Skip to main content

Lyapunov Dimension for Dynamical Systems in Euclidean Spaces

  • Chapter
  • First Online:
Attractor Dimension Estimates for Dynamical Systems: Theory and Computation

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 38))

Abstract

Nowadays there is a number of surveys and theoretical works devoted to Lyapunov exponents and Lyapunov dimension, however most of them are devoted to infinite dimensional systems or rely on special ergodic properties of a system. At the same time the provided illustrative examples are often finite dimensional systems and the rigorous proof of their ergodic properties can be a difficult task. Also the Lyapunov exponents and Lyapunov dimension have become so widespread and common that they are often used without references to the rigorous definitions or pioneering works. This chapter is devoted to the finite dimensional dynamical systems in Euclidean space and its aim is to explain, in a simple but rigorous way, the connection between the key works in the area: Kaplan and Yorke (the concept of Lyapunov dimension, 1979), Douady and Oesterlé (estimation of Hausdorff dimension via the Lyapunov dimension of maps, 1980), Constantin, Eden, Foias, and Temam (estimation of Hausdorff dimension via the Lyapunov exponents and Lyapunov dimension of dynamical systems, 1985–90), Leonov (estimation of the Lyapunov dimension via the direct Lyapunov method, 1991), and numerical methods for the computation of Lyapunov exponents and Lyapunov dimension. In this chapter a concise overview of the classical results is presented, various definitions of Lyapunov exponents and Lyapunov dimension are discussed. An effective analytical method for the estimation of the Lyapunov dimension is presented, its application to self-excited and hidden attractors of well-known dynamical systems is demonstrated, and analytical formulas of exact Lyapunov dimension are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Considering additional properties of the dynamical system and the singular value function, one could get \(\lim _{t \rightarrow +\infty }\) instead of \(\liminf _{t \rightarrow +\infty }\), but we do not need it for our further consideration.

  2. 2.

    If \(f : \mathbb {R}^n \rightarrow \mathbb {R}\) is a measurable subadditive function, then for every \(u \in \mathbb {R}^n\) there exists the limit \(\lim \limits _{t\rightarrow \infty }{f(tu) \over t}\).

  3. 3.

    This is not a dimension in a rigorous sense (see, e.g. [35, 36, 43]).

  4. 4.

    While inf and sup give the same values for \(\omega _{d}(D\varphi ^t(u))\) in (6.28) and (6.29), for \(\inf _{t > 0}\max \limits _{u \in \mathcal{K}}\omega _{d}(D\varphi ^t(u))\) we need consider

    \(\sup \{d \in [0,n]: \forall \widetilde{d} \in [0,d] \ \inf _{t> 0}\max \limits _{u \in \mathcal{K}}\omega _{\widetilde{d}}(D\varphi ^t(u)) \ge 1 \} = \inf \{d \in [0,n]: \inf _{t > 0}\max \limits _{u \in \mathcal{K}}\omega _{d}(D\varphi ^t(u)) < 1 \}. \).

  5. 5.

    If there exists \(\lim _{t \rightarrow +\infty }\max \limits _{u \in \mathcal{K}}\omega _{d}(D\varphi ^t(u))=0\) then it is interesting to study the existence of a critical point \(u_0 \in \mathcal{K}\) such that \( \lim _{t \rightarrow +\infty }\max \limits _{u \in \mathcal{K}}\omega _{d}(D\varphi ^t(u)) = \limsup _{t \rightarrow +\infty }\omega _{d}(D\varphi ^t(u_0)), \) and to compare \( \inf \{d \in [0,n]: \sup \limits _{u \in \mathcal{K}}\limsup _{t \rightarrow +\infty }\omega _{d}(D\varphi ^t(u)) < 1\}\) or \( \sup \limits _{u \in \mathcal{K}}\limsup _{t \rightarrow +\infty }\sup \{d \in [0,n]: \omega _{d}(D\varphi ^t(u)) \ge 1\}\) with \(\dim _{H}\mathcal{K}\). Remark, it is clear that \( \lim _{t \rightarrow +\infty }\max \limits _{u \in \mathcal{K}}\omega _{d}(D\varphi ^t(u)) \ge \sup \limits _{u \in \mathcal{K}}\limsup _{t \rightarrow +\infty }\omega _{d}(D\varphi ^t(u)) \). From (6.30) it follows the existence of a critical point \(u_{L}(t)\) such that \( \dim _{{}_L}(\varphi ^t,u_{L}(t)) = \max _{u \in \mathcal{K}}\dim _{{}_L}(\varphi ^t,u). \) Taking into account (6.32) we can consider a sequence \(t_k \rightarrow +\infty \) such that \(\dim _{{}_L}(\varphi ^{t_k},u_{L}(t_k))\) is monotonically converging to \(\inf _{t\ge 0}\max _{u \in \mathcal{K}}\dim _{{}_L}(\varphi ^t,u)\). Since \(\mathcal{K}\) is a compact set, we can consider a subsequence \(t_m = t_{k_m} \rightarrow +\infty \) such that there exists a limit critical point \(u^{cr}_{L}\): \(u_{L}(t_m) \rightarrow u^{cr}_{L} \in \mathcal{K}\) as \(t_m \rightarrow +\infty \). Thus we have \(\dim _{{}_L}(\varphi ^{t_m},u_{L}(t_m)) \searrow \dim _{{}_L}(\{\varphi ^t\}_{t\ge 0},\mathcal{K})\) and \(u_{L}(t_m) \rightarrow u^{cr}_{L} \in \mathcal{K}\) as \(m \rightarrow +\infty \).

  6. 6.

    In [15] Constantin, Foias, Temam stated that if \( \sup _{u \in \mathcal{K}}\limsup _{t\rightarrow +\infty } \big (\omega _{d}(D\varphi ^t(u))\big )^{1/t} < 1 \) or \( \limsup _{t\rightarrow +\infty } \sup _{u \in \mathcal{K}}\big (\omega _{d}(D\varphi ^t(u))\big )^{1/t}<1, \) then \(\dim _{{}_H}\mathcal{K}\le d\). In [25] Eden considered the value \(\dim _{{}_L}^\mathrm{DO}(\mathcal{K}) = \inf \{ d>0:\, \sup _{u \in \mathcal{K}} \omega _{d}(D\varphi ^t(u)) \text{ converges } \text{ to } \text{ zero } \text{ exponentially } \text{ as } t \rightarrow \infty \}\) and called it the Douady-Oesterlé dimension of \(\mathcal{K}\).

  7. 7.

    Comparing the expressions in the definitions (6.33) and (6.40), remark that we can change \({1 \over t}\) in (6.40) to another scalar positive monotonically decreasing function q(t) such that \(\inf _{t>0}q(t)\max _{u \in \mathcal{K}}\omega _d(D\varphi ^{t}(u))= \lim _{t\rightarrow +\infty }q(t)\max _{u \in \mathcal{K}}\omega _d(D\varphi ^{t}(u))\). The last relation is important from a computational point of view.

  8. 8.

    We add “of singular value” to distinguish this definition from other definitions of Lyapunov exponents; if the differences in the definitions are not significant for the presentation, we use the term “Lyapunov exponents” or “LEs”.

  9. 9.

    Often they are called Lyapunov characteristic exponents (LCE) [60]. In [75] these values are defined with the opposite sign and called characteristic exponents at the point u.

  10. 10.

    For example [46], for the matrix \( u(t)=\left( \begin{array}{cc} 1 &{} g(t)-g^{-1}(t) \\ 0 &{} 1 \\ \end{array} \right) \) we have the following ordered values: \( {{\,\mathrm{\nu ^{L}}\,}}_1 = \mathrm{max}\big (\limsup \limits _{t \rightarrow +\infty }{1 \over t}\log |g(t)|, \limsup \limits _{t \rightarrow +\infty }{1 \over t}\log |g^{-1}(t)|\big ), {{\,\mathrm{\nu ^{L}}\,}}_2 = 0\); \( {{\,\mathrm{\nu }\,}}_{1,2} = \mathrm{max, min} \big ( \limsup \limits _{t \rightarrow +\infty }{1 \over t}\log |g(t)|, \limsup \limits _{t \rightarrow +\infty }{1 \over t}\log |g^{-1}(t)| \big ). \).

  11. 11.

    Let \({{\,\mathrm{\nu }\,}}_1(t,u) = (e^u)^t\), \({{\,\mathrm{\nu }\,}}_2(t,u) = ({1 \over 2}(1-u))^t\) for all \(u \in \mathcal{K}=[0,1]\). Thus \({{\,\mathrm{\nu }\,}}_1(u)={{\,\mathrm{\widetilde{\nu }}\,}}_1(u) = u\), \({{\,\mathrm{\nu }\,}}(u)={{\,\mathrm{\widetilde{\nu }}\,}}_2 = \log (1-u)-\log 2\); \({{\,\mathrm{\widetilde{\nu }}\,}}_1(\mathcal{K}) = 1\), \({{\,\mathrm{\widetilde{\nu }}\,}}_2 =-1-\log 2\). Here \(u^{cr}(1)=1\): \({{\,\mathrm{\widetilde{\nu }}\,}}_1(1)=={{\,\mathrm{\widetilde{\nu }}\,}}_1(\mathcal{K})=1\); \(u^{cr}(2)=0\): \({{\,\mathrm{\widetilde{\nu }}\,}}_1(0)+{{\,\mathrm{\widetilde{\nu }}\,}}_2(0)={{\,\mathrm{\widetilde{\nu }}\,}}_1(\mathcal{K})+{{\,\mathrm{\widetilde{\nu }}\,}}_2(\mathcal{K})=-\log 2\). Then \(\sup _{u \in [0,1]}\dim _{{}_L}^\mathrm{KY}(\{{{\,\mathrm{\widetilde{\nu }}\,}}_i(u)\}_1^2)={u \over \log 2-\log (1-u)} < 1+{1 \over 1+\log 2}= \dim _{{}_L}^\mathrm{KY}(\{{{\,\mathrm{\widetilde{\nu }}\,}}_i(\mathcal{K})\}_1^2)\).

  12. 12.

    The expression in (6.64) corresponds to the expressions considered in [54] for \(p(u)=Dh(u)\), [55] and [56] for \(Q(u)=Dh(u)\).

  13. 13.

    In [78] and in Chap. 7 it is interpreted as changes of Riemannian metrics.

  14. 14.

    The numerical search of hidden attractors can be complicated by the small size of the basin of attraction with respect to the considered set of parameters \(p \in P\) and subset of the phase space \(\mathcal{U}_0\subset \mathcal{U}\): following [9, 103], the attractor may be called a rare attractor if the measure \(\mu \) of the basin of attractors \(\beta (\mathcal{K}_p)\) for the considered set of parameters \(p \in P\) is small with respect to the considered part of the phase space \(\mathcal{U}_0 \subset \mathcal{U}\), i.e. \({\int _{p \in P} \mu (\beta (\mathcal{K}_p)\cap \mathcal{U}_0) \over \mu (\mathcal{U}_0)}<< 1\). Also computational difficulties may be caused by the shape of basin of attraction, e.g. by Wada and riddled basins.

References

  1. Abarbanel, H., Brown, R., Kennel, M.: Variation of Lyapunov exponents on a strange attractor. J. Nonl. Sci. 1(2), 175–199 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adrianova, L.Y.: Introduction to Linear systems of Differential Equations. Amer. Math. Soc, Providence, Rhode Island (1998)

    Google Scholar 

  3. Barabanov, E.: Singular exponents and properness criteria for linear differential systems. J. Diff. Equ. 41, 151–162 (2005)

    Article  MATH  Google Scholar 

  4. Barreira, L., Gelfert, K.: Dimension estimates in smooth dynamics: a survey of recent results. Ergodic Theory Dyn. Syst. 31, 641–671 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barreira, L., Schmeling, J.: Sets of “Non-typical” points have full topological entropy and full Hausdorff dimension. Israel J. of Math. 116(1), 29–70 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bogoliubov, N., Krylov, N.: La theorie generalie de la mesure dans son application a l’etude de systemes dynamiques de la mecanique non-lineaire. Ann. Math. II (French) (Annals of Mathematics) 38 (1), 65–113 (1937)

    Google Scholar 

  7. Boichenko, V.A., Leonov, G.A.: Lyapunov’s direct method in estimates of topological entropy. Zap. Nauchn. Sem. POMI 231, 62–75 (1995) (Russian); English transl. J. Math. Sci. 91(6), 3370–3379 (1998)

    Google Scholar 

  8. Boichenko, V.A., Leonov, G.A., Reitmann, V.: Dimension Theory for Ordinary Differential Equations. Teubner, Stuttgart (2005)

    Book  MATH  Google Scholar 

  9. Brezetskyi, S., Dudkowski, D., Kapitaniak, T.: Rare and hidden attractors in van der Pol-Duffing oscillators. Eur. Phys. J. Spec. Topics 224(8), 1459–1467 (2015)

    Article  Google Scholar 

  10. Bylov, B.E., Vinograd, R.E., Grobman, D.M., Nemytskii, V.V.: Theory of Characteristic Exponents and its Applications to Problems of Stability. Nauka, Moscow (1966). (Russian)

    MATH  Google Scholar 

  11. Chepyzhov, V., Vishik, M.: Attractors for Equations of Mathematical Physics. Amer. Math. Soc, Providence, Rhode Island (2002)

    MATH  Google Scholar 

  12. Choquet, G., Foias, C.: Solution d’un probleme sur les iteres d’un operateur positif sur \(C(K)\) et proprietes de moyennes associees. Annales de l’institut Fourier 25(3/4), 109–129 (1975) (French)

    Google Scholar 

  13. Chueshov, I., Siegmund, S.: On dimension and metric properties of trajectory attractors. J. Dynam. Diff. Equ. 17(4), 621–641 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Constantin, P., Foias, C.: Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractors for 2D Navier-Stokes equations. Commun. Pure Appl. Math. 38(1), 1–27 (1985)

    Article  MATH  Google Scholar 

  15. Constantin, P., Foias, C., Temam, R.: Attractors representing turbulent flows. Amer. Math. Soc. Memoirs. Providence, Rhode Island 53(314) (1985)

    Google Scholar 

  16. Cvitanović, P., Artuso, R., Mainieri, R., Tanner, G., Vattay, G.: Chaos: Classical and Quantum. Niels Bohr Institute, Copenhagen. http://www.ChaosBook.org (2012)

  17. Czornik, A., Nawrat, A., Niezabitowski, M.: Lyapunov exponents for discrete time-varying systems. Stud. Comput. Intell. 440, 29–44 (2013)

    Article  MATH  Google Scholar 

  18. Danca, M.-F., Feckan, M., Kuznetsov, N.V., Chen, G.: Looking more closely at the Rabinovich-Fabrikant system. Intern. J. of Bifurcation Chaos 26(2), art. num. 1650038 (2016)

    Google Scholar 

  19. Dellnitz, M., Junge, O.: Set oriented numerical methods for dynamical systems. In: Handbook of Dynamical Systems, vol. 2, 221–264, Elsevier Science (2002)

    Google Scholar 

  20. Dieci, L., Elia, C.: SVD algorithms to approximate spectra of dynamical systems. Math. Comput. Simul. 79(4), 1235–1254 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Doering, C., Gibbon, J., Holm, D., Nicolaenko, B.: Exact Lyapunov dimension of the universal attractor for the complex Ginzburg-Landau equation. Phys. Rev. Lett. 59, 2911–2914 (1987)

    Article  Google Scholar 

  22. Douady, A., Oesterlé, J.: Dimension de Hausdorff des attracteurs. C. R. Acad. Sci. Paris, Ser. A 290, 1135–1138 (1980)

    Google Scholar 

  23. Eden, A.: An abstract theory of L-exponents with applications to dimension analysis (Ph.D. thesis). Indiana University (1989)

    Google Scholar 

  24. Eden, A.: Local Lyapunov exponents and a local estimate of Hausdorff dimension. ESAIM: Math. Modell. Numer. Anal. Modelisation Mathematique et Analyse Numerique 23(3), 405–413 (1989)

    Google Scholar 

  25. Eden, A.: Local estimates for the Hausdorff dimension of an attractor. J. Math. Anal. Appl. 150(1), 100–119 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  26. Eden, A., Foias, C., Temam, R.: Local and global Lyapunov exponents. J. Dynam. Diff. Equ. 3, 133–177 (1991) [Preprint No. 8804, The Institute for Applied Mathematics and Scientific Computing, Indiana University, 1988]

    Google Scholar 

  27. Feng, Y., Pu, J., Wei, Z.: Switched generalized function projective synchronization of two hyperchaotic systems with hidden attractors. Eur. Phys. J.: Spec. Topics 224(8), 1593–1604 (2015)

    Google Scholar 

  28. Feng, Y., Wei, Z.: Delayed feedback control and bifurcation analysis of the generalized Sprott B system with hidden attractors. Eur. Phys. J.: Spec. Topics 224(8), 1619–1636 (2015)

    Google Scholar 

  29. Frederickson, P., Kaplan, J., Yorke, E., Yorke, J.: The Liapunov dimension of strange attractors. J. Diff. Equ. 49(2), 185–207 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gelfert, K.: Maximum local Lyapunov dimension bounds the box dimension. Direct proof for invariant sets on Riemannian manifolds. Zeitschrift für Analysis und ihre Anwendungen (ZAA) 22(3), 553–568 (2003)

    Google Scholar 

  31. Glukhovsky, A.B., Dolzhanskii, F.V: Three-component geostrophic model of convection in rotating fluid. Izv. Akad. Nauk SSSR, Fiz. Atmos. i Okeana, 16, 451–462 (1980) (Russian)

    Google Scholar 

  32. Gundlach, V., Steinkamp, O.: Products of random rectangular matrices. Mathematische Nachrichten 212(1), 51–76 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hilbert, D.: Mathematical problems. Bull. Amer. Math. Soc. 8, 437–479 (1901–1902)

    Google Scholar 

  34. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  35. Hurewicz, W., Wallman, H.: Dimension Theory. Princeton University Press, Princeton (1948)

    MATH  Google Scholar 

  36. Il’yashenko, Y.S., Weigu, L.: Nonlocal Bifurcations. Amer. Math. Soc (1999)

    Google Scholar 

  37. Izobov, N.A.: Lyapunov Exponents and Stability. Cambridge Scientific Publishers, Cambridge (2012)

    MATH  Google Scholar 

  38. Jafari, S., Sprott, J., Nazarimehr, F.: Recent new examples of hidden attractors. Eur. Phys. J.: Spec. Topics 224(8), 1469–1476 (2015)

    Google Scholar 

  39. Kaplan, J.L., Yorke, J.A.: Chaotic behavior of multidimensional difference equations. In: Functional Differential Equations and Approximations of Fixed Points, pp. 204–227, Springer, Berlin (1979)

    Google Scholar 

  40. Kolmogorov, A.: On entropy per unit time as a metric invariant of automorphisms. Dokl. Akad. Nauk SSSR 124(4), 754–755 (1959) (Russian)

    Google Scholar 

  41. Kuczma, M., Gilányi, A.: An Introduction to the Theory of Functional Equations and Inequalities: Cauchy’s Equation and Jensen’s Inequality. Birkhäuser Basel (2009)

    Google Scholar 

  42. Kunze, M., Kupper, T.: Non-smooth dynamical systems: An overview. In: Fiedler, B. (ed.) Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, pp. 431–452. Springer, New York, Berlin (2001)

    Chapter  MATH  Google Scholar 

  43. Kuratowski, K.: Topology. Academic Press, New York (1966)

    MATH  Google Scholar 

  44. Kuznetsov, N.V.: The Lyapunov dimension and its estimation via the Leonov method. Phys. Lett. A 380(25–26), 2142–2149 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. Kuznetsov, N.V.: Hidden attractors in fundamental problems and engineering models. A short survey. Lecture Notes in Electrical Engineering, vol. 371, 13–25, (plenary lecture at AETA 2015: Recent Advances in Electrical Engineering and Related Sciences) (2016)

    Google Scholar 

  46. Kuznetsov, N.V., Alexeeva, T.A., Leonov, G.A.: Invariance of Lyapunov exponents and Lyapunov dimension for regular and irregular linearizations. Nonl. Dyn. 85(1), 195–201 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  47. Kuznetsov, N.V., Leonov, G.A.: On stability by the first approximation for discrete systems. In: 2005 International Conference on Physics and Control, PhysCon 2005, Proc. Vol. 2005, pp. 596–599. IEEE (2005)

    Google Scholar 

  48. Kuznetsov, N.V., Leonov, G.A.: Hidden attractors in dynamical systems: systems with no equilibria, multistability and coexisting attractors. IFAC Proc. Vol. (IFAC-PapersOnline) 19, 5445–5454 (2014)

    Google Scholar 

  49. Kuznetsov, N.V., Leonov, G.A., Mokaev, T.N.: Hidden attractor in the Rabinovich system. (2015) Available via arXiv:1504.04723v1

  50. Kuznetsov, N.V., Leonov, G.A., Vagaitsev, V.I.: Analytical-numerical method for attractor localization of generalized Chua’s system. IFAC Proc. Vol. (IFAC-PapersOnline) 4(1), 29–33 (2010)

    Google Scholar 

  51. Kuznetsov, N.V., Mokaev, T.N., Vasilyev, P.A.: Numerical justification of Leonov conjecture on Lyapunov dimension of Rossler attractor. Commun. Nonlinear Sci. Numer. Simul. 19, 1027–1034 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  52. Ledrappier, F.: Some relations between dimension and Lyapunov exponents. Commun. Math. Phys. 81, 229–238 (1981)

    Article  MATH  Google Scholar 

  53. Kuznetsov, N.V., Mokaev, T.N., Kuznetsova, O.A., Kudryashova, E.V., Leonov, G.A.: The Lorenz system: hidden boundary of practical stability and the Lyapunov dimension (2020) Available via arXiv. http://arxiv.org

  54. Leonov, G.A.: On estimations of the Hausdorff dimension of attractors. Vestn. Leningrad Gos. Univ. Ser. 1, 15, 41–44 (1991) (Russian); English transl. Vestn. Leningrad Univ. Math. 24(3), 38–41 (1991)

    Google Scholar 

  55. Leonov, G.A.: Lyapunov dimensions formulas for Hénon and Lorenz attractors. Alg. Anal. 13, 155–170 (2001) (Russian); English transl. St. Petersburg Math. J. 13(3), 453–464 (2002)

    Google Scholar 

  56. Leonov, G.A.: Strange Attractors and Classical Stability Theory. St. Petersburg State Univ. Press, St.Petersburg (2008)

    MATH  Google Scholar 

  57. Leonov, G.A.: Lyapunov functions in the attractors dimension theory. J. Appl. Math. Mech. 76(2), 129–141 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  58. Leonov, G.A., Alexeeva, T.A., Kuznetsov, N.V.: Analytic exact upper bound for the Lyapunov dimension of the Shimizu-Morioka system. Entropy 17(7), 5101 (2015)

    Article  Google Scholar 

  59. Leonov, G.A., Boichenko, V.A.: Lyapunov’s direct method in the estimation of the Hausdorff dimension of attractors. Acta Appl. Math. 26, 1–60 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  60. Leonov, G.A., Kuznetsov, N.V.: Time-varying linearization and the Perron effects. Intern. J. Bifurcation Chaos 17(4), 1079–1107 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  61. Leonov, G.A., Kuznetsov, N.V.: Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractors in Chua circuits. Intern. J. Bifurcation Chaos 23(1), Art. no. 1330002 (2013)

    Google Scholar 

  62. Leonov, G.A., Kuznetsov, N.V.: On differences and similarities in the analysis of Lorenz, Chen, and Lu systems. Appl. Math. Comput. 25(6), 334–343 (2015)

    MathSciNet  MATH  Google Scholar 

  63. Leonov, G., Kuznetsov, N., Korzhemanova, N., Kusakin, D.: Lyapunov dimension formula of attractors in the Tigan and Yang systems (2015) Available via arXiv:1510.01492v1

  64. Leonov, G.A., Kuznetsov, N.V., Korzhemanova, N.A., Kusakin, D.V.: Lyapunov dimension formula for the global attractor of the Lorenz system. Commun. Nonlinear Sci. Numer. Simul. 41, 84–103 (2016)

    Article  MathSciNet  Google Scholar 

  65. Leonov, G.A., Kuznetsov, N.V., Mokaev, T.N.: Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity. Commun. Nonlinear Sci. Numer. Simul. 28, 166–174 (2015)

    Article  MathSciNet  Google Scholar 

  66. Leonov, G.A., Kuznetsov, N.V., Mokaev, T.: Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion. Eur. Phys. J. Spec. Topics 224(8), 1421–1458 (2015)

    Article  Google Scholar 

  67. Leonov, G.A., Kuznetsov, N.V., Mokaev, T.N.: The Lyapunov dimension formula of self-excited and hidden attractors in the Glukhovsky-Dolzhansky system (2015) Available via arXiv:1509.09161

  68. Leonov, G.A., Kuznetsov, N.V., Vagaitsev, V.I.: Localization of hidden Chua’s attractors. Phys. Lett. A 375(23), 2230–2233 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  69. Leonov, G.A., Kuznetsov, N.V., Vagaitsev, V.I.: Hidden attractor in smooth Chua systems. Phys. D: Nonlin. Phenomena 241(18), 1482–1486 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  70. Leonov, G.A., Lyashko, S.: Eden’s hypothesis for a Lorenz system. Vestn. S. Peterburg Gos. Univ., Matematika, 26(3), 15–18 (1993) (Russian); English transl. Vestn. St. Petersburg Univ. Math. Ser. 1 26(3), 14–16 (1993)

    Google Scholar 

  71. Leonov, G.A., Pogromsky, A.Yu., Starkov, K.E.: Erratum to “The dimension formula for the Lorenz attractor”. Phys. Lett. A 375(8), 1179 (2011), Phys. Lett. A 376(45), 3472–3474 (2012)

    Google Scholar 

  72. Leonov, G.A., Poltinnikova, M.S.: On the Lyapunov dimension of the attractor of Chirikov dissipative mapping. AMS Transl. Proc. St.Petersburg Math. Soc., Vol. X 224, 15–28 (2005)

    Google Scholar 

  73. Li, C., Hu, W., Sprott, J., Wang, X.: Multistability in symmetric chaotic systems. Eur. Phys. J.: Spec. Topics 224(8), 1493–1506 (2015)

    Google Scholar 

  74. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  75. Lyapunov, A.M.: The general problem of the stability of motion. Kharkov (1892) (Russian); Engl. transl. Intern. J. Control (Centenary Issue) 55, 531–572 (1992)

    Google Scholar 

  76. Millionschikov, V.M.: A formula for the entropy of smooth dynamical systems. Diff. Urav. (Russian) 12(12), 2188–2192, 2300 (1976)

    Google Scholar 

  77. Milnor, J.W.: Attractor. Scholarpedia 1, 11 (2006). https://doi.org/10.4249/scholarpedia.1815

  78. Noack, A., Reitmann, V.: Hausdorff dimension estimates for invariant sets of time-dependent vector fields. Zeitschrift für Analysis und ihre Anwendungen (ZAA) 15(2), 457–473 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  79. Oseledec, V.I.: A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc. 19, 197–231 (1968)

    MathSciNet  Google Scholar 

  80. Ott, E., Withers, W., Yorke, J.: Is the dimension of chaotic attractors invariant under coordinate changes? J. Stat. Phys. 36(5–6), 687–697 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  81. Ott, W., Yorke, J.: When Lyapunov exponents fail to exist. Phys. Rev. E 78 (2008)

    Google Scholar 

  82. Pesin, Ya.B.: Characteristic Lyapunov exponents and smooth ergodic theory. Uspekhi Mat. Nauk 43, 55–112 (1977) (Russian); English transl. Russ. Math. Surveys 32, 55–114 (1977)

    Google Scholar 

  83. Pham, V., Vaidyanathan, S., Volos, C., Jafari, S.: Hidden attractors in a chaotic system with an exponential nonlinear term. Eur. Phys. J.: Spec. Topics 224(8), 1507–1517 (2015)

    Google Scholar 

  84. Pilyugin, S.: Theory of pseudo-orbit shadowing in dynamical systems. J. Diff. Equ. 47(13), 1929–1938 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  85. Pogromsky, A.Y., Matveev, A.S.: Estimation of topological entropy via the direct Lyapunov method. Nonlinearity 24(7), 1937 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  86. Saha, P., Saha, D., Ray, A., Chowdhury, A.: Memristive non-linear system and hidden attractor. Eur. Phys. J.: Spec. Topics 224(8), 1563–1574 (2015)

    Google Scholar 

  87. Schmeling, J.: A dimension formula for endomorphisms—the Belykh family. Ergodic Theory Dyn. Syst. 18, 1283–1309 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  88. Sell, G.R.: Global attractors for the three-dimensional Navier-Stokes equations. J. Dyn. Diff. Equ. 8(1), 1–33 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  89. Semenov, V., Korneev, I., Arinushkin, P., Strelkova, G., Vadivasova, T., Anishchenko, V.: Numerical and experimental studies of attractors in memristor-based Chua’s oscillator with a line of equilibria. Noise-induced effects. Eur. Phys. J.: Spec. Topics 224(8), 1553–1561 (2015)

    Google Scholar 

  90. Shahzad, M., Pham, V.-T., Ahmad, M., Jafari, S., Hadaeghi, F.: Synchronization and circuit design of a chaotic system with coexisting hidden attractors. Eur. Phys. J.: Spec. Topics 224(8), 1637–1652 (2015)

    Google Scholar 

  91. Sharma, P.R., Shrimali, M.D., Prasad, A., Kuznetsov, N.V., Leonov, G.A.: Control of multistability in hidden attractors. Eur. Phys. J.: Spec. Topics 224(8), 1485–1491 (2015)

    Google Scholar 

  92. Shimizu, T., Morioka, N.: On the bifurcation of a symmetric limit cycle to an asymmetric one in a simple model. Phys. Lett. A 76(3–4), 201–204 (1980)

    Article  MathSciNet  Google Scholar 

  93. Sinai, Ya.G.: On the concept of entropy of a dynamical system. Dokl. Akad. Nauk, SSSR 124, 768–771 (1959) (Russian)

    Google Scholar 

  94. Smith, R.A.: Some applications of Hausdorff dimension inequalities for ordinary differential equations. Proc. Roy. Soc. Edinburgh 104A, 235–259 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  95. Sparrow, C.: The Lorenz Equations, Bifurcations, Chaos, and Strange Attractors. Springer, New York (1982)

    Book  MATH  Google Scholar 

  96. Sprott, J.: Strange attractors with various equilibrium types. Eur. Phys. J.: Spec. Topics 224(8), 1409–1419 (2015)

    Google Scholar 

  97. Stewart, D.E.: A new algorithm for the SVD of a long product of matrices and the stability of products. Electron. Trans. Numer. Anal. 5, 29–47 (1997)

    MathSciNet  MATH  Google Scholar 

  98. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edn. Springer, New York (1997)

    Book  MATH  Google Scholar 

  99. Tigan, G., Opris, D.: Analysis of a 3d chaotic system. Chaos Solitons and Fractals 36(5), 1315–1319 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  100. Vaidyanathan, S., Pham, V.-T., Volos, C.: A 5-D hyperchaotic Rikitake dynamo system with hidden attractors. Eur. Phys. J.: Spec. Topics 224(8), 1575–1592 (2015)

    Google Scholar 

  101. Yang, Q., Chen, G.: A chaotic system with one saddle and two stable node-foci. Intern. J. Bifurcation Chaos 18, 1393–1414 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  102. Young, L.-S.: Mathematical theory of Lyapunov exponents. J. Phys. A: Math. Theor. 46(25), 254001 (2013)

    Google Scholar 

  103. Zakrzhevsky, M., Schukin, I., Yevstignejev, V.: Scientific Proc. Riga Technical Univ. Transp. Engin. 6, 79 (2007)

    Google Scholar 

  104. Zelinka, I.: A survey on evolutionary algorithms dynamics and its complexity—mutual relations, past, present and future. Swarm Evolut. Comput. 25, 2–14 (2015)

    Article  Google Scholar 

  105. Zelinka, I.: Evolutionary identification of hidden chaotic attractors. Eng. Appl. Artif. Intell. 50, 159–167 (2016). https://doi.org/10.1016/j.engappai.2015.12.002

  106. Zhusubaliyev, Z., Mosekilde, E., Churilov, A., Medvedev, A.: Multistability and hidden attractors in an impulsive Goodwin oscillator with time delay. Eur. Phys. J.: Spec. Topics 224(8), 1519–1539 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Kuznetsov .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuznetsov, N., Reitmann, V. (2021). Lyapunov Dimension for Dynamical Systems in Euclidean Spaces. In: Attractor Dimension Estimates for Dynamical Systems: Theory and Computation. Emergence, Complexity and Computation, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-030-50987-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50987-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50986-6

  • Online ISBN: 978-3-030-50987-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics