

    Article  PubMed  CAS  Google Scholar 

  93. Stewart-Hutchinson PJ, Hale CM, Wirtz D, Hodzic D. Structural requirements for the assembly of LINC complexes and their function in cellular mechanical stiffness. Exp Cell Res. 2008;314:1892–905. https://linkinghub.elsevier.com/retrieve/pii/S0014482708001092.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Adapala RK, Thoppil RJ, Luther DJ, Paruchuri S, Meszaros JG, Chilian WM, et al. TRPV4 channels mediate cardiac fibroblast differentiation by integrating mechanical and soluble signals. J Mol Cell Cardiol. 2013;54:45–52. https://linkinghub.elsevier.com/retrieve/pii/S0022282812003987.

    Article  PubMed  CAS  Google Scholar 

  95. Numaga-Tomita T, Kitajima N, Kuroda T, Nishimura A, Miyano K, Yasuda S, et al. TRPC3-GEF-H1 axis mediates pressure overload-induced cardiac fibrosis. Sci Rep. 2016;6:39383. http://www.nature.com/articles/srep39383.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Sharma S, Goswami R, Merth M, Cohen J, Lei KY, Zhang DX, et al. TRPV4 ion channel is a novel regulator of dermal myofibroblast differentiation. Am J Physiol Cell Physiol. 2017;312:C562–72. https://doi.org/10.1152/ajpcell.00187.2016.

    Article  PubMed  PubMed Central  Google Scholar 

  97. O’Connor JW, Riley PN, Nalluri SM, Ashar PK, Gomez EW. Matrix rigidity mediates TGFβ1-induced epithelial-myofibroblast transition by controlling cytoskeletal organization and MRTF-A localization. J Cell Physiol. 2015;230:1829–39. https://doi.org/10.1002/jcp.24895.

    Article  PubMed  CAS  Google Scholar 

  98. Turner NA. Inflammatory and fibrotic responses of cardiac fibroblasts to myocardial damage associated molecular patterns (DAMPs). J Mol Cell Cardiol. 2016;94:189–200. http://www.ncbi.nlm.nih.gov/pubmed/26542796.

    Article  PubMed  CAS  Google Scholar 

  99. Bhattacharyya S, Midwood KS, Yin H, Varga J. Toll-Like receptor-4 signaling drives persistent fibroblast activation and prevents fibrosis resolution in scleroderma. Adv Wound Care. 2017;6:356–69. https://doi.org/10.1089/wound.2017.0732.

    Article  Google Scholar 

  100. Pakshir P, Hinz B. The big five in fibrosis: macrophages, myofibroblasts, matrix, mechanics, and miscommunication. Matrix Biol. 2018;68–69:81–93. https://linkinghub.elsevier.com/retrieve/pii/S0945053X18300349.

    Article  PubMed  CAS  Google Scholar 

  101. El-Karef A, Yoshida T, Gabazza EC, Nishioka T, Inada H, Sakakura T, et al. Deficiency of tenascin-C attenuates liver fibrosis in immune-mediated chronic hepatitis in mice. J Pathol. 2007;211:86–94. https://doi.org/10.1002/path.2099.

    Article  PubMed  CAS  Google Scholar 

  102. Zhang W, Lavine KJ, Epelman S, Evans SA, Weinheimer CJ, Barger PM, et al. Necrotic myocardial cells release damage-associated molecular patterns that provoke fibroblast activation in vitro and trigger myocardial inflammation and fibrosis in Vivo. J Am Heart Assoc. 2015;4:e001993. http://www.ncbi.nlm.nih.gov/pubmed/26037082.

    PubMed  PubMed Central  Google Scholar 

  103. Wang Q, Wang J, Wang J, Hong S, Han F, Chen J, et al. HMGB1 induces lung fibroblast to myofibroblast differentiation through NF-κB-mediated TGF-β1 release. Mol Med Rep. 2017;15:3062–8. http://www.ncbi.nlm.nih.gov/pubmed/28339089.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Lee WJ, Song SY, Roh H, Ahn HM, Na Y, Kim J, et al. Profibrogenic effect of high-mobility group box protein-1 in human dermal fibroblasts and its excess in keloid tissues. Sci Rep. 2018;8:8434. http://www.ncbi.nlm.nih.gov/pubmed/29849053.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Zhong A, Xu W, Zhao J, Xie P, Jia S, Sun J, et al. S100A8 and S100A9 are induced by decreased hydration in the epidermis and promote fibroblast activation and fibrosis in the dermis. Am J Pathol. 2016;186:109–22. http://www.ncbi.nlm.nih.gov/pubmed/26597884.

    Article  PubMed  CAS  Google Scholar 

  106. Artlett CM. The role of the NLRP3 inflammasome in fibrosis. Open Rheumatol J. 2012;6:80–6. http://www.ncbi.nlm.nih.gov/pubmed/22802905.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Kawaguchi M, Takahashi M, Hata T, Kashima Y, Usui F, Morimoto H, et al. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation. 2011;123:594–604. http://www.ncbi.nlm.nih.gov/pubmed/21282498.

    Article  PubMed  CAS  Google Scholar 

  108. Wang W, Wang X, Chun J, Vilaysane A, Clark S, French G, et al. Inflammasome-independent NLRP3 augments TGF-β signaling in kidney epithelium. J Immunol. 2013;190:1239–49. http://www.ncbi.nlm.nih.gov/pubmed/23264657.

    Article  PubMed  CAS  Google Scholar 

  109. Chaudhuri V, Zhou L, Karasek M. Inflammatory cytokines induce the transformation of human dermal microvascular endothelial cells into myofibroblasts: a potential role in skin fibrogenesis. J Cutan Pathol. 2007;34:146–53. http://www.ncbi.nlm.nih.gov/pubmed/17244026.

    Article  PubMed  CAS  Google Scholar 

  110. Gasse P, Riteau N, Charron S, Girre S, Fick L, Pétrilli V, et al. Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis. Am J Respir Crit Care Med. 2009;179:903–13. https://doi.org/10.1164/rccm.200808-1274OC.

    Article  PubMed  CAS  Google Scholar 

  111. Riteau N, Gasse P, Fauconnier L, Gombault A, Couegnat M, Fick L, et al. Extracellular ATP is a danger signal activating P2X7 receptor in lung inflammation and fibrosis. Am J Respir Crit Care Med. 2010;182:774–83. http://www.ncbi.nlm.nih.gov/pubmed/20522787.

    Article  PubMed  CAS  Google Scholar 

  112. Fix C, Bingham K, Carver W. Effects of interleukin-18 on cardiac fibroblast function and gene expression. Cytokine. 2011;53:19–28. http://www.ncbi.nlm.nih.gov/pubmed/21050772.

    Article  PubMed  CAS  Google Scholar 

  113. Boza P, Ayala P, Vivar R, Humeres C, Cáceres FT, Muñoz C, et al. Expression and function of toll-like receptor 4 and inflammasomes in cardiac fibroblasts and myofibroblasts: IL-1β synthesis, secretion, and degradation. Mol Immunol. 2016;74:96–105. http://www.ncbi.nlm.nih.gov/pubmed/27174187.

    Article  PubMed  CAS  Google Scholar 

  114. Mia MM, Boersema M, Bank RA. Interleukin-1β attenuates myofibroblast formation and extracellular matrix production in dermal and lung fibroblasts exposed to transforming growth factor-β1. PLoS One. 2014;9:e91559. http://www.ncbi.nlm.nih.gov/pubmed/24622053.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Artlett CM, Thacker JD. Molecular activation of the NLRP3 Inflammasome in fibrosis: common threads linking divergent fibrogenic diseases. Antioxid Redox Signal. 2015;22:1162–75. http://www.ncbi.nlm.nih.gov/pubmed/25329971.

    Article  PubMed  CAS  Google Scholar 

  116. Bhattacharyya S, Tamaki Z, Wang W, Hinchcliff M, Hoover P, Getsios S, et al. FibronectinEDA promotes chronic cutaneous fibrosis through Toll-like receptor signaling. Sci Transl Med. 2014;6:232ra50. https://doi.org/10.1126/scitranslmed.3008264.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. George J, Wang SS, Sevcsik AM, Sanicola M, Cate RL, Koteliansky VE, et al. Transforming growth factor-beta initiates wound repair in rat liver through induction of the EIIIA-fibronectin splice isoform. Am J Pathol. 2000;156:115–24. http://www.ncbi.nlm.nih.gov/pubmed/10623659.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Liao Y-F, Gotwals PJ, Koteliansky VE, Sheppard D, Van De Water L. The EIIIA segment of fibronectin is a ligand for integrins alpha 9beta 1 and alpha 4beta 1 providing a novel mechanism for regulating cell adhesion by alternative splicing. J Biol Chem. 2002;277:14467–74. http://www.ncbi.nlm.nih.gov/pubmed/11839764.

    Article  PubMed  CAS  Google Scholar 

  119. Kelsh-Lasher RM, Ambesi A, Bertram C, McKeown-Longo PJ. Integrin α4β1 and TLR4 cooperate to induce fibrotic gene expression in response to fibronectin’s EDA domain. J Invest Dermatol. 2017;137:2505–12. https://linkinghub.elsevier.com/retrieve/pii/S0022202X17327951.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Bhattacharyya S, Varga J. Endogenous ligands of TLR4 promote unresolving tissue fibrosis: implications for systemic sclerosis and its targeted therapy. Immunol Lett. 2018;195:9–17. http://www.ncbi.nlm.nih.gov/pubmed/28964818.

    Article  PubMed  CAS  Google Scholar 

  121. Sauler M, Bazan IS, Lee PJ. Cell death in the lung: the apoptosis–necroptosis axis. Annu Rev Physiol. 2019;81:375–402. http://www.ncbi.nlm.nih.gov/pubmed/30485762

    Article  PubMed  CAS  Google Scholar 

  122. Piek A, de Boer RA, Silljé HHW. The fibrosis-cell death axis in heart failure. Heart Fail Rev. 2016;21:199–211. http://www.ncbi.nlm.nih.gov/pubmed/26883434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Frangogiannis NG. Cardiac fibrosis: cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol Aspects Med. 2019;65:70–99. https://linkinghub.elsevier.com/retrieve/pii/S0098299718300670.

    Article  PubMed  CAS  Google Scholar 

  124. Manucha W, Vallés PG. Apoptosis modulated by oxidative stress and inflammation during obstructive nephropathy. Inflamm Allergy Drug Targets. 2012;11:303–12. http://www.ncbi.nlm.nih.gov/pubmed/22533548.

    Article  PubMed  CAS  Google Scholar 

  125. Grynberg K, Ma FY, Nikolic-Paterson DJ. The JNK signaling pathway in renal fibrosis. Front Physiol. 2017;8:829. http://www.ncbi.nlm.nih.gov/pubmed/29114233.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Dong X, Zhao B, Iacob RE, Zhu J, Koksal AC, Lu C, et al. Force interacts with macromolecular structure in activation of TGF-β. Nature. 2017;542:55–9. http://www.nature.com/articles/nature21035.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Huang XZ, Wu JF, Cass D, Erle DJ, Corry D, Young SG, et al. Inactivation of the integrin beta 6 subunit gene reveals a role of epithelial integrins in regulating inflammation in the lung and skin. J Cell Biol. 1996;133:921–8. http://www.ncbi.nlm.nih.gov/pubmed/8666675.

    Article  PubMed  CAS  Google Scholar 

  128. Bader BL, Rayburn H, Crowley D, Hynes RO. Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins. Cell. 1998;95:507–19. http://www.ncbi.nlm.nih.gov/pubmed/9827803.

    Article  PubMed  CAS  Google Scholar 

  129. Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL, Wu J, et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell. 1999;96:319–28. http://www.ncbi.nlm.nih.gov/pubmed/10025398.

    Article  PubMed  CAS  Google Scholar 

  130. Zhu J, Motejlek K, Wang D, Zang K, Schmidt A, Reichardt LF. beta8 integrins are required for vascular morphogenesis in mouse embryos. Development. 2002;129:2891–903. http://www.ncbi.nlm.nih.gov/pubmed/12050137.

    PubMed  CAS  Google Scholar 

  131. Annes JP, Munger JS, Rifkin DB. Making sense of latent TGFbeta activation. J Cell Sci. 2003;116:217–24. http://www.ncbi.nlm.nih.gov/pubmed/12482908.

    Article  PubMed  CAS  Google Scholar 

  132. Annes JP, Chen Y, Munger JS, Rifkin DB. Integrin alphaVbeta6-mediated activation of latent TGF-beta requires the latent TGF-beta binding protein-1. J Cell Biol. 2004;165:723–34. https://doi.org/10.1083/jcb.200312172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Keski-Oja J, Koli K, von Melchner H. TGF-beta activation by traction? Trends Cell Biol. 2004;14:657–9. http://linkinghub.elsevier.com/retrieve/pii/S096289240400282X.

    Article  PubMed  CAS  Google Scholar 

  134. Wipff P-J, Rifkin DB, Meister J-J, Hinz B. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J Cell Biol. 2007;179:1311–23. https://doi.org/10.1083/jcb.200704042.

  135. Yang Z, Mu Z, Dabovic B, Jurukovski V, Yu D, Sung J, et al. Absence of integrin-mediated TGFbeta1 activation in vivo recapitulates the phenotype of TGFbeta1-null mice. J Cell Biol. 2007;176:787–93. https://doi.org/10.1083/jcb.200611044.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Xu MY, Porte J, Knox AJ, Weinreb PH, Maher TM, Violette SM, et al. Lysophosphatidic acid induces alphavbeta6 integrin-mediated TGF-beta activation via the LPA2 receptor and the small G protein G alpha(q). Am J Pathol. 2009;174:1264–79. https://linkinghub.elsevier.com/retrieve/pii/S0002944010609856.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Nishimura SL. Integrin-mediated transforming growth factor-beta activation, a potential therapeutic target in fibrogenic disorders. Am J Pathol. 2009;175:1362–70. https://linkinghub.elsevier.com/retrieve/pii/S0002944010606475.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Tatler AL, John AE, Jolly L, Habgood A, Porte J, Brightling C, et al. Integrin αvβ5-mediated TGF-β activation by airway smooth muscle cells in asthma. J Immunol. 2011;187:6094–107. https://doi.org/10.4049/jimmunol.1003507.

    Article  PubMed  CAS  Google Scholar 

  139. Giacomini MM, Travis MA, Kudo M, Sheppard D. Epithelial cells utilize cortical actin/myosin to activate latent TGF-β through integrin α(v)β(6)-dependent physical force. Exp Cell Res. 2012;318:716–22. https://linkinghub.elsevier.com/retrieve/pii/S0014482712000419.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Henderson NC, Arnold TD, Katamura Y, Giacomini MM, Rodriguez JD, McCarty JH, et al. Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat Med. 2013;19:1617–24. http://www.nature.com/articles/nm.3282.

    Article  PubMed  CAS  Google Scholar 

  141. Hinz B. It has to be the alphav: myofibroblast integrins activate latent TGF-β1. Nat Med. 2013;19:1567–8. http://www.nature.com/articles/nm.3421.

    Article  PubMed  CAS  Google Scholar 

  142. Travis MA, Sheppard D. TGF-β activation and function in immunity. Annu Rev Immunol. 2014;32:51–82. http://www.ncbi.nlm.nih.gov/pubmed/24313777.

    Article  PubMed  CAS  Google Scholar 

  143. Sun Z, Guo SS, Fässler R. Integrin-mediated mechanotransduction. J Cell Biol. 2016;215:45–56. http://www.ncbi.nlm.nih.gov/pubmed/27872252.

    Article  CAS  Google Scholar 

  144. Lim C-G, Jang J, Kim C. Cellular machinery for sensing mechanical force. BMB Rep. 2018;51:623–9. http://www.ncbi.nlm.nih.gov/pubmed/30293551.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Mu D, Cambier S, Fjellbirkeland L, Baron JL, Munger JS, Kawakatsu H, et al. The integrin alpha(v)beta8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-beta1. J Cell Biol. 2002;157:493–507. https://doi.org/10.1083/jcb.200109100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Ge G, Greenspan DS. BMP1 controls TGFbeta1 activation via cleavage of latent TGFbeta-binding protein. J Cell Biol. 2006;175:111–20. https://doi.org/10.1083/jcb.200606058.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Jenkins G. The role of proteases in transforming growth factor-β activation. Int J Biochem Cell Biol. 2008;40:1068–78. http://www.ncbi.nlm.nih.gov/pubmed/18243766.

    Article  PubMed  CAS  Google Scholar 

  148. Kobayashi T, Kim H, Liu X, Sugiura H, Kohyama T, Fang Q, et al. Matrix metalloproteinase-9 activates TGF-β and stimulates fibroblast contraction of collagen gels. Am J Physiol Lung Cell Mol Physiol. 2014;306:L1006–15. https://doi.org/10.1152/ajplung.00015.2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Saharinen J, Taipale J, Keski-Oja J. Association of the small latent transforming growth factor-beta with an eight cysteine repeat of its binding protein LTBP-1. EMBO J. 1996;15:245–53. http://www.ncbi.nlm.nih.gov/pubmed/8617200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Dallas SL, Rosser JL, Mundy GR, Bonewald LF. Proteolysis of latent transforming growth factor-beta (TGF-beta )-binding protein-1 by osteoclasts. A cellular mechanism for release of TGF-beta from bone matrix. J Biol Chem. 2002;277:21352–60. https://doi.org/10.1074/jbc.M111663200.

    Article  PubMed  CAS  Google Scholar 

  151. Kim CW, Pokutta-Paskaleva A, Kumar S, Timmins LH, Morris AD, Kang D-W, et al. Disturbed flow promotes arterial stiffening through Thrombospondin-1. Circulation. 2017;136:1217–32. https://doi.org/10.1161/CIRCULATIONAHA.116.026361.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Hinz B. Myofibroblasts. Exp Eye Res. 2016;142:56–70. http://www.ncbi.nlm.nih.gov/pubmed/26192991.

    Article  PubMed  CAS  Google Scholar 

  153. Robertson IB, Rifkin DB. Regulation of the bioavailability of TGF-β and TGF-β-related proteins. Cold Spring Harb Perspect Biol. 2016;8:a021907. https://doi.org/10.1101/cshperspect.a021907.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Meng X, Nikolic-Paterson DJ, Lan HY. TGF-β: the master regulator of fibrosis. Nat Rev Nephrol. 2016;12:325–38. http://www.ncbi.nlm.nih.gov/pubmed/27108839.

    Article  PubMed  CAS  Google Scholar 

  155. Carthy JM. TGFβ signaling and the control of myofibroblast differentiation: implications for chronic inflammatory disorders. J Cell Physiol. 2018;233:98–106. https://doi.org/10.1002/jcp.25879.

    Article  PubMed  CAS  Google Scholar 

  156. Zhang YE. Non-smad signaling pathways of the TGF-β family. Cold Spring Harb Perspect Biol. 2017;9:a022129. http://www.ncbi.nlm.nih.gov/pubmed/27864313.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Luo K. Signaling Cross Talk between TGF-β/Smad and Other Signaling Pathways. Cold Spring Harb Perspect Biol. 2017;9:a022137. http://www.ncbi.nlm.nih.gov/pubmed/27836834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Ma Z-Y, Zhong Z-G, Qiu M-Y, Zhong Y-H, Zhang W-X. TGF-β1 activates the canonical NF-κB signaling to promote cell survival and proliferation in dystrophic muscle fibroblasts in vitro. Biochem Biophys Res Commun. 2016;471:576–81. http://www.ncbi.nlm.nih.gov/pubmed/26874278.

    Article  PubMed  CAS  Google Scholar 

  159. Działo E, Tkacz K, Błyszczuk P. Crosstalk between TGF-β and WNT signalling pathways during cardiac fibrogenesis. Acta Biochim Pol. 2018;65:341–9. http://www.ncbi.nlm.nih.gov/pubmed/30040870.

    Article  PubMed  CAS  Google Scholar 

  160. Zhang YE. Mechanistic insight into contextual TGF-β signaling. Curr Opin Cell Biol. 2018;51:1–7. http://www.ncbi.nlm.nih.gov/pubmed/29149681.

    Article  PubMed  CAS  Google Scholar 

  161. Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA, Engel ME, et al. Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell. 2001;12:27–36. https://doi.org/10.1091/mbc.12.1.27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Pellegrin S, Mellor H. Actin stress fibres. J Cell Sci. 2007;120:3491–9. http://www.ncbi.nlm.nih.gov/pubmed/17928305.

    Article  PubMed  CAS  Google Scholar 

  163. Gasparics Á, Sebe A. MRTFs- master regulators of EMT. Dev Dyn. 2018;247:396–404. https://doi.org/10.1002/dvdy.24544.

    Article  PubMed  Google Scholar 

  164. Ge J, Burnier L, Adamopoulou M, Kwa MQ, Schaks M, Rottner K, et al. RhoA, Rac1, and Cdc42 differentially regulate αSMA and collagen I expression in mesenchymal stem cells. J Biol Chem. 2018;293:9358–69. https://doi.org/10.1074/jbc.RA117.001113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Korol A, Taiyab A, West-Mays JA. RhoA/ROCK signaling regulates TGFβ-induced epithelial-mesenchymal transition of lens epithelial cells through MRTF-A. Mol Med. 2016;22:713–23. http://www.molmed.org/content/pdfstore/16_041_Korol.pdf.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Hinson JS, Medlin MD, Lockman K, Taylor JM, Mack CP. Smooth muscle cell-specific transcription is regulated by nuclear localization of the myocardin-related transcription factors. Am J Physiol Heart Circ Physiol. 2007;292:H1170–80. https://doi.org/10.1152/ajpheart.00864.2006.

    Article  PubMed  CAS  Google Scholar 

  167. Varelas X, Sakuma R, Samavarchi-Tehrani P, Peerani R, Rao BM, Dembowy J, et al. TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat Cell Biol. 2008;10:837–48. http://www.nature.com/articles/ncb1748

    Article  PubMed  CAS  Google Scholar 

  168. Narimatsu M, Samavarchi-Tehrani P, Varelas X, Wrana JL. Distinct polarity cues direct Taz/Yap and TGFβ receptor localization to differentially control TGFβ-induced Smad signaling. Dev Cell. 2015;32:652–6. https://linkinghub.elsevier.com/retrieve/pii/S1534580715001379.

    Article  PubMed  CAS  Google Scholar 

  169. Grannas K, Arngården L, Lönn P, Mazurkiewicz M, Blokzijl A, Zieba A, et al. Crosstalk between Hippo and TGFβ: subcellular localization of YAP/TAZ/Smad complexes. J Mol Biol. 2015;427:3407–15. https://linkinghub.elsevier.com/retrieve/pii/S0022283615002697,

    Article  PubMed  CAS  Google Scholar 

  170. Vallée A, Lecarpentier Y, Guillevin R, Vallée J-N. Interactions between TGF-beta1; canonical WNT/beta -catenin pathway and PPAR gamma; in radiation-induced fibrosis. Oncotarget. 2017;8:90579–604. http://www.ncbi.nlm.nih.gov/pubmed/29163854.

    Article  PubMed  PubMed Central  Google Scholar 

  171. Zhai X-X, Tang Z-M, Ding J-C, Lu X-L. Expression of TGF-β1/mTOR signaling pathway in pathological scar fibroblasts. Mol Med Rep. 2017;15:3467–72. http://www.ncbi.nlm.nih.gov/pubmed/28393182.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Wodarz A, Nusse R. Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol. 1998;14:59–88. https://doi.org/10.1146/annurev.cellbio.14.1.59.

    Article  PubMed  CAS  Google Scholar 

  173. Macdonald BT, Semenov MV, He X. SnapShot: Wnt/beta-catenin signaling. Cell. 2007;131:1204. https://linkinghub.elsevier.com/retrieve/pii/S0092867407015395.

    Article  PubMed  CAS  Google Scholar 

  174. Huang H, He X. Wnt/beta-catenin signaling: new (and old) players and new insights. Curr Opin Cell Biol. 2008;20:119–25. https://linkinghub.elsevier.com/retrieve/pii/S0955067408000197.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Willert K, Nusse R. Wnt Proteins. Cold Spring Harb Perspect Biol. 2012;4:a007864. http://www.ncbi.nlm.nih.gov/pubmed/22952392.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell. 2012;149:1192–205. http://www.ncbi.nlm.nih.gov/pubmed/22682243.

    Article  PubMed  CAS  Google Scholar 

  177. Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169:985–99. http://www.ncbi.nlm.nih.gov/pubmed/28575679.

    Article  PubMed  CAS  Google Scholar 

  178. Zhou B, Liu Y, Kahn M, Ann DK, Han A, Wang H, et al. Interactions between β-catenin and transforming growth factor-β signaling pathways mediate epithelial-mesenchymal transition and are dependent on the transcriptional co-activator cAMP-response element-binding protein (CREB)-binding protein (CBP). J Biol Chem. 2012;287:7026–38. https://doi.org/10.1074/jbc.M111.276311.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Enzo MV, Cattelan P, Rastrelli M, Tosi A, Rossi CR, Hladnik U, et al. Growth rate and myofibroblast differentiation of desmoid fibroblast-like cells are modulated by TGF-β signaling. Histochem Cell Biol. 2019;151:145–60. https://doi.org/10.1007/s00418-018-1718-1.

    Article  PubMed  CAS  Google Scholar 

  180. Shafer SL, Towler DA. Transcriptional regulation of SM22alpha by Wnt3a: convergence with TGFbeta(1)/Smad signaling at a novel regulatory element. J Mol Cell Cardiol. 2009;46:621–35. https://linkinghub.elsevier.com/retrieve/pii/S0022282809000182.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Chen J-H, Chen WLK, Sider KL, Yip CYY, Simmons CA. β-catenin mediates mechanically regulated, transforming growth factor-β1-induced myofibroblast differentiation of aortic valve interstitial cells. Arterioscler Thromb Vasc Biol. 2011;31:590–7. https://doi.org/10.1161/ATVBAHA.110.220061.

    Article  PubMed  CAS  Google Scholar 

  182. Akhmetshina A, Palumbo K, Dees C, Bergmann C, Venalis P, Zerr P, et al. Activation of canonical Wnt signalling is required for TGF-β-mediated fibrosis. Nat Commun. 2012;3:735. http://www.nature.com/articles/ncomms1734.

    Article  PubMed  CAS  Google Scholar 

  183. Feng Y, Liang Y, Zhu X, Wang M, Gui Y, Lu Q, et al. The signaling protein Wnt5a promotes TGFβ1-mediated macrophage polarization and kidney fibrosis by inducing the transcriptional regulators Yap/Taz. J Biol Chem. 2018;293:19290–302. http://www.ncbi.nlm.nih.gov/pubmed/30333225.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Shinde AV, Kelsh R, Peters JH, Sekiguchi K, Van De Water L, McKeown-Longo PJ. The α4β1 integrin and the EDA domain of fibronectin regulate a profibrotic phenotype in dermal fibroblasts. Matrix Biol. 2015;41:26–35. https://linkinghub.elsevier.com/retrieve/pii/S0945053X14002169.

    Article  PubMed  CAS  Google Scholar 

  185. Zhou D, Yang K, Chen L, Zhang W, Xu Z, Zuo J, et al. Promising landscape for regulating macrophage polarization: epigenetic viewpoint. Oncotarget. 2017;8:57693–706. http://www.ncbi.nlm.nih.gov/pubmed/28915705.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Dominguez-Andres J, Netea MG. Long-term reprogramming of the innate immune system. J Leukoc Biol. 2019;105:329–38. https://doi.org/10.1002/JLB.MR0318-104R.

    Article  PubMed  CAS  Google Scholar 

  187. O’Reilly S. Epigenetics in fibrosis. Mol Aspects Med. 2017;54:89–102. http://www.ncbi.nlm.nih.gov/pubmed/27720780.

    Article  PubMed  CAS  Google Scholar 

  188. Dowson C, O’Reilly S. DNA methylation in fibrosis. Eur J Cell Biol. 2016;95:323–30. https://linkinghub.elsevier.com/retrieve/pii/S0171933516300164.

    Article  PubMed  CAS  Google Scholar 

  189. Zhang X, Hu M, Lyu X, Li C, Thannickal VJ, Sanders YY. DNA methylation regulated gene expression in organ fibrosis. Biochim Biophys Acta Mol Basis Dis. 1863;2017:2389–97. http://www.ncbi.nlm.nih.gov/pubmed/28501566.

    Google Scholar 

  190. Massey V, Cabezas J, Bataller R. Epigenetics in liver fibrosis. Semin Liver Dis. 2017;37:219–30. https://doi.org/10.1055/s-0037-1605371.

    Article  PubMed  CAS  Google Scholar 

  191. Watson CJ, Collier P, Tea I, Neary R, Watson JA, Robinson C, et al. Hypoxia-induced epigenetic modifications are associated with cardiac tissue fibrosis and the development of a myofibroblast-like phenotype. Hum Mol Genet. 2014;23:2176–88. https://doi.org/10.1093/hmg/ddt614.

    Article  PubMed  CAS  Google Scholar 

  192. Ghosh AK, Bhattacharyya S, Lafyatis R, Farina G, Yu J, Thimmapaya B, et al. p300 is elevated in systemic sclerosis and its expression is positively regulated by TGF-β: epigenetic feed-forward amplification of fibrosis. J Invest Dermatol. 2013;133:1302–10. https://linkinghub.elsevier.com/retrieve/pii/S0022202X15362394.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Dou C, Liu Z, Tu K, Zhang H, Chen C, Yaqoob U, et al. P300 Acetyltransferase mediates stiffness-induced activation of hepatic stellate cells into tumor-promoting myofibroblasts. Gastroenterology. 2018;154:2209–2221.e14. http://www.ncbi.nlm.nih.gov/pubmed/29454793.

    Article  PubMed  CAS  Google Scholar 

  194. Hemmatazad H, Rodrigues HM, Maurer B, Brentano F, Pileckyte M, Distler JHW, et al. Histone deacetylase 7, a potential target for the antifibrotic treatment of systemic sclerosis. Arthritis Rheum. 2009;60:1519–29. https://doi.org/10.1002/art.24494.

    Article  PubMed  Google Scholar 

  195. Zhang X, Liu H, Hock T, Thannickal VJ, Sanders YY. Histone deacetylase inhibition downregulates collagen 3A1 in fibrotic lung fibroblasts. Int J Mol Sci. 2013;14:19605–17. http://www.mdpi.com/1422-0067/14/10/19605.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Li X, Wu X-Q, Xu T, Li X-F, Yang Y, Li W-X, et al. Role of histone deacetylases(HDACs) in progression and reversal of liver fibrosis. Toxicol Appl Pharmacol. 2016;306:58–68. http://www.ncbi.nlm.nih.gov/pubmed/27396813.

    Article  PubMed  CAS  Google Scholar 

  197. Page A, Paoli PP, Hill SJ, Howarth R, Wu R, Kweon S-M, et al. Alcohol directly stimulates epigenetic modifications in hepatic stellate cells. J Hepatol. 2015;62:388–97. https://linkinghub.elsevier.com/retrieve/pii/S0168827814007351.

    Article  PubMed  CAS  Google Scholar 

  198. Sun G, Reddy MA, Yuan H, Lanting L, Kato M, Natarajan R. Epigenetic histone methylation modulates fibrotic gene expression. J Am Soc Nephrol. 2010;21:2069–80. https://doi.org/10.1681/ASN.2010060633.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Mann J, Oakley F, Akiboye F, Elsharkawy A, Thorne AW, Mann DA. Regulation of myofibroblast transdifferentiation by DNA methylation and MeCP2: implications for wound healing and fibrogenesis. Cell Death Differ. 2007;14:275–85. http://www.nature.com/doifinder/10.1038/sj.cdd.4401979.

    Article  PubMed  CAS  Google Scholar 

  200. Perugorria MJ, Wilson CL, Zeybel M, Walsh M, Amin S, Robinson S, et al. Histone methyltransferase ASH1 orchestrates fibrogenic gene transcription during myofibroblast transdifferentiation. Hepatology. 2012;56:1129–39. https://doi.org/10.1002/hep.25754.

    Article  PubMed  CAS  Google Scholar 

  201. Yamane K, Toumazou C, Tsukada Y, Erdjument-Bromage H, Tempst P, Wong J, et al. JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell. 2006;125:483–95. https://linkinghub.elsevier.com/retrieve/pii/S0092867406003850.

    Article  PubMed  CAS  Google Scholar 

  202. Jiang Y, Wang S, Zhao Y, Lin C, Zhong F, Jin L, et al. Histone H3K9 demethylase JMJD1A modulates hepatic stellate cells activation and liver fibrosis by epigenetically regulating peroxisome proliferator-activated receptor γ. FASEB J. 2015;29:1830–41. http://www.ncbi.nlm.nih.gov/pubmed/25609425

    Article  PubMed  CAS  Google Scholar 

  203. Dong F, Jiang S, Li J, Wang Y, Zhu L, Huang Y, et al. The histone demethylase KDM4D promotes hepatic fibrogenesis by modulating Toll-like receptor 4 signaling pathway. EBioMedicine. 2019;39:472–83. https://linkinghub.elsevier.com/retrieve/pii/S2352396418305590.

    Article  PubMed  Google Scholar 

  204. Jiang X, Zhang F. Long noncoding RNA: a new contributor and potential therapeutic target in fibrosis. Epigenomics. 2017;9:1233–41. https://doi.org/10.2217/epi-2017-0020.

    Article  PubMed  CAS  Google Scholar 

  205. Tao H, Cao W, Yang J-J, Shi K-H, Zhou X, Liu L-P, et al. Long noncoding RNA H19 controls DUSP5/ERK1/2 axis in cardiac fibroblast proliferation and fibrosis. Cardiovasc Pathol. 2016;25:381–9. https://linkinghub.elsevier.com/retrieve/pii/S1054880716300333.

    Article  PubMed  CAS  Google Scholar 

  206. He Y, Wu Y-T, Huang C, Meng X-M, Ma T-T, Wu B-M, et al. Inhibitory effects of long noncoding RNA MEG3 on hepatic stellate cells activation and liver fibrogenesis. Biochim Biophys Acta. 1842;2014:2204–15. https://linkinghub.elsevier.com/retrieve/pii/S0925443914002683.

    Google Scholar 

  207. Duong TE, Hagood JS. Epigenetic regulation of myofibroblast phenotypes in fibrosis. Curr Pathobiol Rep. 2018;6:79–96. http://www.ncbi.nlm.nih.gov/pubmed/30271681.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  208. Bergmann C, Distler JH. Epigenetic factors as drivers of fibrosis in systemic sclerosis. Epigenomics. 2017;9:463–77. https://doi.org/10.2217/epi-2016-0150.

    Article  PubMed  CAS  Google Scholar 

  209. Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456:980–4. https://doi.org/10.1038/nature07511.

    Article  PubMed  CAS  Google Scholar 

  210. Kang H. Role of microRNAs in TGF-β signaling pathway-mediated pulmonary fibrosis. Int J Mol Sci. 2017;18:2527. http://www.mdpi.com/1422-0067/18/12/2527.

    Article  PubMed Central  CAS  Google Scholar 

  211. Liang C, Li X, Zhang L, Cui D, Quan X, Yang W. The anti-fibrotic effects of microRNA-153 by targeting TGFBR-2 in pulmonary fibrosis. Exp Mol Pathol. 2015;99:279–85. https://linkinghub.elsevier.com/retrieve/pii/S0014480015001598.

    Article  PubMed  CAS  Google Scholar 

  212. Felisbino MB, McKinsey TA. Epigenetics in cardiac fibrosis: emphasis on inflammation and fibroblast activation. JACC Basic Transl Sci. 2018;3:704–15. https://linkinghub.elsevier.com/retrieve/pii/S2452302X18301268

    Article  PubMed  PubMed Central  Google Scholar 

  213. Hu B, Gharaee-Kermani M, Wu Z, Phan SH. Epigenetic regulation of myofibroblast differentiation by DNA methylation. Am J Pathol. 2010;177:21–8. http://www.ncbi.nlm.nih.gov/pubmed/20489138.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. He Y, Ling S, Sun Y, Sheng Z, Chen Z, Pan X, et al. DNA methylation regulates α-smooth muscle actin expression during cardiac fibroblast differentiation. J Cell Physiol. 2019;234:7174–85. http://www.ncbi.nlm.nih.gov/pubmed/30362530.

    Article  PubMed  CAS  Google Scholar 

  215. Rai R, Sun T, Ramirez V, Lux E, Eren M, Vaughan DE, et al. Acetyltransferase p300 inhibitor reverses hypertension-induced cardiac fibrosis. J Cell Mol Med. 2019;23(4):3026–31. http://www.ncbi.nlm.nih.gov/pubmed/30710427.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Glenisson W, Castronovo V, Waltregny D. Histone deacetylase 4 is required for TGFbeta1-induced myofibroblastic differentiation. Biochim Biophys Acta. 1773;2007:1572–82. https://linkinghub.elsevier.com/retrieve/pii/S0167488907001449.

    Google Scholar 

  217. Kang DH, Yin GN, Choi M-J, Song K-M, Ghatak K, Minh NN, et al. Silencing histone deacetylase 7 alleviates transforming growth factor-β1-induced profibrotic responses in fibroblasts derived from Peyronie’s plaque. World J Mens Health. 2018;36:139. http://www.ncbi.nlm.nih.gov/pubmed/29706035.

    Article  PubMed  PubMed Central  Google Scholar 

  218. Shuttleworth VG, Gaughan L, Nawafa L, Mooney CA, Cobb SL, Sheerin NS, et al. The methyltransferase SET9 regulates TGFB1 activation of renal fibroblasts via interaction with SMAD3. J Cell Sci. 2018;131:jcs207761. http://www.ncbi.nlm.nih.gov/pubmed/29222115.

    Article  PubMed  CAS  Google Scholar 

  219. Jun J-I, Lau LF. Resolution of organ fibrosis. J Clin Invest. 2018;128:97–107. https://www.jci.org/articles/view/93563.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Cimmino C, Rossano L, Netti PA, Ventre M. Spatio-temporal control of cell adhesion: toward programmable platforms to manipulate cell functions and fate. Front Bioeng Biotechnol. 2018;6:190. https://doi.org/10.3389/fbioe.2018.00190/full.

    Article  PubMed  PubMed Central  Google Scholar 

  221. Ventre M, Netti PA. Engineering cell instructive materials to control cell fate and functions through material cues and surface patterning. ACS Appl Mater Interfaces. 2016;8:14896–908. https://doi.org/10.1021/acsami.5b08658.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Land, W.G. (2020). DAMP-Promoted Efferent Innate Immune Responses in Human Diseases: Fibrosis. In: Damage-Associated Molecular Patterns in Human Diseases . Springer, Cham. https://doi.org/10.1007/978-3-030-53868-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-53868-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-53867-5

  • Online ISBN: 978-3-030-53868-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics