Skip to main content

Fluid Biomarkers of Frontotemporal Lobar Degeneration

  • Chapter
  • First Online:
Frontotemporal Dementias

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1281))

Abstract

A timely diagnosis of frontotemporal degeneration (FTD) is frequently challenging due to the heterogeneous symptomatology and poor phenotype–pathological correlation. Fluid biomarkers that reflect FTD pathophysiology could be instrumental in both clinical practice and pharmaceutical trials. In recent years, significant progress has been made in developing biomarkers of neurodegenerative diseases: amyloid-β and tau in cerebrospinal fluid (CSF) can be used to exclude Alzheimer’s disease, while neurofilament light chain (NfL) is emerging as a promising, albeit nonspecific, marker of neurodegeneration in both CSF and blood. Gene-specific biomarkers such as PGRN in GRN mutation carriers and dipeptide repeat proteins in C9orf72 mutation carriers are potential target engagement markers in genetic FTD trials. Novel techniques capable of measuring very low concentrations of brain-derived proteins in peripheral fluids are facilitating studies of blood biomarkers as a minimally invasive alternative to CSF. A major remaining challenge is the identification of a biomarker that can be used to predict the neuropathological substrate in sporadic FTD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meeter LH, Kaat LD, Rohrer JD, van Swieten JC (2017) Imaging and fluid biomarkers in frontotemporal dementia. Nat Rev Neurol 13:406–419

    Article  CAS  PubMed  Google Scholar 

  2. Lashley T, Rohrer JD, Mead S, Revesz T (2015) Review: an update on clinical, genetic and pathological aspects of frontotemporal lobar degenerations. Neuropathol Appl Neurobiol 41:858–881

    Article  PubMed  Google Scholar 

  3. Duits FH, Martinez-Lage P, Paquet C, Engelborghs S, Lleo A, Hausner L et al (2016) Performance and complications of lumbar puncture in memory clinics: results of the multicenter lumbar puncture feasibility study. Alzheimers Dement 12:154–163

    Article  PubMed  Google Scholar 

  4. Ahmed RM, Paterson RW, Warren JD, Zetterberg H, O’Brien JT, Fox NC et al (2014) Biomarkers in dementia: clinical utility and new directions. J Neurol Neurosurg Psychiatry 85:1426–1434

    Article  CAS  PubMed  Google Scholar 

  5. Sancesario G, Bernardini S (2019) AD biomarker discovery in CSF and in alternative matrices. Clin Biochem 72:52–57

    Article  CAS  PubMed  Google Scholar 

  6. Duffy D (2020) Short keynote paper: single molecule detection of protein biomarkers to define the continuum from health to disease. IEEE J Biomed Health Inform 24:1864–1868

    Google Scholar 

  7. Hampel H, O’Bryant SE, Molinuevo JL, Zetterberg H, Masters CL, Lista S et al (2018) Blood-based biomarkers for Alzheimer disease: mapping the road to the clinic. Nat Rev Neurol 14:639–652

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ashton NJ, Ide M, Zetterberg H, Blennow K (2019) Salivary biomarkers for Alzheimer’s disease and related disorders. Neurol Ther 8:83–94

    Article  PubMed  PubMed Central  Google Scholar 

  9. Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease. Lancet 368:387–403

    Article  CAS  PubMed  Google Scholar 

  10. McGowan E, Pickford F, Kim J, Onstead L, Eriksen J, Yu C et al (2005) Abeta42 is essential for parenchymal and vascular amyloid deposition in mice. Neuron 47:191–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Portelius E, Westman-Brinkmalm A, Zetterberg H, Blennow K (2006) Determination of beta-amyloid peptide signatures in cerebrospinal fluid using immunoprecipitation-mass spectrometry. J Proteome Res 5:1010–1016

    Article  CAS  PubMed  Google Scholar 

  12. Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB et al (2018) NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement 14:535–562

    Article  PubMed  PubMed Central  Google Scholar 

  13. Buerger K, Ewers M, Pirttila T, Zinkowski R, Alafuzoff I, Teipel SJ et al (2006) CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer’s disease. Brain 129:3035–3041

    Article  PubMed  Google Scholar 

  14. de Souza LC, Chupin M, Lamari F, Jardel C, Leclercq D, Colliot O et al (2012) CSF tau markers are correlated with hippocampal volume in Alzheimer’s disease. Neurobiol Aging 33:1253–1257

    Article  PubMed  CAS  Google Scholar 

  15. Seppala TT, Nerg O, Koivisto AM, Rummukainen J, Puli L, Zetterberg H et al (2012) CSF biomarkers for Alzheimer disease correlate with cortical brain biopsy findings. Neurology 78:1568–1575

    Article  CAS  PubMed  Google Scholar 

  16. Tapiola T, Alafuzoff I, Herukka SK, Parkkinen L, Hartikainen P, Soininen H et al (2009) Cerebrospinal fluid {beta}-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Arch Neurol 66:382–389

    Article  PubMed  Google Scholar 

  17. Olsson B, Lautner R, Andreasson U, Ohrfelt A, Portelius E, Bjerke M et al (2016) CSF and blood biomarkers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis. Lancet Neurol 15:673–684

    Article  CAS  PubMed  Google Scholar 

  18. Bjerke M, Engelborghs S (2018) Cerebrospinal fluid biomarkers for early and differential Alzheimer’s disease diagnosis. J Alzheimers Dis 62:1199–1209

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mattsson N, Zetterberg H, Hansson O, Andreasen N, Parnetti L, Jonsson M et al (2009) CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA 302:385–393

    Article  CAS  PubMed  Google Scholar 

  20. Riemenschneider M, Wagenpfeil S, Diehl J, Lautenschlager N, Theml T, Heldmann B et al (2002) Tau and Abeta42 protein in CSF of patients with frontotemporal degeneration. Neurology 58:1622–1628

    Article  CAS  PubMed  Google Scholar 

  21. Schoonenboom NS, Reesink FE, Verwey NA, Kester MI, Teunissen CE, van de Ven PM et al (2012) Cerebrospinal fluid markers for differential dementia diagnosis in a large memory clinic cohort. Neurology 78:47–54

    Article  CAS  PubMed  Google Scholar 

  22. van Harten AC, Kester MI, Visser PJ, Blankenstein MA, Pijnenburg YA, van der Flier WM et al (2011) Tau and p-tau as CSF biomarkers in dementia: a meta-analysis. Clin Chem Lab Med 49:353–366

    PubMed  Google Scholar 

  23. Rivero-Santana A, Ferreira D, Perestelo-Perez L, Westman E, Wahlund LO, Sarria A et al (2017) Cerebrospinal fluid biomarkers for the differential diagnosis between Alzheimer’s disease and frontotemporal lobar degeneration: systematic review, HSROC analysis, and confounding factors. J Alzheimers Dis 55:625–644

    Article  PubMed  Google Scholar 

  24. Marshall CR, Hardy CJD, Volkmer A, Russell LL, Bond RL, Fletcher PD et al (2018) Primary progressive aphasia: a clinical approach. J Neurol 265:1474–1490

    Article  PubMed  PubMed Central  Google Scholar 

  25. McShane R, Westby MJ, Roberts E, Minakaran N, Schneider L, Farrimond LE et al (2019) Memantine for dementia. Cochrane Database Syst Rev 3:CD003154

    PubMed  Google Scholar 

  26. Noufi P, Khoury R, Jeyakumar S, Grossberg GT (2019) Use of cholinesterase inhibitors in non-Alzheimer’s dementias. Drugs Aging 36:719–731

    Article  CAS  PubMed  Google Scholar 

  27. Alcolea D, Irwin DJ, Illan-Gala I, Munoz L, Clarimon J, McMillan CT et al (2019) Elevated YKL-40 and low sAPPbeta: YKL-40 ratio in antemortem cerebrospinal fluid of patients with pathologically confirmed FTLD. J Neurol Neurosurg Psychiatry 90:180–186

    Article  PubMed  Google Scholar 

  28. Alcolea D, Vilaplana E, Suarez-Calvet M, Illan-Gala I, Blesa R, Clarimon J et al (2017) CSF sAPPbeta, YKL-40, and neurofilament light in frontotemporal lobar degeneration. Neurology 89:178–188

    Article  CAS  PubMed  Google Scholar 

  29. Illan-Gala I, Pegueroles J, Montal V, Alcolea D, Vilaplana E, Bejanin A et al (2019) APP-derived peptides reflect neurodegeneration in frontotemporal dementia. Ann Clin Transl Neurol 6:2518–2530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Irwin DJ, Trojanowski JQ, Grossman M (2013) Cerebrospinal fluid biomarkers for differentiation of frontotemporal lobar degeneration from Alzheimer’s disease. Front Aging Neurosci 5:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bouwman FH, Schoonenboom NS, Verwey NA, van Elk EJ, Kok A, Blankenstein MA et al (2009) CSF biomarker levels in early and late onset Alzheimer’s disease. Neurobiol Aging 30:1895–1901

    Article  CAS  PubMed  Google Scholar 

  32. Mattsson N, Rosen E, Hansson O, Andreasen N, Parnetti L, Jonsson M et al (2012) Age and diagnostic performance of Alzheimer disease CSF biomarkers. Neurology 78:468–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pouclet-Courtemanche H, Nguyen TB, Skrobala E, Boutoleau-Bretonniere C, Pasquier F, Bouaziz-Amar E et al (2019) Frontotemporal dementia is the leading cause of “true” a−/T+ profiles defined with Abeta42/40 ratio. Alzheimers Dement (Amst) 11:161–169

    Article  Google Scholar 

  34. Verwey NA, van der Flier WM, Blennow K, Clark C, Sokolow S, De Deyn PP et al (2009) A worldwide multicentre comparison of assays for cerebrospinal fluid biomarkers in Alzheimer’s disease. Ann Clin Biochem 46:235–240

    Article  CAS  PubMed  Google Scholar 

  35. Reijs BL, Teunissen CE, Goncharenko N, Betsou F, Blennow K, Baldeiras I et al (2015) The central biobank and virtual biobank of BIOMARKAPD: a resource for studies on neurodegenerative diseases. Front Neurol 6:216

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bian H, Van Swieten JC, Leight S, Massimo L, Wood E, Forman M et al (2008) CSF biomarkers in frontotemporal lobar degeneration with known pathology. Neurology 70:1827–1835

    Article  CAS  PubMed  Google Scholar 

  37. Rosso SM, van Herpen E, Pijnenburg YA, Schoonenboom NS, Scheltens P, Heutink P et al (2003) Total tau and phosphorylated tau 181 levels in the cerebrospinal fluid of patients with frontotemporal dementia due to P301L and G272V tau mutations. Arch Neurol 60:1209–1213

    Article  PubMed  Google Scholar 

  38. Irwin DJ, Lleo A, Xie SX, McMillan CT, Wolk DA, Lee EB et al (2017) Ante mortem cerebrospinal fluid tau levels correlate with postmortem tau pathology in frontotemporal lobar degeneration. Ann Neurol 82:247–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hu WT, Watts K, Grossman M, Glass J, Lah JJ, Hales C et al (2013) Reduced CSF p-Tau181 to tau ratio is a biomarker for FTLD-TDP. Neurology 81:1945–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Borroni B, Benussi A, Archetti S, Galimberti D, Parnetti L, Nacmias B et al (2015) Csf p-tau181/tau ratio as biomarker for TDP pathology in frontotemporal dementia. Amyotroph Lateral Scler Frontotemporal Degener. 16:86–91

    Article  CAS  PubMed  Google Scholar 

  41. Pijnenburg YA, Verwey NA, van der Flier WM, Scheltens P, Teunissen CE (2015) Discriminative and prognostic potential of cerebrospinal fluid phosphoTau/tau ratio and neurofilaments for frontotemporal dementia subtypes. Alzheimers Dement (Amst). 1:505–512

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kuiperij HB, Versleijen AA, Beenes M, Verwey NA, Benussi L, Paterlini A et al (2017) Tau rather than TDP-43 proteins are potential cerebrospinal fluid biomarkers for frontotemporal lobar degeneration subtypes: a pilot study. J Alzheimers Dis 55:585–595

    Article  CAS  PubMed  Google Scholar 

  43. Foiani MS, Cicognola C, Ermann N, Woollacott IOC, Heller C, Heslegrave AJ et al (2019) Searching for novel cerebrospinal fluid biomarkers of tau pathology in frontotemporal dementia: an elusive quest. J Neurol Neurosurg Psychiatry 90:740–746

    Article  PubMed  Google Scholar 

  44. Molinuevo JL, Ayton S, Batrla R, Bednar MM, Bittner T, Cummings J et al (2018) Current state of Alzheimer’s fluid biomarkers. Acta Neuropathol 136:821–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zetterberg H, Burnham SC (2019) Blood-based molecular biomarkers for Alzheimer’s disease. Mol Brain 12:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Zetterberg H, van Swieten JC, Boxer AL, Rohrer JD (2019) Review: fluid biomarkers for frontotemporal dementias. Neuropathol Appl Neurobiol 45:81–87

    Article  CAS  PubMed  Google Scholar 

  47. Gaetani L, Blennow K, Calabresi P, Di Filippo M, Parnetti L, Zetterberg H (2019) Neurofilament light chain as a biomarker in neurological disorders. J Neurol Neurosurg Psychiatry 90:870–881

    Article  PubMed  Google Scholar 

  48. Khalil M, Teunissen CE, Otto M, Piehl F, Sormani MP, Gattringer T et al (2018) Neurofilaments as biomarkers in neurological disorders. Nat Rev Neurol 14:577–589

    Article  CAS  PubMed  Google Scholar 

  49. Petzold A (2005) Neurofilament phosphoforms: surrogate markers for axonal injury, degeneration and loss. J Neurol Sci 233:183–198

    Article  CAS  PubMed  Google Scholar 

  50. Rosengren LE, Karlsson JE, Sjogren M, Blennow K, Wallin A (1999) Neurofilament protein levels in CSF are increased in dementia. Neurology 52:1090–1093

    Article  CAS  PubMed  Google Scholar 

  51. Gisslen M, Price RW, Andreasson U, Norgren N, Nilsson S, Hagberg L et al (2016) Plasma concentration of the Neurofilament light protein (NFL) is a biomarker of CNS injury in HIV infection: a cross-sectional study. EBioMedicine 3:135–140

    Article  PubMed  Google Scholar 

  52. Meeter LH, Dopper EG, Jiskoot LC, Sanchez-Valle R, Graff C, Benussi L et al (2016) Neurofilament light chain: a biomarker for genetic frontotemporal dementia. Ann Clin Transl Neurol 3:623–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wilke C, Preische O, Deuschle C, Roeben B, Apel A, Barro C et al (2016) Neurofilament light chain in FTD is elevated not only in cerebrospinal fluid, but also in serum. J Neurol Neurosurg Psychiatry 87:1270–1272

    Article  PubMed  Google Scholar 

  54. Kuhle J, Barro C, Andreasson U, Derfuss T, Lindberg R, Sandelius A et al (2016) Comparison of three analytical platforms for quantification of the neurofilament light chain in blood samples: ELISA, electrochemiluminescence immunoassay and Simoa. Clin Chem Lab Med 54:1655–1661

    Article  CAS  PubMed  Google Scholar 

  55. Forgrave LM, Ma M, Best JR, DeMarco ML (2019) The diagnostic performance of neurofilament light chain in CSF and blood for Alzheimer’s disease, frontotemporal dementia, and amyotrophic lateral sclerosis: a systematic review and meta-analysis. Alzheimers Dement (Amst) 11:730–743

    Article  Google Scholar 

  56. Zhao Y, Xin Y, Meng S, He Z, Hu W (2019) Neurofilament light chain protein in neurodegenerative dementia: a systematic review and network meta-analysis. Neurosci Biobehav Rev 102:123–138

    Article  CAS  PubMed  Google Scholar 

  57. Paterson RW, Slattery CF, Poole T, Nicholas JM, Magdalinou NK, Toombs J et al (2018) Cerebrospinal fluid in the differential diagnosis of Alzheimer’s disease: clinical utility of an extended panel of biomarkers in a specialist cognitive clinic. Alzheimers Res Ther 10:32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Landqvist Waldo M, Frizell Santillo A, Passant U, Zetterberg H, Rosengren L, Nilsson C et al (2013) Cerebrospinal fluid neurofilament light chain protein levels in subtypes of frontotemporal dementia. BMC Neurol 13:54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Ljubenkov PA, Staffaroni AM, Rojas JC, Allen IE, Wang P, Heuer H et al (2018) Cerebrospinal fluid biomarkers predict frontotemporal dementia trajectory. Ann Clin Transl Neurol 5:1250–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rohrer JD, Woollacott IO, Dick KM, Brotherhood E, Gordon E, Fellows A et al (2016) Serum neurofilament light chain protein is a measure of disease intensity in frontotemporal dementia. Neurology 87:1329–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Scherling CS, Hall T, Berisha F, Klepac K, Karydas A, Coppola G et al (2014) Cerebrospinal fluid neurofilament concentration reflects disease severity in frontotemporal degeneration. Ann Neurol 75:116–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Steinacker P, Anderl-Straub S, Diehl-Schmid J, Semler E, Uttner I, von Arnim CAF et al (2018) Serum neurofilament light chain in behavioral variant frontotemporal dementia. Neurology 91:e1390–e1401

    Google Scholar 

  63. Steinacker P, Semler E, Anderl-Straub S, Diehl-Schmid J, Schroeter ML, Uttner I et al (2017) Neurofilament as a blood marker for diagnosis and monitoring of primary progressive aphasias. Neurology 88:961–969

    Article  CAS  PubMed  Google Scholar 

  64. Bridel C, van Wieringen WN, Zetterberg H, Tijms BM, Teunissen CE, and the NFLG, et al (2019) Diagnostic value of cerebrospinal fluid Neurofilament light protein in neurology: a systematic review and meta-analysis. JAMA Neurol 76:1035–1048

    Google Scholar 

  65. van der Ende EL, Meeter LH, Poos JM, Panman JL, Jiskoot LC, Dopper EGP et al (2019) Serum neurofilament light chain in genetic frontotemporal dementia: a longitudinal, multicentre cohort study. Lancet Neurol 18:1103–1111

    Article  PubMed  Google Scholar 

  66. Abu-Rumeileh S, Mometto N, Bartoletti-Stella A, Polischi B, Oppi F, Poda R et al (2018) Cerebrospinal fluid biomarkers in patients with frontotemporal dementia Spectrum: a single-center study. J Alzheimers Dis 66:551–563

    Article  CAS  PubMed  Google Scholar 

  67. de Jong D, Jansen RW, Pijnenburg YA, van Geel WJ, Borm GF, Kremer HP et al (2007) CSF neurofilament proteins in the differential diagnosis of dementia. J Neurol Neurosurg Psychiatry 78:936–938

    Article  PubMed  PubMed Central  Google Scholar 

  68. Skillback T, Farahmand B, Bartlett JW, Rosen C, Mattsson N, Nagga K et al (2014) CSF neurofilament light differs in neurodegenerative diseases and predicts severity and survival. Neurology 83:1945–1953

    Article  PubMed  CAS  Google Scholar 

  69. Zerr I, Schmitz M, Karch A, Villar-Pique A, Kanata E, Golanska E et al (2018) Cerebrospinal fluid neurofilament light levels in neurodegenerative dementia: evaluation of diagnostic accuracy in the differential diagnosis of prion diseases. Alzheimers Dement 14:751–763

    Article  PubMed  Google Scholar 

  70. Al Shweiki MR, Steinacker P, Oeckl P, Hengerer B, Danek A, Fassbender K et al (2019) Neurofilament light chain as a blood biomarker to differentiate psychiatric disorders from behavioural variant frontotemporal dementia. J Psychiatr Res 113:137–140

    Article  PubMed  Google Scholar 

  71. Eratne D, Loi SM, Walia N, Farrand S, Li QX, Varghese S et al (2020) A pilot study of the utility of cerebrospinal fluid neurofilament light chain in differentiating neurodegenerative from psychiatric disorders: a ‘C-reactive protein’ for psychiatrists and neurologists? Aust N Z J Psychiatry 54:57–67

    Article  PubMed  Google Scholar 

  72. Katisko K, Cajanus A, Jaaskelainen O, Kontkanen A, Hartikainen P, Korhonen VE et al (2020) Serum neurofilament light chain is a discriminative biomarker between frontotemporal lobar degeneration and primary psychiatric disorders. J Neurol 267:162–167

    Article  CAS  PubMed  Google Scholar 

  73. Vijverberg EG, Dols A, Krudop WA, Del Campo MM, Kerssens CJ, Gossink F et al (2017) Cerebrospinal fluid biomarker examination as a tool to discriminate behavioral variant frontotemporal dementia from primary psychiatric disorders. Alzheimers Dement (Amst) 7:99–106

    Article  PubMed  PubMed Central  Google Scholar 

  74. Steinacker P, Huss A, Mayer B, Grehl T, Grosskreutz J, Borck G et al (2017) Diagnostic and prognostic significance of neurofilament light chain NF-L, but not progranulin and S100B, in the course of amyotrophic lateral sclerosis: data from the German MND-net. Amyotroph Lateral Scler Frontotemporal Degener 18:112–119

    Article  CAS  PubMed  Google Scholar 

  75. Skillback T, Mattsson N, Blennow K, Zetterberg H (2017) Cerebrospinal fluid neurofilament light concentration in motor neuron disease and frontotemporal dementia predicts survival. Amyotroph Lateral Scler Frontotemporal Degener. 18:397–403

    Article  PubMed  CAS  Google Scholar 

  76. Valente ES, Caramelli P, Gambogi LB, Mariano LI, Guimaraes HC, Teixeira AL et al (2019) Phenocopy syndrome of behavioral variant frontotemporal dementia: a systematic review. Alzheimers Res Ther 11:30

    Article  PubMed  PubMed Central  Google Scholar 

  77. Varhaug KN, Torkildsen O, Myhr KM, Vedeler CA (2019) Neurofilament light chain as a biomarker in multiple sclerosis. Front Neurol 10:338

    Article  PubMed  PubMed Central  Google Scholar 

  78. Bacioglu M, Maia LF, Preische O, Schelle J, Apel A, Kaeser SA et al (2016) Neurofilament light chain in blood and CSF as marker of disease progression in mouse models and in neurodegenerative diseases. Neuron 91:56–66

    Article  CAS  PubMed  Google Scholar 

  79. Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H et al (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351:602–611

    Article  CAS  PubMed  Google Scholar 

  80. Mackenzie IR, Neumann M (2017) Reappraisal of TDP-43 pathology in FTLD-U subtypes. Acta Neuropathol 134:79–96

    Article  CAS  PubMed  Google Scholar 

  81. Maekawa S, Leigh PN, King A, Jones E, Steele JC, Bodi I et al (2009) TDP-43 is consistently co-localized with ubiquitinated inclusions in sporadic and Guam amyotrophic lateral sclerosis but not in familial amyotrophic lateral sclerosis with and without SOD1 mutations. Neuropathology 29:672–683

    Article  PubMed  Google Scholar 

  82. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133

    Article  CAS  PubMed  Google Scholar 

  83. Steinacker P, Barschke P, Otto M (2019) Biomarkers for diseases with TDP-43 pathology. Mol Cell Neurosci 97:43–59

    Article  CAS  PubMed  Google Scholar 

  84. Ayala YM, Zago P, D’Ambrogio A, Xu YF, Petrucelli L, Buratti E et al (2008) Structural determinants of the cellular localization and shuttling of TDP-43. J Cell Sci 121:3778–3785

    Article  CAS  PubMed  Google Scholar 

  85. Buratti E, Baralle FE (2008) Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Front Biosci 13:867–878

    Article  CAS  PubMed  Google Scholar 

  86. Feneberg E, Gray E, Ansorge O, Talbot K, Turner MR (2018) Towards a TDP-43-based biomarker for ALS and FTLD. Mol Neurobiol 55:7789–7801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Junttila A, Kuvaja M, Hartikainen P, Siloaho M, Helisalmi S, Moilanen V et al (2016) Cerebrospinal fluid TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis patients with and without the C9ORF72 Hexanucleotide expansion. Dement Geriatr Cogn Dis Extra. 6:142–149

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kasai T, Tokuda T, Ishigami N, Sasayama H, Foulds P, Mitchell DJ et al (2009) Increased TDP-43 protein in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Acta Neuropathol 117:55–62

    Article  CAS  PubMed  Google Scholar 

  89. Steinacker P, Hendrich C, Sperfeld AD, Jesse S, von Arnim CA, Lehnert S et al (2008) TDP-43 in cerebrospinal fluid of patients with frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Arch Neurol 65:1481–1487

    Article  PubMed  PubMed Central  Google Scholar 

  90. Suarez-Calvet M, Dols-Icardo O, Llado A, Sanchez-Valle R, Hernandez I, Amer G et al (2014) Plasma phosphorylated TDP-43 levels are elevated in patients with frontotemporal dementia carrying a C9orf72 repeat expansion or a GRN mutation. J Neurol Neurosurg Psychiatry 85:684–691

    Article  PubMed  Google Scholar 

  91. Feneberg E, Steinacker P, Lehnert S, Schneider A, Walther P, Thal DR et al (2014) Limited role of free TDP-43 as a diagnostic tool in neurodegenerative diseases. Amyotroph Lateral Scler Frontotemporal Degener 15:351–356

    Article  CAS  PubMed  Google Scholar 

  92. Foulds P, McAuley E, Gibbons L, Davidson Y, Pickering-Brown SM, Neary D et al (2008) TDP-43 protein in plasma may index TDP-43 brain pathology in Alzheimer’s disease and frontotemporal lobar degeneration. Acta Neuropathol 116:141–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Verstraete E, Kuiperij HB, van Blitterswijk MM, Veldink JH, Schelhaas HJ, van den Berg LH et al (2012) TDP-43 plasma levels are higher in amyotrophic lateral sclerosis. Amyotroph Lateral Scler 13:446–451

    Article  CAS  PubMed  Google Scholar 

  94. Broce I, Karch CM, Wen N, Fan CC, Wang Y, Tan CH et al (2018) Immune-related genetic enrichment in frontotemporal dementia: an analysis of genome-wide association studies. PLoS Med 15:e1002487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Ferrari R, Hernandez DG, Nalls MA, Rohrer JD, Ramasamy A, Kwok JB et al (2014) Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurol 13:686–699

    Article  PubMed  PubMed Central  Google Scholar 

  96. Miller ZA, Rankin KP, Graff-Radford NR, Takada LT, Sturm VE, Cleveland CM et al (2013) TDP-43 frontotemporal lobar degeneration and autoimmune disease. J Neurol Neurosurg Psychiatry 84:956–962

    Article  PubMed  Google Scholar 

  97. Miller ZA, Sturm VE, Camsari GB, Karydas A, Yokoyama JS, Grinberg LT et al (2016) Increased prevalence of autoimmune disease within C9 and FTD/MND cohorts: completing the picture. Neurol Neuroimmunol Neuroinflamm 3:e301

    Article  PubMed  PubMed Central  Google Scholar 

  98. Arnold SE, Han LY, Clark CM, Grossman M, Trojanowski JQ (2000) Quantitative neurohistological features of frontotemporal degeneration. Neurobiol Aging 21:913–919

    Article  CAS  PubMed  Google Scholar 

  99. Bellucci A, Bugiani O, Ghetti B, Spillantini MG (2011) Presence of reactive microglia and neuroinflammatory mediators in a case of frontotemporal dementia with P301S mutation. Neurodegener Dis 8:221–229

    Article  PubMed  PubMed Central  Google Scholar 

  100. Cagnin A, Rossor M, Sampson EL, Mackinnon T, Banati RB (2004) In vivo detection of microglial activation in frontotemporal dementia. Ann Neurol 56:894–897

    Article  PubMed  Google Scholar 

  101. Lant SB, Robinson AC, Thompson JC, Rollinson S, Pickering-Brown S, Snowden JS et al (2014) Patterns of microglial cell activation in frontotemporal lobar degeneration. Neuropathol Appl Neurobiol 40:686–696

    Article  CAS  PubMed  Google Scholar 

  102. Bright F, Werry EL, Dobson-Stone C, Piguet O, Ittner LM, Halliday GM et al (2019) Neuroinflammation in frontotemporal dementia. Nat Rev Neurol 15:540–555

    Article  PubMed  Google Scholar 

  103. Bohlen CJ, Bennett FC, Tucker AF, Collins HY, Mulinyawe SB, Barres BA (2017) Diverse requirements for microglial survival, specification, and function revealed by defined-medium cultures. Neuron 94:759–773. e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Grabert K, Michoel T, Karavolos MH, Clohisey S, Baillie JK, Stevens MP et al (2016) Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat Neurosci 19:504–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK et al (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169:1276–1290. e17

    Article  CAS  PubMed  Google Scholar 

  106. Querol-Vilaseca M, Colom-Cadena M, Pegueroles J, San Martin-Paniello C, Clarimon J, Belbin O et al (2017) YKL-40 (Chitinase 3-like I) is expressed in a subset of astrocytes in Alzheimer’s disease and other tauopathies. J Neuroinflammation 14:118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Baldacci F, Toschi N, Lista S, Zetterberg H, Blennow K, Kilimann I et al (2017) Two-level diagnostic classification using cerebrospinal fluid YKL-40 in Alzheimer’s disease. Alzheimers Dement 13:993–1003

    Article  PubMed  Google Scholar 

  108. Illan-Gala I, Alcolea D, Montal V, Dols-Icardo O, Munoz L, de Luna N et al (2018) CSF sAPPbeta, YKL-40, and NfL along the ALS-FTD spectrum. Neurology 91:e1619–e1628

    Google Scholar 

  109. Janelidze S, Mattsson N, Stomrud E, Lindberg O, Palmqvist S, Zetterberg H et al (2018) CSF biomarkers of neuroinflammation and cerebrovascular dysfunction in early Alzheimer disease. Neurology 91:e867–e877

    Google Scholar 

  110. Llorens F, Thune K, Tahir W, Kanata E, Diaz-Lucena D, Xanthopoulos K et al (2017) YKL-40 in the brain and cerebrospinal fluid of neurodegenerative dementias. Mol Neurodegener 12:83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Thompson AG, Gray E, Thezenas ML, Charles PD, Evetts S, Hu MT et al (2018) Cerebrospinal fluid macrophage biomarkers in amyotrophic lateral sclerosis. Ann Neurol 83:258–268

    Article  CAS  PubMed  Google Scholar 

  112. Zhang H, Ng KP, Therriault J, Kang MS, Pascoal TA, Rosa-Neto P et al (2018) Cerebrospinal fluid phosphorylated tau, visinin-like protein-1, and chitinase-3-like protein 1 in mild cognitive impairment and Alzheimer’s disease. Transl Neurodegener 7:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Baldacci F, Lista S, Palermo G, Giorgi FS, Vergallo A, Hampel H (2019) The neuroinflammatory biomarker YKL-40 for neurodegenerative diseases: advances in development. Expert Rev Proteomics 16:593–600

    Article  CAS  PubMed  Google Scholar 

  114. Abu-Rumeileh S, Steinacker P, Polischi B, Mammana A, Bartoletti-Stella A, Oeckl P et al (2019) CSF biomarkers of neuroinflammation in distinct forms and subtypes of neurodegenerative dementia. Alzheimers Res Ther 12:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Oeckl P, Weydt P, Steinacker P, Anderl-Straub S, Nordin F, Volk AE et al (2019) Different neuroinflammatory profile in amyotrophic lateral sclerosis and frontotemporal dementia is linked to the clinical phase. J Neurol Neurosurg Psychiatry 90:4–10

    Article  PubMed  Google Scholar 

  116. Malaguarnera L, Simpore J, Prodi DA, Angius A, Sassu A, Persico I et al (2003) A 24-bp duplication in exon 10 of human chitotriosidase gene from the sub-Saharan to the Mediterranean area: role of parasitic diseases and environmental conditions. Genes Immun 4:570–574

    Article  CAS  PubMed  Google Scholar 

  117. Colangelo AM, Alberghina L, Papa M (2014) Astrogliosis as a therapeutic target for neurodegenerative diseases. Neurosci Lett 565:59–64

    Article  CAS  PubMed  Google Scholar 

  118. Heller C, Foiani MS, Moore K, Convery R, Bocchetta M, Neason M et al (2020) Plasma glial fibrillary acidic protein is raised in progranulin-associated frontotemporal dementia. J Neurol Neurosurg Psychiatry 91:263–270

    Google Scholar 

  119. Ishiki A, Kamada M, Kawamura Y, Terao C, Shimoda F, Tomita N et al (2016) Glial fibrillar acidic protein in the cerebrospinal fluid of Alzheimer’s disease, dementia with Lewy bodies, and frontotemporal lobar degeneration. J Neurochem 136:258–261

    Article  CAS  PubMed  Google Scholar 

  120. Colonna M (2003) TREMs in the immune system and beyond. Nat Rev Immunol 3:445–453

    Article  CAS  PubMed  Google Scholar 

  121. Cady J, Koval ED, Benitez BA, Zaidman C, Jockel-Balsarotti J, Allred P et al (2014) TREM2 variant p.R47H as a risk factor for sporadic amyotrophic lateral sclerosis. JAMA Neurol 71:449–453

    Article  PubMed  PubMed Central  Google Scholar 

  122. Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E, Majounie E et al (2013) TREM2 variants in Alzheimer’s disease. N Engl J Med 368:117–127

    Article  CAS  PubMed  Google Scholar 

  123. Guerreiro RJ, Lohmann E, Bras JM, Gibbs JR, Rohrer JD, Gurunlian N et al (2013) Using exome sequencing to reveal mutations in TREM2 presenting as a frontotemporal dementia-like syndrome without bone involvement. JAMA Neurol 70:78–84

    Article  PubMed  PubMed Central  Google Scholar 

  124. Jonsson T, Stefansson H, Steinberg S, Jonsdottir I, Jonsson PV, Snaedal J et al (2013) Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 368:107–116

    Article  CAS  PubMed  Google Scholar 

  125. Rayaprolu S, Mullen B, Baker M, Lynch T, Finger E, Seeley WW et al (2013) TREM2 in neurodegeneration: evidence for association of the p.R47H variant with frontotemporal dementia and Parkinson’s disease. Mol Neurodegener 8:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Su WH, Shi ZH, Liu SL, Wang XD, Liu S, Ji Y (2018) The rs75932628 and rs2234253 polymorphisms of the TREM2 gene were associated with susceptibility to frontotemporal lobar degeneration in Caucasian populations. Ann Hum Genet 82:177–185

    Article  CAS  PubMed  Google Scholar 

  127. Wunderlich P, Glebov K, Kemmerling N, Tien NT, Neumann H, Walter J (2013) Sequential proteolytic processing of the triggering receptor expressed on myeloid cells-2 (TREM2) protein by ectodomain shedding and gamma-secretase-dependent intramembranous cleavage. J Biol Chem 288:33027–33036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Heslegrave A, Heywood W, Paterson R, Magdalinou N, Svensson J, Johansson P et al (2016) Increased cerebrospinal fluid soluble TREM2 concentration in Alzheimer’s disease. Mol Neurodegener 11:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Kleinberger G, Brendel M, Mracsko E, Wefers B, Groeneweg L, Xiang X et al (2017) The FTD-like syndrome causing TREM2 T66M mutation impairs microglia function, brain perfusion, and glucose metabolism. EMBO J 36:1837–1853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Piccio L, Deming Y, Del-Aguila JL, Ghezzi L, Holtzman DM, Fagan AM et al (2016) Cerebrospinal fluid soluble TREM2 is higher in Alzheimer disease and associated with mutation status. Acta Neuropathol 131:925–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Woollacott IOC, Nicholas JM, Heslegrave A, Heller C, Foiani MS, Dick KM et al (2018) Cerebrospinal fluid soluble TREM2 levels in frontotemporal dementia differ by genetic and pathological subgroup. Alzheimers Res Ther 10:79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. van Eijk M, van Roomen CP, Renkema GH, Bussink AP, Andrews L, Blommaart EF et al (2005) Characterization of human phagocyte-derived chitotriosidase, a component of innate immunity. Int Immunol 17:1505–1512

    Article  PubMed  Google Scholar 

  133. Bossu P, Salani F, Alberici A, Archetti S, Bellelli G, Galimberti D et al (2011) Loss of function mutations in the progranulin gene are related to pro-inflammatory cytokine dysregulation in frontotemporal lobar degeneration patients. J Neuroinflammation 8:65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gibbons L, Rollinson S, Thompson JC, Robinson A, Davidson YS, Richardson A et al (1603) Plasma levels of progranulin and interleukin-6 in frontotemporal lobar degeneration. Neurobiol Aging 2015(36):e1–e4

    Google Scholar 

  135. Galimberti D, Venturelli E, Fenoglio C, Guidi I, Villa C, Bergamaschini L et al (2008) Intrathecal levels of IL-6, IL-11 and LIF in Alzheimer’s disease and frontotemporal lobar degeneration. J Neurol 255:539–544

    Article  CAS  PubMed  Google Scholar 

  136. Sjogren M, Folkesson S, Blennow K, Tarkowski E (2004) Increased intrathecal inflammatory activity in frontotemporal dementia: pathophysiological implications. J Neurol Neurosurg Psychiatry 75:1107–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Galimberti D, Bonsi R, Fenoglio C, Serpente M, Cioffi SM, Fumagalli G et al (2015) Inflammatory molecules in frontotemporal dementia: cerebrospinal fluid signature of progranulin mutation carriers. Brain Behav Immun 49:182–187

    Article  CAS  PubMed  Google Scholar 

  138. Galimberti D, Schoonenboom N, Scheltens P, Fenoglio C, Venturelli E, Pijnenburg YA et al (2006) Intrathecal chemokine levels in Alzheimer disease and frontotemporal lobar degeneration. Neurology 66:146–147

    Article  CAS  PubMed  Google Scholar 

  139. Galimberti D, Venturelli E, Villa C, Fenoglio C, Clerici F, Marcone A et al (2009) MCP-1 A-2518G polymorphism: effect on susceptibility for frontotemporal lobar degeneration and on cerebrospinal fluid MCP-1 levels. J Alzheimers Dis 17:125–133

    Article  CAS  PubMed  Google Scholar 

  140. Cavaillon JM (2001) Pro- versus anti-inflammatory cytokines: myth or reality. Cell Mol Biol (Noisy-le-Grand) 47:695–702

    CAS  Google Scholar 

  141. Lui H, Zhang J, Makinson SR, Cahill MK, Kelley KW, Huang HY et al (2016) Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell 165:921–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Chitramuthu BP, Bennett HPJ, Bateman A (2017) Progranulin: a new avenue towards the understanding and treatment of neurodegenerative disease. Brain 140:3081–3104

    Article  PubMed  Google Scholar 

  143. Smith KR, Damiano J, Franceschetti S, Carpenter S, Canafoglia L, Morbin M et al (2012) Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. Am J Hum Genet 90:1102–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C et al (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442:916–919

    Article  CAS  PubMed  Google Scholar 

  145. Cruts M, Gijselinck I, van der Zee J, Engelborghs S, Wils H, Pirici D et al (2006) Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442:920–924

    Article  CAS  PubMed  Google Scholar 

  146. Rademakers R, Neumann M, Mackenzie IR (2012) Advances in understanding the molecular basis of frontotemporal dementia. Nat Rev Neurol 8:423–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Almeida MR, Baldeiras I, Ribeiro MH, Santiago B, Machado C, Massano J et al (2014) Progranulin peripheral levels as a screening tool for the identification of subjects with progranulin mutations in a Portuguese cohort. Neurodegener Dis 13:214–223

    CAS  PubMed  Google Scholar 

  148. Carecchio M, Fenoglio C, De Riz M, Guidi I, Comi C, Cortini F et al (2009) Progranulin plasma levels as potential biomarker for the identification of GRN deletion carriers. A case with atypical onset as clinical amnestic mild cognitive impairment converted to Alzheimer’s disease. J Neurol Sci 287:291–293

    Article  CAS  PubMed  Google Scholar 

  149. Finch N, Baker M, Crook R, Swanson K, Kuntz K, Surtees R et al (2009) Plasma progranulin levels predict progranulin mutation status in frontotemporal dementia patients and asymptomatic family members. Brain 132:583–591

    Article  PubMed  PubMed Central  Google Scholar 

  150. Galimberti D, Fumagalli GG, Fenoglio C, Cioffi SMG, Arighi A, Serpente M et al (2018) Progranulin plasma levels predict the presence of GRN mutations in asymptomatic subjects and do not correlate with brain atrophy: results from the GENFI study. Neurobiol Aging 62:245 e9–245e12

    Article  CAS  Google Scholar 

  151. Ghidoni R, Benussi L, Glionna M, Franzoni M, Binetti G (2008) Low plasma progranulin levels predict progranulin mutations in frontotemporal lobar degeneration. Neurology 71:1235–1239

    Article  CAS  PubMed  Google Scholar 

  152. Ghidoni R, Stoppani E, Rossi G, Piccoli E, Albertini V, Paterlini A et al (2012) Optimal plasma progranulin cutoff value for predicting null progranulin mutations in neurodegenerative diseases: a multicenter Italian study. Neurodegener Dis 9:121–127

    Article  CAS  PubMed  Google Scholar 

  153. Schofield EC, Halliday GM, Kwok J, Loy C, Double KL, Hodges JR (2010) Low serum progranulin predicts the presence of mutations: a prospective study. J Alzheimers Dis 22:981–984

    Article  CAS  PubMed  Google Scholar 

  154. Sleegers K, Brouwers N, Van Damme P, Engelborghs S, Gijselinck I, van der Zee J et al (2009) Serum biomarker for progranulin-associated frontotemporal lobar degeneration. Ann Neurol 65:603–609

    Article  CAS  PubMed  Google Scholar 

  155. Meeter LH, Patzke H, Loewen G, Dopper EG, Pijnenburg YA, van Minkelen R et al (2016) Progranulin levels in plasma and cerebrospinal fluid in Granulin mutation carriers. Dement Geriatr Cogn Dis Extra 6:330–340

    Article  PubMed  PubMed Central  Google Scholar 

  156. Nicholson AM, Finch NA, Thomas CS, Wojtas A, Rutherford NJ, Mielke MM et al (2014) Progranulin protein levels are differently regulated in plasma and CSF. Neurology 82:1871–1878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Wilke C, Gillardon F, Deuschle C, Dubois E, Hobert MA, Muller vom Hagen J et al (2016) Serum levels of Progranulin do not reflect cerebrospinal fluid levels in neurodegenerative disease. Curr Alzheimer Res 13:654–662

    Article  CAS  PubMed  Google Scholar 

  158. Han JJ, Yu M, Houston N, Steinberg SM, Kohn EC (2011) Progranulin is a potential prognostic biomarker in advanced epithelial ovarian cancers. Gynecol Oncol 120:5–10

    Article  CAS  PubMed  Google Scholar 

  159. Todoric J, Handisurya A, Perkmann T, Knapp B, Wagner O, Tura A et al (2012) Circulating progranulin levels in women with gestational diabetes mellitus and healthy controls during and after pregnancy. Eur J Endocrinol 167:561–567

    Article  CAS  PubMed  Google Scholar 

  160. Cruchaga C, Graff C, Chiang HH, Wang J, Hinrichs AL, Spiegel N et al (2011) Association of TMEM106B gene polymorphism with age at onset in granulin mutation carriers and plasma granulin protein levels. Arch Neurol 68:581–586

    PubMed  PubMed Central  Google Scholar 

  161. Finch N, Carrasquillo MM, Baker M, Rutherford NJ, Coppola G, Dejesus-Hernandez M et al (2011) TMEM106B regulates progranulin levels and the penetrance of FTLD in GRN mutation carriers. Neurology 76:467–474

    Article  CAS  PubMed  Google Scholar 

  162. Hsiung GY, Fok A, Feldman HH, Rademakers R, Mackenzie IR (2011) rs5848 polymorphism and serum progranulin level. J Neurol Sci 300:28–32

    Article  CAS  PubMed  Google Scholar 

  163. Byrne S, Elamin M, Bede P, Shatunov A, Walsh C, Corr B et al (2012) Cognitive and clinical characteristics of patients with amyotrophic lateral sclerosis carrying a C9orf72 repeat expansion: a population-based cohort study. Lancet Neurol 11:232–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ et al (2011) Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72:245–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Majounie E, Renton AE, Mok K, Dopper EG, Waite A, Rollinson S et al (2012) Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol 11:323–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Pottier C, Ravenscroft TA, Sanchez-Contreras M, Rademakers R (2016) Genetics of FTLD: overview and what else we can expect from genetic studies. J Neurochem 138(Suppl 1):32–53

    Article  CAS  PubMed  Google Scholar 

  167. Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR et al (2011) A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72:257–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. van Blitterswijk M, DeJesus-Hernandez M, Rademakers R (2012) How do C9ORF72 repeat expansions cause amyotrophic lateral sclerosis and frontotemporal dementia: can we learn from other noncoding repeat expansion disorders? Curr Opin Neurol 25:689–700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Jiang J, Ravits J (2019) Pathogenic mechanisms and therapy development for C9orf72 amyotrophic lateral sclerosis/frontotemporal dementia. Neurotherapeutics 16:1115–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Mori K, Weng SM, Arzberger T, May S, Rentzsch K, Kremmer E et al (2013) The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science 339:1335–1338

    Article  CAS  PubMed  Google Scholar 

  171. Ash PE, Bieniek KF, Gendron TF, Caulfield T, Lin WL, Dejesus-Hernandez M et al (2013) Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron 77:639–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Gendron TF, Bieniek KF, Zhang YJ, Jansen-West K, Ash PE, Caulfield T et al (2013) Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS. Acta Neuropathol 126:829–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Zu T, Liu Y, Banez-Coronel M, Reid T, Pletnikova O, Lewis J et al (2013) RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia. Proc Natl Acad Sci U S A 110:E4968–E4977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Davidson YS, Barker H, Robinson AC, Thompson JC, Harris J, Troakes C et al (2014) Brain distribution of dipeptide repeat proteins in frontotemporal lobar degeneration and motor neurone disease associated with expansions in C9ORF72. Acta Neuropathol Commun 2:70

    Article  PubMed  PubMed Central  Google Scholar 

  175. Gomez-Deza J, Lee YB, Troakes C, Nolan M, Al-Sarraj S, Gallo JM et al (2015) Dipeptide repeat protein inclusions are rare in the spinal cord and almost absent from motor neurons in C9ORF72 mutant amyotrophic lateral sclerosis and are unlikely to cause their degeneration. Acta Neuropathol Commun 3:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Mackenzie IR, Arzberger T, Kremmer E, Troost D, Lorenzl S, Mori K et al (2013) Dipeptide repeat protein pathology in C9ORF72 mutation cases: clinico-pathological correlations. Acta Neuropathol 126:859–879

    Article  CAS  PubMed  Google Scholar 

  177. Schludi MH, May S, Grasser FA, Rentzsch K, Kremmer E, Kupper C et al (2015) Distribution of dipeptide repeat proteins in cellular models and C9orf72 mutation cases suggests link to transcriptional silencing. Acta Neuropathol 130:537–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Su Z, Zhang Y, Gendron TF, Bauer PO, Chew J, Yang WY et al (2014) Discovery of a biomarker and lead small molecules to target r(GGGGCC)-associated defects in c9FTD/ALS. Neuron 83:1043–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Gendron TF, Chew J, Stankowski JN, Hayes LR, Zhang YJ, Prudencio M et al (2017) Poly(GP) proteins are a useful pharmacodynamic marker for C9ORF72-associated amyotrophic lateral sclerosis. Sci Transl Med 9 doi:10.1126/scitranslmed.aai7866

    Google Scholar 

  180. Lehmer C, Oeckl P, Weishaupt JH, Volk AE, Diehl-Schmid J, Schroeter ML et al (2017) Poly-GP in cerebrospinal fluid links C9orf72-associated dipeptide repeat expression to the asymptomatic phase of ALS/FTD. EMBO Mol Med 9:859–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Gendron TF, Group CONS, Daughrity LM, Heckman MG, Diehl NN, Wuu J et al (2017) Phosphorylated neurofilament heavy chain: a biomarker of survival for C9ORF72-associated amyotrophic lateral sclerosis. Ann Neurol 82:139–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Meeter LHH, Gendron TF, Sias AC, Jiskoot LC, Russo SP, Donker Kaat L et al (2018) Poly(GP), neurofilament and grey matter deficits in C9orf72 expansion carriers. Ann Clin Transl Neurol 5:583–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Baborie A, Griffiths TD, Jaros E, Perry R, McKeith IG, Burn DJ et al (2015) Accumulation of dipeptide repeat proteins predates that of TDP-43 in frontotemporal lobar degeneration associated with hexanucleotide repeat expansions in C9ORF72 gene. Neuropathol Appl Neurobiol 41:601–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Proudfoot M, Gutowski NJ, Edbauer D, Hilton DA, Stephens M, Rankin J et al (2014) Early dipeptide repeat pathology in a frontotemporal dementia kindred with C9ORF72 mutation and intellectual disability. Acta Neuropathol 127:451–458

    Article  CAS  PubMed  Google Scholar 

  185. Vatsavayai SC, Yoon SJ, Gardner RC, Gendron TF, Vargas JN, Trujillo A et al (2016) Timing and significance of pathological features in C9orf72 expansion-associated frontotemporal dementia. Brain 139:3202–3216

    Article  PubMed  PubMed Central  Google Scholar 

  186. Riemslagh FW. (2019). Molecular mechanisms of C9orf72-linked frontotemporal dementia and amyotrophic lateral sclerosis. Dissertation, Erasmus Universiteit Rotterdam.

    Google Scholar 

  187. Oeckl P, Steinacker P, Feneberg E, Otto M (2015) Cerebrospinal fluid proteomics and protein biomarkers in frontotemporal lobar degeneration: current status and future perspectives. Biochim Biophys Acta 1854:757–68

    Google Scholar 

  188. van der Ende EL, Meeter HH, Stingl C, van Rooij JGJ, Stoop MP, Nijholt DAT et al (2019) Novel CSF biomarkers in genetic frontotemporal dementia identified by proteomics. Ann Clin Transl Neurol 6:698–707

    Google Scholar 

  189. Jahn H, Wittke S, Zurbig P, Raedler TJ, Arlt S, Kellmann M et al (2011) Peptide fingerprinting of Alzheimer’s disease in cerebrospinal fluid: identification and prospective evaluation of new synaptic biomarkers. PLoS One 6:e26540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Ruetschi U, Zetterberg H, Podust VN, Gottfries J, Li S, Hviid Simonsen A et al (2005) Identification of CSF biomarkers for frontotemporal dementia using SELDI-TOF. Exp Neurol 196:273–281

    Article  PubMed  CAS  Google Scholar 

  191. Simonsen AH, McGuire J, Podust VN, Hagnelius NO, Nilsson TK, Kapaki E et al (2007) A novel panel of cerebrospinal fluid biomarkers for the differential diagnosis of Alzheimer’s disease versus normal aging and frontotemporal dementia. Dement Geriatr Cogn Disord 24:434–440

    Article  CAS  PubMed  Google Scholar 

  192. Teunissen CE, Elias N, Koel-Simmelink MJ, Durieux-Lu S, Malekzadeh A, Pham TV et al (2016) Novel diagnostic cerebrospinal fluid biomarkers for pathologic subtypes of frontotemporal dementia identified by proteomics. Alzheimers Dement (Amst) 2:86–94

    Article  Google Scholar 

  193. Barschke P, Oeckl P, Steinacker P, Al Shweiki MR, Weishaupt JH, Landwehrmeyer B, et al. (2020) Different CSF protein profiles in amyotrophic lateral sclerosis and frontotemporal dementia with C9orf72 hexanucleotide repeat expansion. J Neurol Neurosurg Psychiatry 91:503–511

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Emma L. van der Ende or John C. van Swieten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van der Ende, E.L., van Swieten, J.C. (2021). Fluid Biomarkers of Frontotemporal Lobar Degeneration. In: Ghetti, B., Buratti, E., Boeve, B., Rademakers, R. (eds) Frontotemporal Dementias . Advances in Experimental Medicine and Biology, vol 1281. Springer, Cham. https://doi.org/10.1007/978-3-030-51140-1_9

Download citation

Publish with us

Policies and ethics