Skip to main content

Advertisement

Log in

Matrix Stiffness: the Conductor of Organ Fibrosis

  • Scleroderma (J Varga, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Organ fibrosis is a lethal component of scleroderma. The hallmark of scleroderma fibrosis is extensive extracellular matrix (ECM) deposition by activated myofibroblasts, specialized hyper-contractile cells that promote ECM remodeling and matrix stiffening. The purpose of this review is to discuss novel mechanistic insight into myofibroblast activation in scleroderma.

Recent Findings

Matrix stiffness, traditionally viewed as an end point of organ fibrosis, is now recognized as a critical regulator of tissue fibrogenesis that hijacks the normal physiologic wound-healing program to promote organ fibrosis. Here, we discuss how matrix stiffness orchestrates fibrosis by controlling three fundamental pro-fibrotic mechanisms: (a) mechanoactivation of myofibroblasts, (b) integrin-mediated latent transforming growth factor beta 1 (TGF-β1) activation, and (c) activation of non-canonical TGF-β1 signaling pathways. We also summarize novel therapeutic targets for anti-fibrotic therapy based on the mechanobiology of scleroderma.

Summary

Future research on mechanobiology of scleroderma may lead to important clinical applications such as improved diagnosis and treatment of patients with scleroderma and other fibrotic-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Varga J, Abraham D. Systemic sclerosis: a prototypic multisystem fibrotic disorder. J Clin Invest. 2007;117(3):557–67. https://doi.org/10.1172/JCI31139. This review discusses the pathogenesis of scleroderma and the role of TGF-beta signaling in myofibroblast activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. •• Ho YY, Lagares D, Tager AM, Kapoor M. Fibrosis—a lethal component of systemic sclerosis. Nat Rev Rheumatol. 2014;10(7):390–402. https://doi.org/10.1038/nrrheum.2014.53. This review highlights recent findings on mechanisms underlying myofibroblast activation in scleroderma including both biochemical and biophysical factors.

    Article  CAS  PubMed  Google Scholar 

  3. Allanore Y, Simms R, Distler O, Trojanowska M, Pope J, Denton CP, et al. Systemic sclerosis. Nat Rev Dis Primers. 2015;1:15002. https://doi.org/10.1038/nrdp.2015.2.

    Article  PubMed  Google Scholar 

  4. Winstone TA, Assayag D, Wilcox PG, Dunne JV, Hague CJ, Leipsic J, et al. Predictors of mortality and progression in scleroderma-associated interstitial lung disease: a systematic review. Chest. 2014;146(2):422–36. https://doi.org/10.1378/chest.13-2626.

    Article  PubMed  Google Scholar 

  5. •• Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol. 2002;3(5):349–63. https://doi.org/10.1038/nrm809. This review highlights the importance of mechanical forces and matrix stiffness in the activation of myofibroblasts.

    Article  CAS  PubMed  Google Scholar 

  6. • Wells RG. Tissue mechanics and fibrosis. Biochim Biophys Acta. 2013;1832(7):884–90. https://doi.org/10.1016/j.bbadis.2013.02.007. This review describes how mechanical forces and tissue stiffness regulate myofibroblast activation and organ fibrosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. •• Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126(4):677–89. https://doi.org/10.1016/j.cell.2006.06.044. This seminal study demonstrates that matrix stiffness-induced mechanotransduction determines stem cell fate.

    Article  CAS  PubMed  Google Scholar 

  8. •• Georges PC, Hui JJ, Gombos Z, McCormick ME, Wang AY, Uemura M, et al. Increased stiffness of the rat liver precedes matrix deposition: implications for fibrosis. Am J Physiol Gastrointest Liver Physiol. 2007;293(6):G1147–54. https://doi.org/10.1152/ajpgi.00032.2007. This important study demonstrates that increased matrix stiffness precedes collagen deposition and fibrosis.

    Article  CAS  PubMed  Google Scholar 

  9. •• Liu F, Mih JD, Shea BS, Kho AT, Sharif AS, Tager AM, et al. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression. J Cell Biol. 2010;190(4):693–706. https://doi.org/10.1083/jcb.201004082. This important study demonstrates that matrix stiffness amplifies fibrosis by promoting mechanoactivation of myofibroblasts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Anupam Wakhlu ACC, Mohindra N, Tripathy SR, Misra DP, Agarwal V. Assessment of extent of skin involvement in scleroderma using shear wave elastography. Indian J Rheumatol. 2017;12(4):194–8. https://doi.org/10.4103/injr.injr_41_17.

    Article  Google Scholar 

  11. Tschumperlin DJ, Liu F, Tager AM. Biomechanical regulation of mesenchymal cell function. Curr Opin Rheumatol. 2013;25(1):92–100. https://doi.org/10.1097/BOR.0b013e32835b13cd.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hinz B. Tissue stiffness, latent TGF-beta1 activation, and mechanical signal transduction: implications for the pathogenesis and treatment of fibrosis. Curr Rheumatol Rep. 2009;11(2):120–6. https://doi.org/10.1007/s11926-009-0017-1.

    Article  CAS  PubMed  Google Scholar 

  13. • Liu F, Lagares D, Choi KM, Stopfer L, Marinkovic A, Vrbanac V, et al. Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. Am J Physiol Lung Cell Mol Physiol. 2015;308(4):L344–57. https://doi.org/10.1152/ajplung.00300.2014. This study demonstrates the role of stiffness-induced YAP/TAZ signaling in myofibroblast activation in lung fibrosis.

    Article  CAS  PubMed  Google Scholar 

  14. •• Humphrey JD, Dufresne ER, Schwartz MA. Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol. 2014;15(12):802–12. https://doi.org/10.1038/nrm3896. This review highlights recent findings on how mechanical forces shape cellular behaviours.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jansen KA, Donato DM, Balcioglu HE, Schmidt T, Danen EH, Koenderink GH. A guide to mechanobiology: where biology and physics meet. Biochim Biophys Acta. 2015;1853(11 Pt B):3043–52. https://doi.org/10.1016/j.bbamcr.2015.05.007.

    Article  CAS  PubMed  Google Scholar 

  16. • Sun Z, Guo SS, Fassler R. Integrin-mediated mechanotransduction. J Cell Biol. 2016;215(4):445–56. https://doi.org/10.1083/jcb.201609037. This review highlights recent findings on cellular mechanotransduction.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schiller HB, Fassler R. Mechanosensitivity and compositional dynamics of cell-matrix adhesions. EMBO Rep. 2013;14(6):509–19. https://doi.org/10.1038/embor.2013.49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ciobanasu C, Faivre B, Le Clainche C. Integrating actin dynamics, mechanotransduction and integrin activation: the multiple functions of actin binding proteins in focal adhesions. Eur J Cell Biol. 2013;92(10–11):339–48. https://doi.org/10.1016/j.ejcb.2013.10.009.

    Article  CAS  PubMed  Google Scholar 

  19. •• Bershadsky AD, Balaban NQ, Geiger B. Adhesion-dependent cell mechanosensitivity. Annu Rev Cell Dev Biol. 2003;19(1):677–95. https://doi.org/10.1146/annurev.cellbio.19.111301.153011. This review describes the molecular basis behind mechanotransduction.

    Article  CAS  PubMed  Google Scholar 

  20. Moore SW, Roca-Cusachs P, Sheetz MP. Stretchy proteins on stretchy substrates: the important elements of integrin-mediated rigidity sensing. Dev Cell. 2010;19(2):194–206. https://doi.org/10.1016/j.devcel.2010.07.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. • Frame MC, Patel H, Serrels B, Lietha D, Eck MJ. The FERM domain: organizing the structure and function of FAK. Nat Rev Mol Cell Biol. 2010;11(11):802–14. https://doi.org/10.1038/nrm2996. This review describes the molecular basis behind FAK activation.

    Article  CAS  PubMed  Google Scholar 

  22. • Sulzmaier FJ, Jean C, Schlaepfer DD. FAK in cancer: mechanistic findings and clinical applications. Nat Rev Cancer. 2014;14(9):598–610. https://doi.org/10.1038/nrc3792. This review highlights recent findings on targeting FAK signaling in human diseases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. • Solon J, Levental I, Sengupta K, Georges PC, Janmey PA. Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys J. 2007;93(12):4453–61. https://doi.org/10.1529/biophysj.106.101386. This study demonstrates that fibroblasts are highly sensitive to changes in matrix stiffness.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. •• Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, et al. Role of YAP/TAZ in mechanotransduction. Nature. 2011;474(7350):179–83. https://doi.org/10.1038/nature10137. This seminal study demonstrates that YAP/TAZ are transcriptional effectors of stiffness-induced mechanotransduction pathways.

    Article  CAS  PubMed  Google Scholar 

  25. Iyer KV, Pulford S, Mogilner A, Shivashankar GV. Mechanical activation of cells induces chromatin remodeling preceding MKL nuclear transport. Biophys J. 2012;103(7):1416–28. https://doi.org/10.1016/j.bpj.2012.08.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Varga J, Pasche B. Transforming growth factor beta as a therapeutic target in systemic sclerosis. Nat Rev Rheumatol. 2009;5(4):200–6. https://doi.org/10.1038/nrrheum.2009.26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. • Munger JS, Sheppard D. Cross talk among TGF-beta signaling pathways, integrins, and the extracellular matrix. Cold Spring Harb Perspect Biol. 2011;3(11):a005017. https://doi.org/10.1101/cshperspect.a005017. This important review discusses the crosstalk between TGF-beta signaling and mechanical forces exerted by cells in tissue fibrosis.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. •• Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL, Wu J, et al. The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell. 1999;96(3):319–28. This seminal study describes the role of alphavbeta6 integrin in the activation of latent TGF-beta in lung fibrosis. https://doi.org/10.1016/S0092-8674(00)80545-0.

    Article  CAS  PubMed  Google Scholar 

  29. • Henderson NC, Arnold TD, Katamura Y, Giacomini MM, Rodriguez JD, McCarty JH, et al. Targeting of alphav integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat Med. 2013;19(12):1617–24. https://doi.org/10.1038/nm.3282. This important study highlights the role of alpha v integrin in the activation of latent TGF-beta during tissue fibrosis across organs.

    Article  CAS  PubMed  Google Scholar 

  30. Annes JP, Munger JS, Rifkin DB. Making sense of latent TGFbeta activation. J Cell Sci. 2003;116(Pt 2):217–24. https://doi.org/10.1242/jcs.00229.

    Article  CAS  PubMed  Google Scholar 

  31. •• Wipff PJ, Rifkin DB, Meister JJ, Hinz B. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J Cell Biol. 2007;179(6):1311–23. https://doi.org/10.1083/jcb.200704042. This study demonstrates that activation of latent TGF-beta by traction forces exerted by myofibroblasts depends on the stiffness of the matrix.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. •• Massague J. TGFbeta signalling in context. Nat Rev Mol Cell Biol. 2012;13(10):616–30. https://doi.org/10.1038/nrm3434. This review discusses the role of TGF-beta signaling in homeostasis and disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. •• Arora PD, Narani N, McCulloch CA. The compliance of collagen gels regulates transforming growth factor-beta induction of alpha-smooth muscle actin in fibroblasts. Am J Pathol. 1999;154(3):871–82. This seminal study describes the role of matrix compliance in TGF-beta-induced myofibroblast activation. https://doi.org/10.1016/S0002-9440(10)65334-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu S, Xu SW, Kennedy L, Pala D, Chen Y, Eastwood M, et al. FAK is required for TGFbeta-induced JNK phosphorylation in fibroblasts: implications for acquisition of a matrix-remodeling phenotype. Mol Biol Cell. 2007;18(6):2169–78. https://doi.org/10.1091/mbc.E06-12-1121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gabasa M, Duch P, Jorba I, Gimenez A, Lugo R, Pavelescu I, et al. Epithelial contribution to the pro-fibrotic stiff microenvironment and myofibroblast population in lung fibrosis. Mol Biol Cell. 2017;28(26):3741–55. https://doi.org/10.1091/mbc.E17-01-0026.

    Article  PubMed  Google Scholar 

  36. Bader BL, Rayburn H, Crowley D, Hynes RO. Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins. Cell. 1998;95(4):507–19. https://doi.org/10.1016/S0092-8674(00)81618-9.

    Article  CAS  PubMed  Google Scholar 

  37. Stephens LE, Sutherland AE, Klimanskaya IV, Andrieux A, Meneses J, Pedersen RA, et al. Deletion of beta 1 integrins in mice results in inner cell mass failure and peri-implantation lethality. Genes Dev. 1995;9(15):1883–95. https://doi.org/10.1101/gad.9.15.1883.

    Article  CAS  PubMed  Google Scholar 

  38. Liu S, Kapoor M, Denton CP, Abraham DJ, Leask A. Loss of beta1 integrin in mouse fibroblasts results in resistance to skin scleroderma in a mouse model. Arthritis Rheum. 2009;60(9):2817–21. https://doi.org/10.1002/art.24801. This study demonstrates that genetic depletion of beta1 integrin in fibroblasts mitigates skin fibrosis.

    Article  CAS  PubMed  Google Scholar 

  39. Atabai K, Jame S, Azhar N, Kuo A, Lam M, McKleroy W, et al. Mfge8 diminishes the severity of tissue fibrosis in mice by binding and targeting collagen for uptake by macrophages. J Clin Invest. 2009;119(12):3713–22. https://doi.org/10.1172/JCI40053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Puthawala K, Hadjiangelis N, Jacoby SC, Bayongan E, Zhao Z, Yang Z, et al. Inhibition of integrin alpha(v)beta6, an activator of latent transforming growth factor-beta, prevents radiation-induced lung fibrosis. Am J Respir Crit Care Med. 2008;177(1):82–90. https://doi.org/10.1164/rccm.200706-806OC.

    Article  CAS  PubMed  Google Scholar 

  41. Ma LJ, Yang H, Gaspert A, Carlesso G, Barty MM, Davidson JM, et al. Transforming growth factor-beta-dependent and -independent pathways of induction of tubulointerstitial fibrosis in beta6(-/-) mice. Am J Pathol. 2003;163(4):1261–73. https://doi.org/10.1016/S0002-9440(10)63486-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hahm K, Lukashev ME, Luo Y, Yang WJ, Dolinski BM, Weinreb PH, et al. Alphav beta6 integrin regulates renal fibrosis and inflammation in Alport mouse. Am J Pathol. 2007;170(1):110–25. https://doi.org/10.2353/ajpath.2007.060158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ilic D, Furuta Y, Kanazawa S, Takeda N, Sobue K, Nakatsuji N, et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature. 1995;377(6549):539–44. https://doi.org/10.1038/377539a0.

    Article  CAS  PubMed  Google Scholar 

  44. Shimizu Y, Thumkeo D, Keel J, Ishizaki T, Oshima H, Oshima M, et al. ROCK-I regulates closure of the eyelids and ventral body wall by inducing assembly of actomyosin bundles. J Cell Biol. 2005;168(6):941–53. https://doi.org/10.1083/jcb.200411179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Thumkeo D, Keel J, Ishizaki T, Hirose M, Nonomura K, Oshima H, et al. Targeted disruption of the mouse rho-associated kinase 2 gene results in intrauterine growth retardation and fetal death. Mol Cell Biol. 2003;23(14):5043–55. https://doi.org/10.1128/MCB.23.14.5043-5055.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Baba I, Egi Y, Suzuki K. Partial deletion of the ROCK2 protein fails to reduce renal fibrosis in a unilateral ureteral obstruction model in mice. Mol Med Rep. 2016;13(1):231–6. https://doi.org/10.3892/mmr.2015.4569.

    Article  CAS  PubMed  Google Scholar 

  47. • Shimizu T, Narang N, Chen P, Yu B, Knapp M, Janardanan J et al. Fibroblast deletion of ROCK2 attenuates cardiac hypertrophy, fibrosis, and diastolic dysfunction. JCI Insight. 2017;2(13). doi:https://doi.org/10.1172/jci.insight.93187. This study first demonstrates that genetic depletion of ROCK2 mitigates cardiac fibrosis in mice.

  48. • Zhou Y, Huang X, Hecker L, Kurundkar D, Kurundkar A, Liu H, et al. Inhibition of mechanosensitive signaling in myofibroblasts ameliorates experimental pulmonary fibrosis. J Clin Invest. 2013;123(3):1096–108. https://doi.org/10.1172/JCI66700. This study demonstrates that pharmacological inhibition of ROCK mitigates lung fibrosis in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xu H, Wu X, Qin H, Tian W, Chen J, Sun L, et al. Myocardin-related transcription factor A epigenetically regulates renal fibrosis in diabetic nephropathy. J Am Soc Nephrol. 2015;26(7):1648–60. https://doi.org/10.1681/ASN.2014070678.

    Article  CAS  PubMed  Google Scholar 

  50. Small EM, Thatcher JE, Sutherland LB, Kinoshita H, Gerard RD, Richardson JA, et al. Myocardin-related transcription factor-a controls myofibroblast activation and fibrosis in response to myocardial infarction. Circ Res. 2010;107(2):294–304. https://doi.org/10.1161/CIRCRESAHA.110.223172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Oh J, Richardson JA, Olson EN. Requirement of myocardin-related transcription factor-B for remodeling of branchial arch arteries and smooth muscle differentiation. Proc Natl Acad Sci U S A. 2005;102(42):15122–7. https://doi.org/10.1073/pnas.0507346102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Morin-Kensicki EM, Boone BN, Howell M, Stonebraker JR, Teed J, Alb JG, et al. Defects in yolk sac vasculogenesis, chorioallantoic fusion, and embryonic axis elongation in mice with targeted disruption of Yap65. Mol Cell Biol. 2006;26(1):77–87. https://doi.org/10.1128/MCB.26.1.77-87.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hossain Z, Ali SM, Ko HL, Xu J, Ng CP, Guo K, et al. Glomerulocystic kidney disease in mice with a targeted inactivation of Wwtr1. Proc Natl Acad Sci U S A. 2007;104(5):1631–6. https://doi.org/10.1073/pnas.0605266104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mitani A, Nagase T, Fukuchi K, Aburatani H, Makita R, Kurihara H. Transcriptional coactivator with PDZ-binding motif is essential for normal alveolarization in mice. Am J Respir Crit Care Med. 2009;180(4):326–38. https://doi.org/10.1164/rccm.200812-1827OC.

    Article  CAS  PubMed  Google Scholar 

  55. Liang M, Yu M, Xia R, Song K, Wang J, Luo J, et al. Yap/Taz deletion in Gli+ cell-derived myofibroblasts attenuates fibrosis. J Am Soc Nephrol. 2017;28(11):3278–90. https://doi.org/10.1681/ASN.2015121354.

    Article  PubMed  Google Scholar 

  56. Maki JM, Rasanen J, Tikkanen H, Sormunen R, Makikallio K, Kivirikko KI, et al. Inactivation of the lysyl oxidase gene Lox leads to aortic aneurysms, cardiovascular dysfunction, and perinatal death in mice. Circulation. 2002;106(19):2503–9. https://doi.org/10.1161/01.CIR.0000038109.84500.1E.

    Article  PubMed  CAS  Google Scholar 

  57. Bellaye PS, Shimbori C, Upagupta C, Sato S, Shi W, Gauldie J, et al. Lysyl oxidase-like 1 protein deficiency protects mice from AdTGF-beta1 induced pulmonary fibrosis. Am J Respir Cell Mol Biol. 2017; https://doi.org/10.1165/rcmb.2017-0252OC.

  58. Lu J, Wang X, Wang W, Muniyappa H, Hu C, Mitra S, et al. LOX-1 abrogation reduces cardiac hypertrophy and collagen accumulation following chronic ischemia in the mouse. Gene Ther. 2012;19(5):522–31. https://doi.org/10.1038/gt.2011.133.

    Article  CAS  PubMed  Google Scholar 

  59. • Yang J, Savvatis K, Kang JS, Fan P, Zhong H, Schwartz K, et al. Targeting LOXL2 for cardiac interstitial fibrosis and heart failure treatment. Nat Commun. 2016;7:13710. https://doi.org/10.1038/ncomms13710. This study demonstrates that genetic depletion of LOXL2 prevents cardiac fibrosis in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shweke N, Boulos N, Jouanneau C, Vandermeersch S, Melino G, Dussaule JC, et al. Tissue transglutaminase contributes to interstitial renal fibrosis by favoring accumulation of fibrillar collagen through TGF-beta activation and cell infiltration. Am J Pathol. 2008;173(3):631–42. https://doi.org/10.2353/ajpath.2008.080025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. • Olsen KC, Sapinoro RE, Kottmann RM, Kulkarni AA, Iismaa SE, Johnson GV, et al. Transglutaminase 2 and its role in pulmonary fibrosis. Am J Respir Crit Care Med. 2011;184(6):699–707. https://doi.org/10.1164/rccm.201101-0013OC. This study demonstrates that genetic depletion of tissue transglutaminase (TG2) prevents lung fibrosis in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Popov Y, Sverdlov DY, Sharma AK, Bhaskar KR, Li S, Freitag TL, et al. Tissue transglutaminase does not affect fibrotic matrix stability or regression of liver fibrosis in mice. Gastroenterology. 2011;140(5):1642–52. https://doi.org/10.1053/j.gastro.2011.01.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Reed NI, Jo H, Chen C, Tsujino K, Arnold TD, DeGrado WF, et al. The alphavbeta1 integrin plays a critical in vivo role in tissue fibrosis. Sci Transl Med. 2015;7(288):288ra79. https://doi.org/10.1126/scitranslmed.aaa5094.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Patsenker E, Popov Y, Stickel F, Schneider V, Ledermann M, Sagesser H, et al. Pharmacological inhibition of integrin alphavbeta3 aggravates experimental liver fibrosis and suppresses hepatic angiogenesis. Hepatology. 2009;50(5):1501–11. https://doi.org/10.1002/hep.23144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Horan GS, Wood S, Ona V, Li DJ, Lukashev ME, Weinreb PH, et al. Partial inhibition of integrin alpha(v)beta6 prevents pulmonary fibrosis without exacerbating inflammation. Am J Respir Crit Care Med. 2008;177(1):56–65. https://doi.org/10.1164/rccm.200706-805OC.

    Article  CAS  PubMed  Google Scholar 

  66. Wang B, Dolinski BM, Kikuchi N, Leone DR, Peters MG, Weinreb PH, et al. Role of alphavbeta6 integrin in acute biliary fibrosis. Hepatology. 2007;46(5):1404–12. https://doi.org/10.1002/hep.21849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Peng ZW, Ikenaga N, Liu SB, Sverdlov DY, Vaid KA, Dixit R, et al. Integrin alphavbeta6 critically regulates hepatic progenitor cell function and promotes ductular reaction, fibrosis, and tumorigenesis. Hepatology. 2016;63(1):217–32. https://doi.org/10.1002/hep.28274.

    Article  CAS  PubMed  Google Scholar 

  68. • Lagares D, Busnadiego O, Garcia-Fernandez RA, Kapoor M, Liu S, Carter DE, et al. Inhibition of focal adhesion kinase prevents experimental lung fibrosis and myofibroblast formation. Arthritis Rheum. 2012;64(5):1653–64. https://doi.org/10.1002/art.33482. This study first demonstrates that pharmacological inhibition of FAK prevents lung fibrosis in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhao XK, Yu L, Cheng ML, Che P, Lu YY, Zhang Q, et al. Focal adhesion kinase regulates hepatic stellate cell activation and liver fibrosis. Sci Rep. 2017;7(1):4032. https://doi.org/10.1038/s41598-017-04317-0.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Fan GP, Wang W, Zhao H, Cai L, Zhang PD, Yang ZH, et al. Pharmacological inhibition of focal adhesion kinase attenuates cardiac fibrosis in mice cardiac fibroblast and post-myocardial-infarction models. Cell Physiol Biochem. 2015;37(2):515–26. https://doi.org/10.1159/000430373.

    Article  CAS  PubMed  Google Scholar 

  71. Zhao XK, Cheng Y, Liang Cheng M, Yu L, Mu M, Li H, et al. Focal adhesion kinase regulates fibroblast migration via integrin beta-1 and plays a central role in fibrosis. Sci Rep. 2016;6(1):19276. https://doi.org/10.1038/srep19276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. • Wong VW, Rustad KC, Akaishi S, Sorkin M, Glotzbach JP, Januszyk M, et al. Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling. Nat Med. 2011;18(1):148–52. https://doi.org/10.1038/nm.2574. This study first demonstrates that genetic depletion of FAK in dermal fibroblasts mitigates skin scarring in mice.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Zhang J, Fan G, Zhao H, Wang Z, Li F, Zhang P, et al. Targeted inhibition of focal adhesion kinase attenuates cardiac fibrosis and preserves heart function in adverse cardiac remodeling. Sci Rep. 2017;7:43146. https://doi.org/10.1038/srep43146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kinoshita K, Aono Y, Azuma M, Kishi J, Takezaki A, Kishi M, et al. Antifibrotic effects of focal adhesion kinase inhibitor in bleomycin-induced pulmonary fibrosis in mice. Am J Respir Cell Mol Biol. 2013;49(4):536–43. https://doi.org/10.1165/rcmb.2012-0277OC.

    Article  CAS  PubMed  Google Scholar 

  75. • Jiang H, Hegde S, Knolhoff BL, Zhu Y, Herndon JM, Meyer MA, et al. Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat Med. 2016;22(8):851–60. https://doi.org/10.1038/nm.4123. This study demonstrates that pharmacological inhibition of FAK reduces pancreatic fibrosis and increases the efficacy of checkpoint immunotherapy in experimental models of pancreatic cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Qi XJ, Ning W, Xu F, Dang HX, Fang F, Li J. Fasudil, an inhibitor of Rho-associated coiled-coil kinase, attenuates hyperoxia-induced pulmonary fibrosis in neonatal rats. Int J Clin Exp Pathol. 2015;8(10):12140–50.

    PubMed  PubMed Central  Google Scholar 

  77. Jiang C, Huang H, Liu J, Wang Y, Lu Z, Xu Z. Fasudil, a rho-kinase inhibitor, attenuates bleomycin-induced pulmonary fibrosis in mice. Int J Mol Sci. 2012;13(7):8293–307. https://doi.org/10.3390/ijms13078293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bei Y, Hua-Huy T, Nicco C, Duong-Quy S, Le-Dong NN, Tiev KP, et al. RhoA/Rho-kinase activation promotes lung fibrosis in an animal model of systemic sclerosis. Exp Lung Res. 2016;42(1):44–55. https://doi.org/10.3109/01902148.2016.1141263.

    Article  CAS  PubMed  Google Scholar 

  79. Baba I, Egi Y, Utsumi H, Kakimoto T, Suzuki K. Inhibitory effects of fasudil on renal interstitial fibrosis induced by unilateral ureteral obstruction. Mol Med Rep. 2015;12(6):8010–20. https://doi.org/10.3892/mmr.2015.4467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nagatoya K, Moriyama T, Kawada N, Takeji M, Oseto S, Murozono T, et al. Y-27632 prevents tubulointerstitial fibrosis in mouse kidneys with unilateral ureteral obstruction. Kidney Int. 2002;61(5):1684–95. https://doi.org/10.1046/j.1523-1755.2002.00328.x.

    Article  CAS  PubMed  Google Scholar 

  81. Sakai N, Chun J, Duffield JS, Wada T, Luster AD, Tager AM. LPA1-induced cytoskeleton reorganization drives fibrosis through CTGF-dependent fibroblast proliferation. FASEB J. 2013;27(5):1830–46. https://doi.org/10.1096/fj.12-219378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sisson TH, Ajayi IO, Subbotina N, Dodi AE, Rodansky ES, Chibucos LN, et al. Inhibition of myocardin-related transcription factor/serum response factor signaling decreases lung fibrosis and promotes mesenchymal cell apoptosis. Am J Pathol. 2015;185(4):969–86. https://doi.org/10.1016/j.ajpath.2014.12.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Haak AJ, Tsou PS, Amin MA, Ruth JH, Campbell P, Fox DA, et al. Targeting the myofibroblast genetic switch: inhibitors of myocardin-related transcription factor/serum response factor-regulated gene transcription prevent fibrosis in a murine model of skin injury. J Pharmacol Exp Ther. 2014;349(3):480–6. https://doi.org/10.1124/jpet.114.213520.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Toyama T, Looney AP, Baker BM, Stawski L, Haines P, Simms R, et al. Therapeutic targeting of TAZ and YAP by dimethyl fumarate in systemic sclerosis fibrosis. J Invest Dermatol. 2017;138(1):78–88. https://doi.org/10.1016/j.jid.2017.08.024.

    Article  PubMed  CAS  Google Scholar 

  85. Cheng T, Liu Q, Zhang R, Zhang Y, Chen J, Yu R, et al. Lysyl oxidase promotes bleomycin-induced lung fibrosis through modulating inflammation. J Mol Cell Biol. 2014;6(6):506–15. https://doi.org/10.1093/jmcb/mju039.

    Article  CAS  PubMed  Google Scholar 

  86. Liu SB, Ikenaga N, Peng ZW, Sverdlov DY, Greenstein A, Smith V, et al. Lysyl oxidase activity contributes to collagen stabilization during liver fibrosis progression and limits spontaneous fibrosis reversal in mice. FASEB J. 2016;30(4):1599–609. https://doi.org/10.1096/fj.14-268425.

    Article  CAS  PubMed  Google Scholar 

  87. Higgins DF, Kimura K, Bernhardt WM, Shrimanker N, Akai Y, Hohenstein B, et al. Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Invest. 2007;117(12):3810–20. https://doi.org/10.1172/JCI30487.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Harlow CR, Wu X, van Deemter M, Gardiner F, Poland C, Green R, et al. Targeting lysyl oxidase reduces peritoneal fibrosis. PLoS One. 2017;12(8):e0183013. https://doi.org/10.1371/journal.pone.0183013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Gonzalez-Santamaria J, Villalba M, Busnadiego O, Lopez-Olaneta MM, Sandoval P, Snabel J, et al. Matrix cross-linking lysyl oxidases are induced in response to myocardial infarction and promote cardiac dysfunction. Cardiovasc Res. 2016;109(1):67–78. https://doi.org/10.1093/cvr/cvv214.

    Article  CAS  PubMed  Google Scholar 

  90. Cox TR, Bird D, Baker AM, Barker HE, Ho MW, Lang G, et al. LOX-mediated collagen crosslinking is responsible for fibrosis-enhanced metastasis. Cancer Res. 2013;73(6):1721–32. https://doi.org/10.1158/0008-5472.CAN-12-2233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. •• Barry-Hamilton V, Spangler R, Marshall D, McCauley S, Rodriguez HM, Oyasu M, et al. Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat Med. 2010, 16(9):1009–17. https://doi.org/10.1038/nm.2208. This study demonstrates that inhibition of LOXL2-induced matrix crosslinking prevents myofibroblast activation and organ fibrosis in mice.

  92. Ikenaga N, Peng ZW, Vaid KA, Liu SB, Yoshida S, Sverdlov DY, et al. Selective targeting of lysyl oxidase-like 2 (LOXL2) suppresses hepatic fibrosis progression and accelerates its reversal. Gut. 2017;66(9):1697–708. https://doi.org/10.1136/gutjnl-2016-312473.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Johnson TS, Fisher M, Haylor JL, Hau Z, Skill NJ, Jones R, et al. Transglutaminase inhibition reduces fibrosis and preserves function in experimental chronic kidney disease. J Am Soc Nephrol. 2007;18(12):3078–88. https://doi.org/10.1681/ASN.2006070690.

    Article  CAS  PubMed  Google Scholar 

  94. Oh K, Park HB, Byoun OJ, Shin DM, Jeong EM, Kim YW, et al. Epithelial transglutaminase 2 is needed for T cell interleukin-17 production and subsequent pulmonary inflammation and fibrosis in bleomycin-treated mice. J Exp Med. 2011;208(8):1707–19. https://doi.org/10.1084/jem.20101457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010;10(1):9–22. https://doi.org/10.1038/nrc2748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Asano Y, Ihn H, Jinnin M, Mimura Y, Tamaki K. Involvement of alphavbeta5 integrin in the establishment of autocrine TGF-beta signaling in dermal fibroblasts derived from localized scleroderma. J Invest Dermatol. 2006;126(8):1761–9. https://doi.org/10.1038/sj.jid.5700331.

    Article  CAS  PubMed  Google Scholar 

  97. Seong J, Tajik A, Sun J, Guan JL, Humphries MJ, Craig SE, et al. Distinct biophysical mechanisms of focal adhesion kinase mechanoactivation by different extracellular matrix proteins. Proc Natl Acad Sci U S A. 2013;110(48):19372–7. https://doi.org/10.1073/pnas.1307405110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Thannickal VJ, Lee DY, White ES, Cui Z, Larios JM, Chacon R, et al. Myofibroblast differentiation by transforming growth factor-beta1 is dependent on cell adhesion and integrin signaling via focal adhesion kinase. J Biol Chem. 2003;278(14):12384–9. https://doi.org/10.1074/jbc.M208544200.

    Article  CAS  PubMed  Google Scholar 

  99. Lagares D, Busnadiego O, Garcia-Fernandez RA, Lamas S, Rodriguez-Pascual F. Adenoviral gene transfer of endothelin-1 in the lung induces pulmonary fibrosis through the activation of focal adhesion kinase. Am J Respir Cell Mol Biol. 2012;47(6):834–42. https://doi.org/10.1165/rcmb.2011-0446OC.

    Article  CAS  PubMed  Google Scholar 

  100. McLean GW, Komiyama NH, Serrels B, Asano H, Reynolds L, Conti F, et al. Specific deletion of focal adhesion kinase suppresses tumor formation and blocks malignant progression. Genes Dev. 2004;18(24):2998–3003. https://doi.org/10.1101/gad.316304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Peng X, Kraus MS, Wei H, Shen TL, Pariaut R, Alcaraz A, et al. Inactivation of focal adhesion kinase in cardiomyocytes promotes eccentric cardiac hypertrophy and fibrosis in mice. J Clin Invest. 2006;116(1):217–27. https://doi.org/10.1172/JCI24497.

    Article  CAS  PubMed  Google Scholar 

  102. Mimura Y, Ihn H, Jinnin M, Asano Y, Yamane K, Tamaki K. Constitutive phosphorylation of focal adhesion kinase is involved in the myofibroblast differentiation of scleroderma fibroblasts. J Invest Dermatol. 2005;124(5):886–92. https://doi.org/10.1111/j.0022-202X.2005.23701.x.

    Article  CAS  PubMed  Google Scholar 

  103. Shi-wen X, Thompson K, Khan K, Liu S, Murphy-Marshman H, Baron M, et al. Focal adhesion kinase and reactive oxygen species contribute to the persistent fibrotic phenotype of lesional scleroderma fibroblasts. Rheumatology (Oxford). 2012;51(12):2146–54. https://doi.org/10.1093/rheumatology/kes234.

    Article  CAS  Google Scholar 

  104. Feng J, Ito M, Ichikawa K, Isaka N, Nishikawa M, Hartshorne DJ, et al. Inhibitory phosphorylation site for Rho-associated kinase on smooth muscle myosin phosphatase. J Biol Chem. 1999;274(52):37385–90. https://doi.org/10.1074/jbc.274.52.37385.

    Article  CAS  PubMed  Google Scholar 

  105. Akhmetshina A, Dees C, Pileckyte M, Szucs G, Spriewald BM, Zwerina J, et al. Rho-associated kinases are crucial for myofibroblast differentiation and production of extracellular matrix in scleroderma fibroblasts. Arthritis Rheum. 2008;58(8):2553–64. https://doi.org/10.1002/art.23677.

    Article  CAS  PubMed  Google Scholar 

  106. Htwe SS, Cha BH, Yue K, Khademhosseini A, Knox AJ, Ghaemmaghami AM. Role of Rho-associated coiled-coil forming kinase isoforms in regulation of stiffness-induced myofibroblast differentiation in lung fibrosis. Am J Respir Cell Mol Biol. 2017;56(6):772–83. https://doi.org/10.1165/rcmb.2016-0306OC.

    Article  CAS  PubMed  Google Scholar 

  107. Huang X, Gai Y, Yang N, Lu B, Samuel CS, Thannickal VJ, et al. Relaxin regulates myofibroblast contractility and protects against lung fibrosis. Am J Pathol. 2011;179(6):2751–65. https://doi.org/10.1016/j.ajpath.2011.08.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. • Panciera T, Azzolin L, Cordenonsi M, Piccolo S. Mechanobiology of YAP and TAZ in physiology and disease. Nat Rev Mol Cell Biol. 2017;18(12):758–70. https://doi.org/10.1038/nrm.2017.87. This review highlights recent findings on targeting YAP/TAZ in human diseases.

    Article  CAS  PubMed  Google Scholar 

  109. Szeto SG, Narimatsu M, Lu M, He X, Sidiqi AM, Tolosa MF, et al. YAP/TAZ are mechanoregulators of TGF-beta-Smad signaling and renal fibrogenesis. J Am Soc Nephrol. 2016;27(10):3117–28. https://doi.org/10.1681/ASN.2015050499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Johnson LA, Rodansky ES, Haak AJ, Larsen SD, Neubig RR, Higgins PD. Novel Rho/MRTF/SRF inhibitors block matrix-stiffness and TGF-beta-induced fibrogenesis in human colonic myofibroblasts. Inflamm Bowel Dis. 2014;20(1):154–65. https://doi.org/10.1097/01.MIB.0000437615.98881.31.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Velasquez LS, Sutherland LB, Liu Z, Grinnell F, Kamm KE, Schneider JW, et al. Activation of MRTF-A-dependent gene expression with a small molecule promotes myofibroblast differentiation and wound healing. Proc Natl Acad Sci U S A. 2013;110(42):16850–5. https://doi.org/10.1073/pnas.1316764110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Shiwen X, Stratton R, Nikitorowicz-Buniak J, Ahmed-Abdi B, Ponticos M, Denton C, et al. A role of myocardin related transcription factor-A (MRTF-A) in scleroderma related fibrosis. PLoS One. 2015;10(5):e0126015. https://doi.org/10.1371/journal.pone.0126015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Kagan HM, Li W. Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell. J Cell Biochem. 2003;88(4):660–72. https://doi.org/10.1002/jcb.10413.

    Article  CAS  PubMed  Google Scholar 

  114. Aumiller V, Strobel B, Romeike M, Schuler M, Stierstorfer BE, Kreuz S. Comparative analysis of lysyl oxidase (like) family members in pulmonary fibrosis. Sci Rep. 2017;7(1):149. https://doi.org/10.1038/s41598-017-00270-0.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Rimar D, Rosner I, Nov Y, Slobodin G, Rozenbaum M, Halasz K, et al. Brief report: lysyl oxidase is a potential biomarker of fibrosis in systemic sclerosis. Arthritis Rheumatol. 2014;66(3):726–30. https://doi.org/10.1002/art.38277.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Dr. Katy Black (Massachusetts General Hospital) for her careful review of the manuscript and helpful comments. D.L. gratefully acknowledge support from the Scleroderma Foundation, Scleroderma Research Foundation, American Thoracic Society Foundation and Pulmonary Fibrosis Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Lagares.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Scleroderma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, A., Lagares, D. Matrix Stiffness: the Conductor of Organ Fibrosis. Curr Rheumatol Rep 20, 2 (2018). https://doi.org/10.1007/s11926-018-0710-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-018-0710-z

Keywords

Navigation