Skip to main content

Advertisement

Log in

LIM-domain-only proteins: multifunctional nuclear transcription coregulators that interacts with diverse proteins

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The LIM-only subclass of LIM proteins is a family of nuclear transcription co-regulators that are characterized by the exclusive presence of two tandem LIM domains and no other functional domains. To date, four LIM-domain-only (LMO) proteins (LMO1-LMO4) have been identified. They regulate gene transcription by functioning as “linker” or “scaffolding” proteins with a remarkable potential to mediate protein–protein interactions. These proteins play important roles in cell fate determination, cell growth and differentiation, tissues patterning, and organ development. In this review, we briefly described the functions of LMO proteins in the organ development and diseases. We also summarized the interaction proteins of each LMO family member, which may contribute to elucidating the functions of these mysterious and important linker proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sanchez-Garcia I, Rabbitts TH (1994) The LIM domain: a new structural motif found in zinc-finger-like proteins. Trend Genet 10:315–320

    Article  CAS  Google Scholar 

  2. Dawid IB, Toyama R, Taira M (1995) LIM domain proteins. C R Acad Sci III 318:295–306

    CAS  PubMed  Google Scholar 

  3. Bach I (2000) The LIM domain: regulation by association. Mech Dev 91:5–17

    Article  CAS  PubMed  Google Scholar 

  4. Jurata LW, Gill GN (1998) Structure and function of LIM domains. Curr Top Microbiol Immunol 228:75–113

    CAS  PubMed  Google Scholar 

  5. Dawid IB, Breen JJ, Tayama R (1998) LIM domains: multiple roles as adapters and functional modifiers in protein interactions. Trends Genet 14:156–162

    Article  CAS  PubMed  Google Scholar 

  6. Deane JE, Ryan DP, Sunde M, Maher MJ, Guss JM, Visvader JE, Matthews JM (2004) Tandem LIM domains provide synergistic binding in the LMO4: ldb1 complex. EMBO J 23:3589–3598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Matthews JB, Johnson DR, Lazari O, Craig R, Matthews KR (2008) Identification of a LIM domain-containing gene in the Cyathostominae. Vet Parasitol 154:82–93

    Article  CAS  PubMed  Google Scholar 

  8. Heberlein U, Tsai LT, Kapfhamer D, Lasek AW (2009) Drosophila, a genetic model system to study cocaine-related behaviors: a review with focus on LIM-only proteins. Neuropharmacology 56:97–106

    Article  CAS  PubMed  Google Scholar 

  9. Patterson LJ, Gering M, Eckfeldt CE, Green AR, Verfaillie CM, Ekker SC, Patient R (2007) The transcription factors Scl and Lmo2 act together during development of the hemangioblast in zebrafish. Blood 109:2389–2398

    Article  CAS  PubMed  Google Scholar 

  10. McCollum CW, Amin SR, Pauerstein P, Lane ME (2007) A zebrafish LMO4 ortholog limits the size of the forebrain and eyes through negative regulation of six3b and rx3. Dev Biol 309:373–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rétaux S, Bachy I (2002) A short history of LIM domains (1993–2002): from protein interaction to degradation. Mol Neurobiol 26:269–281

    Article  PubMed  Google Scholar 

  12. Boehm T, Baer R, Lavenir I, Forster A, Waters JJ, Nacheva E, Rabbitts TH (1998) The mechanism of chromosomal translocation t(11;14) involving the T-cell receptor C delta locus on human chromosome 14q11 and a transcribed region of chromosome 11p15. EMBO J 7:385–394

    Google Scholar 

  13. Boehm T, Foroni L, Kennedy M, Rabbitts TH (1990) The rhombotin gene belongs to a class of transcriptional regulators with a potential novel protein dimerisation motif. Oncogene 5:1103–1105

    CAS  PubMed  Google Scholar 

  14. McGuire EA, Hockett RD, Pollock KM, Bartholdi MF, O’Brien SJ, Korsmeyer SJ (1989) The t(11;14) (p15;q11) in a T-cell acute lymphoblastic leukemia cell line activates multiple transcripts, including Ttg-1, a gene encoding a potential zinc finger protein. Mol Cell Biol 9:2124–2132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Boehm T, Foroni L, Kaneko Y, Perutz MF, Rabbitts TH (1991) The rhombotin family of cysteine-rich LIM-domain oncogenes: distinct members are involved in T-cell translocations to human chromosomes 11p15 and 11p13. Proc Natl Acad Sci USA 88:4367–4371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Foroni L, Boehm T, White L et al (1992) The rhombotin gene family encode related LIM-domain proteins whose differing expression suggests multiple roles in mouse development. J Mol Biol 226:747–761

    Article  CAS  PubMed  Google Scholar 

  17. Royer-Pokora B, Loos U, Ludwig WD (1991) TTG-2, a new gene encoding a cysteine-rich protein with the LIM motif, is overexpressed in acute T-cell leukaemia with the t(11;14) (p13;q11). Oncogene 6:1887–1893

    CAS  PubMed  Google Scholar 

  18. Grutz G, Forster A, Rabbitts TH (1998) Identification of the LMO4 gene encoding an interaction partner of the LIM-binding protein LDB1/NLI1: a candidate for displacement by LMO proteins in T-cell acute leukaemia. Oncogene 7:2799–2803

    Article  Google Scholar 

  19. Kenny DA, Jurata LW, Saga Y, Gill GN (1998) Identification and characterization of LMO4, an LMO gene with a novel pattern of expression during embryogenesis. Proc Natl Acad USA 95:11257–11262

    Article  CAS  Google Scholar 

  20. Sugihara TM, Bach I, Kioussi C, Rosenfeld MG, Andersen B (1998) Mouse deformed epidermal autoregulatory factor 1 recruits a LIM domain factor, LMO-4, and CLIM coregulators. Proc Natl Acad Sci USA 95:15418–15423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Racevskis J, Dill A, Sparano JA, Ruan H (1999) Molecular cloning of LMO41, a new human LIM domain gene. Biochim Biophys Acta 1445:148–153

    Article  CAS  PubMed  Google Scholar 

  22. Tse E, Smith AJ, Hunt S et al (2004) Null mutation of the Lmo4 gene or a combined null mutation of the Lmo1/Lmo3 genes causes perinatal lethality, and Lmo4 controls neural tube development in mice. Mol Cell Biol 24:2063–2073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hahm K, Sum EY, Fujiwara Y, Lindeman GJ, Visvader JE, Orkin SH (2004) Defective neural tube closure and anteroposterior patterning in mice lacking the LIM protein LMO4 or its interacting partner Deaf-1. Mol Cell Biol 24:2074–2082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Valge-Archer V, Forster A, Rabbitts TH (1998) The LMO1 and LDB1 proteins interact in human T-cell acute leukaemia with the chromosomal translocation t(11;14) (p15;q11). Oncogen 17:3199–3202

    Article  CAS  Google Scholar 

  25. Larson RC, Fisch P, Larson TA, Lavenir I, Langford T, King G, Rabbitts TH (1994) T-cell tumours of disparate phenotype in mice transgenic for Rbtn-2. Oncogene 9:3675–3681

    CAS  PubMed  Google Scholar 

  26. Larson RC, Lavenir I, Larson TA, Baer R, Warren AJ, Wadman I, Nottage K, Rabbitts TH (1996) Protein dimerization between Lmo2 (Rbtn2) and Tal1 alters thymocyte development and potentiates T-cell tumorigenesis in transgenic mice. EMBO J 15:1021–1027

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tremblay M, Tremblay CS, Herblot S, Aplan PD, Hebert J, Perreault C, Hoang T (2010) Modeling T-cell acute lymphoblastic leukemia induced by the SCL and LMO1 oncogenes. Genes Dev 24:1093–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang K, Diskin SJ, Zhang H et al (2011) Integrative genomics identifies LMO1 as a neuroblastoma oncogene. Nature 469:216–220

    Article  CAS  PubMed  Google Scholar 

  29. Warren AJ, Colledge WH, Carlton MB, Evans MJ, Smith AJ, Rabbitts TH (1994) The oncogenic cysteine-rich LIM domain protein rbtn2 is essential for erythroid development. Cell 78:45–57

    Article  CAS  PubMed  Google Scholar 

  30. Yamada Y, Warren AJ, Dobson C, Forster A, Pannell R, Rabbitts TH (1998) The T-cell leukemia LIM protein Lmo2 is necessary for adult mouse hematopoiesis. Proc Natl Acad Sci USA 95:3890–3895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rabbitts TH (1998) LMO T-cell translocation oncogenes typify genes activated by chromosomal translocations that alter transcription and developmental processes. Genes Dev 12:2651–2657

    Article  CAS  PubMed  Google Scholar 

  32. Yamada Y, Pannell R, Rabbits TH (2000) The oncogenic LIM-only transcription factor Lmo2 regulates angiogenesis but not vasculogenesis. Proc Natl Acad Sci USA 97:320–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Look AT (1997) Oncogenic transcription factors in the human acute leukemias. Science 278:1059–1064

    Article  CAS  PubMed  Google Scholar 

  34. Hwang LY, Baer RJ (1995) The role of chromosome translocations in T-cell acute leukemia. Curr Opin Immunol 7:659–664

    Article  CAS  PubMed  Google Scholar 

  35. Hammond SM, Crable SC, Anderson KP (2005) Negative regulatory elements are present in the human LMO2 oncogene and may contribute to its expression in leukemia. Leuk Res 19:89–97

    Article  Google Scholar 

  36. Dik WA, Nadel B, Przybylski GK et al (2007) Different chromosomal breakpoints impact the level of LMO2 expression in T-ALL. Blood 110:388–392

    Article  CAS  PubMed  Google Scholar 

  37. Hacein-Bey-Abina S, Von Kalle C et al (2003) LMO2-associated clonal T-cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419

    Article  CAS  PubMed  Google Scholar 

  38. Van Vlierberghe P, van Grotel M, Beverloo HB et al (2006) The cryptic chromosomal deletion del(11) (p12p13) as a new activation mechanism of LMO2 in pediatric T-cell acute lymphoblastic leukemia. Blood 108:3520–3529

    Article  PubMed  Google Scholar 

  39. Appert A, Nam CH, Lobato N et al (2009) Targeting LMO2 with a peptide aptamer establishes a necessary function in overt T-cell neoplasia. Cancer Res 69:4784–4790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Alizadeh AA, Eisen MB, Davis RE et al (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:503–511

    Article  CAS  PubMed  Google Scholar 

  41. Natkunam Y, Farinha P, his ED et al (2008) LMO2 protein expression predicts survival in patients with diffuse large B-cell lymphoma treated with anthracycline-based chemotherapy with and without rituximab. J Clin Oncol 26:447–454

    Article  CAS  PubMed  Google Scholar 

  42. Natkunam Y, Zhao S, Mason DY et al (2007) The oncoprotein LMO2 is expressed in normal germinal-center B cells and in human B-cell lymphomas. Blood 109:1636–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lossos IS, Czerwinski DK, Alizadeh AA, Wechser MA, Tibshirani R, Botstein D, Levy R (2004) Prediction of survival in diffuse large-B-cell lymphoma based on the expression of six genes. N Engl J Med 350:1828–1837

    Article  CAS  PubMed  Google Scholar 

  44. Ma S, Guan XY, Bech PS, Wong KY, Chan YP, Yuen HF, Vielkind J, Chan KW (2007) The significance of LMO2 expression in the progression of prostate cancer. J Pathol 211:278–285

    Article  CAS  PubMed  Google Scholar 

  45. Nakata K, Ohuchida K, Nagai E et al (2009) LMO2 is a novel predictive marker for a better prognosis in pancreatic cancer. Neoplasia 11:712–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wadman I, Li J, Bash RO, Forster A, Osada H, Rabbitts TH, Baer R (1994) Specific in vivo association between the bHLH and LIM proteins implicated in human T-cell leukemia. EMBO J 13:4831–4839

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Valge-Archer VE, Osada H, Warren AJ, Forster A, Li J, Baer R, Rabbitts TH (1994) The LIM protein RBTN2 and the basic helix-loop-helix protein TAL1 are present in a complex in erythroid cells. Proc Natl Acad Sci USA 91:8617–8621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wadman IA, Osada H, Grütz GG, Agulnick AD, Westphal H, Forster A, Rabbitts TH (1997) The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J 16:3145–3157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Grütz GG, Bucher K, Lavenir I, Larson T, Larson R, Rabbitts TH (1998) The oncogenic T-cell LIM-protein Lmo2 forms part of a DNA-binding complex specifically in immature T-cells. EMBO J 17:4594–4605

    Article  PubMed  PubMed Central  Google Scholar 

  50. Han C, Liu H, Liu J et al (2005) Human Bex2 interacts with LMO2 and regulates the transcriptional activity of a novel DNA-binding complex. Nucleic Acids Res 33:6555–6565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hink GL, Shah B, French SJ, Campos LS, Staley K, Hughes J, Sofroniew MV (1997) Expression of LIM protein genes Lmo1, Lmo2, and Lmo3 in adult mouse hippocampus and other forebrain regions: differential regulation by seizure activity. J Neurosci 17:5549–5559

    Google Scholar 

  52. Shi J, Cai W, Chen X, Ying K, Zhang K, Xie Y (2001) Identification of dopamine responsive mRNAs in glial cells by suppression subtractive hybridization. Brain Res 910:29–37

    Article  CAS  PubMed  Google Scholar 

  53. Bao J, Talmage DA, Role LW, Gautier J (2000) Regulation of neurogenesis by interactions between HEN1 and neuronal LMO proteins. Development 127:425–435

    CAS  PubMed  Google Scholar 

  54. Aoyama M, Ozaki T, Inuzuka H, Tomotsune D, Hirato J, Okamoto Y, Tokita H, Ohira M, Nakagawara A (2005) LMO3 interacts with neuronal transcription factor, HEN2, and acts as an oncogene in neuroblastoma. Cancer Res 65:4587–4597

    Article  CAS  PubMed  Google Scholar 

  55. Isogai E, Ohira M, Ozaki T, Oba S, Nakamura Y, Nakagawara A (2010) Oncogenic LMO3 collaborates with HEN2 to enhance neuroblastoma cell growth through transactivation of Mash1. PLoS One 6:e19297

    Article  Google Scholar 

  56. Hui L, Ji C, Hui B, Lv T, Ha X, Yang J, Cai W (2009) The oncoprotein LMO3 interacts with calcium- and integrin-binding protein CIB. Brain Res 1265:24–29

    Article  CAS  PubMed  Google Scholar 

  57. Larsen S, Yokochi T, Isogai E, Nakamura Y, Ozaki T, Nakagawara A (2010) LMO3 interacts with p53 and inhibits its transcriptional activity. Biochem Biophys Res Commun 392:252–257

    Article  CAS  PubMed  Google Scholar 

  58. Watanabe H, Francis JM, Woo MS et al (2013) Integrated cistromic and expression analysis of amplified NKX2-1 in lung adenocarcinoma identifies LMO3 as a functional transcriptional target. Genes Dev 27:197–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Visvader JE, Venter D, Hahm K et al (2001) The LIM domain gene LMO4 inhibits differentiation of mammary epithelial cells in vitro and is overexpressed in breast cancer. Proc Natl Acad USA 98:14452–14457

    Article  CAS  Google Scholar 

  60. Wang N, Kudryavtseva E, Chen IL, McCormick J, Sugihara TM, Ruiz R, Andersen E (2004) Expression of an engrailed-LMO4 fusion protein in mammary epithelial cells inhibits mammary gland development in mice. Oncogene 23:1507–1513

    Article  CAS  PubMed  Google Scholar 

  61. Sum EY, Segara D, Duscio B, Bath ML, Field AS, Sutherland RL, Lindeman GJ, Visvader JE (2005) Overexpression of LMO4 induces mammary hyperplasia, promotes cell invasion, and is a predictor of poor outcome in breast cancer. Proc Natl Acad USA 102:7659–7664

    Article  CAS  Google Scholar 

  62. Wang N, Lin KK, Lu Z, Lam KS, Newton R, Xu X, Yu Z, Gill GN, Andersen B (2007) The LIM-only factor LMO4 regulates expression of the BMP7 gene through an HDAC2-dependent mechanism, and controls cell proliferation and apoptosis of mammary epithelial cells. Oncogene 26:6431–6441

    Article  CAS  PubMed  Google Scholar 

  63. Montañez-Wiscovich ME, Seachrist DD, Landis MD, Visvader J, Andersen B, Keri RA (2009) LMO4 is an essential mediator of ErbB2/HER2/Neu-induced breast cancer cell cycle progression. Oncogene 28:3608–3618

    Article  PubMed  PubMed Central  Google Scholar 

  64. Montañez-Wiscovich ME, Shelton MD, Seachrist DD, Lozada KL, Johnson E, Miedler JD, Abdul-Karim FW, Visvader JE, Keri RA (2010) Aberrant expression of LMO4 induces centrosome amplification and mitotic spindle abnormalities in breast cancer cells. J Pathol 222:271–281

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zhou X, Sang M, Liu W et al (2012) LMO4 inhibits p53-mediated proliferative inhibition of breast cancer cells through interacting p53. Life Sci 91:358–363

    Article  CAS  PubMed  Google Scholar 

  66. Tian Y, Wang N, Lu Z (2010) Repression of Lim only protein 4-activated transcription inhibits proliferation and induces apoptosis of normal mammary epithelial cells and breast cancer cells. Clin Exp Metastasis 27:455–463

    Article  CAS  PubMed  Google Scholar 

  67. Sum EY, Peng B, Yu X, Chen J, Byrne J, Lindeman GJ, Visvader JE (2002) The LIM domain protein LMO4 interacts with the cofactor CtIP and the tumor suppressor BRCA1 and inhibits BRCA1 activity. J Biol Chem 27:7849–7856

    Article  Google Scholar 

  68. Singh RR, Barnes CJ, Talukder AH, Fuqua SA, Kumar R (2005) Negative regulation of estrogen receptor α transactivation function by LIM domain only 4 protein. Cancer Res 65:10594–10601

    Article  CAS  PubMed  Google Scholar 

  69. Begley CG, Lipkowitz S, Göbel V, Mahon KA, Bertness V, Green AR, Gough NM, Kirsch IR (1992) Molecular characterization of NSCL, a gene encoding a helix-loop-helix protein expressed in the developing nervous system. Proc Natl Acad USA 89:38–42

    Article  CAS  Google Scholar 

  70. Manetopoulos C, Hansson A, Karlsson J, Jönsson JI, Axelson H (2003) The LIM-only protein LMO4 modulates the transcriptional activity of HEN1. Biochem Biophys Res Commun 307:891–899

    Article  CAS  PubMed  Google Scholar 

  71. Lu Z, Lam KS, Wang N, Xu X, Cortes M, Andersen B (2006) LMO4 can interact with Smad proteins and modulate transforming growth factor-beta signaling in epithelia cells. Oncogene 25:2920–2930

    Article  CAS  PubMed  Google Scholar 

  72. Schock SC, Xu J, Duquette PM et al (2008) Rescue of neurons from ischemic injury by peroxisome proliferation-activated receptor-γ requires a novel essential cofactor LMO4. J Neurosci 28:12433–12444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schaffar G, Taniguchi J, Brodbeck T, Meyer AH, Schmidt M, Yamashita T, Mueller BK (2008) LIM-only protein 4 interacts directly with the repulsive guidance molecule A receptor Neogenin. J Neurochem 107:418–431

    Article  CAS  PubMed  Google Scholar 

  74. Kashani AH, Qiu Z, Jurata L, Lee SK, Pfaff S, Goebbels S, Nave KA, Ghosh A (2006) Calcium activation of the LMO4 transcription complex and its role in the patterning of thalamocortical connections. J Neurosci 26:8398–8408

    Article  CAS  PubMed  Google Scholar 

  75. Novotny-Diermayr V, Lin B, Gu L, Cao X (2005) Modulation of the interleukin-6 receptor subunit glycoprotein 130 complex and its signaling by LMO4 interaction. J Biol Chem 280:12747–12757

    Article  CAS  PubMed  Google Scholar 

  76. Michell AC, Bragança J, Broadbent C, Joyce B, Franklyn A, Schneider JE, Bhattacharya S, Bamforth SD (2010) A novel role for transcription factor Lmo4 in thymus development through genetic interaction with Cited2. Dev Dyn 239:1988–1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen HH, Schock SC, Xu J, Safarpour F, Thompson CS, Stewart AF (2007) Extracellular ATP-dependent upregulation of the transcription cofactor LMO4 promotes neuron survival from hypoxia. Exp Cell Res 313:3106–3116

    Article  CAS  PubMed  Google Scholar 

  78. Chen HH, Xu J, Safarpour F, Stewart AF (2007) LMO4 mRNA stability is regulated by extracellular ATP in F11 cells. Biochem Biophys Res Commun 357:56–61

    Article  CAS  PubMed  Google Scholar 

  79. Lee SK, Jurata LW, Nowak R, Lettieri K, Kenny DA, Pfaff SL, Gill GN (2005) The LIM domain-only protein LMO4 is required for neural tube closure. Mol Cell Neurosci 28:205–214

    Article  CAS  PubMed  Google Scholar 

  80. Murphy NC, Scarlett CJ, Kench JG et al (2008) Expression of LMO4 and outcome in pancreatic ductal adenocarcinoma. Br J Cancer 98:537–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yu J, Ohuchida K, Nakata K et al (2008) LIM only 4 is overexpressed in late stage pancreas cancer. Mol Cancer 7:93

    Article  PubMed  PubMed Central  Google Scholar 

  82. Agulnick D, Taira M, Breen JJ, Tanaka T, Dawid IB, Westphal H (1996) Interactions of the LIM-domain-binding factor Ldb1 with LIM homeodomain proteins. Nature 384:270–272

    Article  CAS  PubMed  Google Scholar 

  83. Jurata LW, Gill GN (1997) Functional analysis of the nuclear LIM domain interactor NLI. Mol Cell Biol 17:5688–5698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mulkhopadhyay M, Teufel A, Yamashita T et al (2003) Functional ablation of the mouse Ldb1 gene results in severe patterning defects during gastrulation. Development 130:495–505

    Article  Google Scholar 

  85. Matthews JM, Visvader JE (2003) LIM-domain-binding protein 1: a multifunctional cofactor that interacts with diverse proteins. EMBO Rep 4:1127–1132

    Article  Google Scholar 

  86. Nam CH, Lobato MN, Appert A, Drynan LF, Tanaka T, Rabbitts TH (2008) An antibody inhibitor of the LMO2-protein complex blocks its normal and tumorigenic functions. Oncogene 27:4962–4968

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Nature Science Foundation of China (No. 81001178). The authors would like to greatly appreciate Dr. Qianglin Duan, a skilled English proofreader from Tongji University for paper revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuizhi Geng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sang, M., Ma, L., Sang, M. et al. LIM-domain-only proteins: multifunctional nuclear transcription coregulators that interacts with diverse proteins. Mol Biol Rep 41, 1067–1073 (2014). https://doi.org/10.1007/s11033-013-2952-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2952-1

Keywords

Navigation