Skip to main content
Log in

Invariance of Lyapunov exponents and Lyapunov dimension for regular and irregular linearizations

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Nowadays the Lyapunov exponents and Lyapunov dimension have become so widespread and common that they are often used without references to the rigorous definitions or pioneering works. It may lead to a confusion since there are at least two well-known definitions, which are used in computations: the upper bounds of the exponential growth rate of the norms of linearized system solutions (Lyapunov characteristic exponents, LCEs) and the upper bounds of the exponential growth rate of the singular values of the fundamental matrix of linearized system (Lyapunov exponents, LEs). In this work, the relation between Lyapunov exponents and Lyapunov characteristic exponents is discussed. The invariance of Lyapunov exponents for regular and irregular linearizations under the change of coordinates is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In [42], these values are defined with the opposite sign and are called characteristic exponents.

  2. For example, for the fundamental matrix \(X(t)={\left( \begin{array}{c@{\quad }c} 1 &{} g(t)-g^{-1}(t) \\ 0 &{} 1 \\ \end{array} \right) }\) we have the following ordered values: \( {{\mathrm{LCE}}}_1^{o} = \mathrm{max}\big (\limsup _{t \rightarrow +\infty }\mathcal {X}(g(t))\), \(\limsup _{t \rightarrow +\infty }\mathcal {X}(g^{-1}(t))\big )\), \({{\mathrm{LCE}}}_2^{o} = 0; \mathrm{LE}_{1,2}^{o} = \mathrm{max, min} \big ( \limsup _{t \rightarrow +\infty }\mathcal {X}(g(t)), \limsup _{t \rightarrow +\infty }\mathcal {X}(g^{-1}(t)) \big ). \) Remark that here \(\mathcal {X}\) of the diagonal elements of X(t) do not coincide with \({{\mathrm{LCE}}}\) s and \(\mathrm{LE}\) s.

  3. This is not a dimension in a rigorous sense (see, e.g., [22, 26]); for example, in [35, Fig. 7;p.1439], a local B-attractor, which includes equilibria and separatrices, has \(\dim _L \approx 2.8\).

References

  1. Abarbanel, H., Brown, R., Sidorowich, J., Tsimring, L.: The analysis of observed chaotic data in physical systems. Rev. Mod. Phys. 65(4), 1331–1392 (1993)

    Article  MathSciNet  Google Scholar 

  2. Augustova, P., Beran, Z., Celikovsky, S.: ISCS 2014: interdisciplinary symposium on complex systems, emergence, complexity and computation. In: Sanayei, A., et al. (eds.) On Some False Chaos Indicators When Analyzing Sampled Data, pp. 249–258. Springer, Berlin (2015)

    Google Scholar 

  3. Barabanov, E.: Singular exponents and properness criteria for linear differential systems. Differ. Equ. 41, 151–162 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barreira, L., Gelfert, K.: Dimension estimates in smooth dynamics: a survey of recent results. Ergod. Theory Dyn. Sys. 31, 641–671 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barreira, L., Schmeling, J.: Sets of “Non-typical” points have full topological entropy and full Hausdorff dimension. Isr. J. Math. 116(1), 29–70 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boichenko, V.A., Leonov, G.A., Reitmann, V.: Dimension Theory for Ordinary Differential Equations. Teubner, Stuttgart (2005)

    Book  MATH  Google Scholar 

  7. Bylov, B.E., Vinograd, R.E., Grobman, D.M., Nemytskii, V.V.: Theory of Characteristic Exponents and its Applications to Problems of Stability. Nauka, Moscow (1966). (in Russian)

    Google Scholar 

  8. Constantin, P., Foias, C., Temam, R.: Attractors representing turbulent flows. Mem. Am. Math. Soc. 53(314), 1–67 (1985)

  9. Cvitanović, P., Artuso, R., Mainieri, R., Tanner, G., Vattay, G.: Chaos: classical and quantum. Niels Bohr Institute, Copenhagen (2012). http://ChaosBook.org

  10. Czornik, A., Nawrat, A., Niezabitowski, M.: Lyapunov exponents for discrete time-varying systems. Stud. Comput. Intell. 440, 29–44 (2013)

    Article  MATH  Google Scholar 

  11. Deroin, B., Dujardin, R.: Lyapunov exponents for surface group representations. Commun. Math. Phys. 340(2), 433–469 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dettmann, C., Frankel, N., Cornish, N.: Chaos and fractals around black holes. Fractals 03(01), 161–181 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Doering, C.R., Gibbon, J.: On the shape and dimension of the Lorenz attractor. Dyn. Stabil. Sys. 10(3), 255–268 (1995)

    MathSciNet  MATH  Google Scholar 

  14. Douady, A., Oesterle, J.: Dimension de Hausdorff des attracteurs. CR Acad. Sci. Paris Ser. A 290(24), 1135–1138 (1980)

    MathSciNet  MATH  Google Scholar 

  15. Eden, A., Foias, C., Temam, R.: Local and global Lyapunov exponents. J. Dyn. Differ. Equ. 3(1), 133–177 (1991). (Preprint No. 8804, The Institute for Applied Mathematics and Scientific Computing, Indiana University, 1988)

  16. Eichhorn, R., Linz, S., Hanggi, P.: Transformation invariance of Lyapunov exponents. Chaos, Solitons & Fractals 12(8), 1377–1383 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Phys. D: nonlinear Phenom. 9(1–2), 189–208 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hegger, R., Kantz, H., Schreiber, T.: Practical implementation of nonlinear time series methods: the TISEAN package. Chaos 9, 413–435 (1999)

    Article  MATH  Google Scholar 

  19. Hertz, J.: Some advances on generic properties of the Oseledets splitting. Discret. Contin. Dyn. Sys. Ser. A 33(9), 4323–4339 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Horn, R., Johnson, C.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  21. Hunt, B.: Maximum local Lyapunov dimension bounds the box dimension of chaotic attractors. Nonlinearity 9(4), 845–852 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hurewicz, W., Wallman, H.: Dimension Theory. Princeton University Press, Princeton (1941)

    MATH  Google Scholar 

  23. Izobov, N.A.: Lyapunov Exponents and Stability. Cambridge Scientific Publishers, Cambridge (2012)

    MATH  Google Scholar 

  24. Kaplan, J.L., Yorke, J.A.: Chaotic behavior of multidimensional difference equations. In: Peitgen, H.-O., Walther, H.-O. (eds.) Functional Differential Equations and Approximations of Fixed Points, pp. 204–227. Springer, Berlin (1979)

    Chapter  Google Scholar 

  25. Kolmogorov, A.: On entropy per unit time as a metric invariant of automorphisms. Dokl. Akad. Nauk SSSR 124(4), 754–755 (1959). (In Russian)

    MathSciNet  MATH  Google Scholar 

  26. Kuratowski, K.: Topology. Academic press, New York (1966)

    MATH  Google Scholar 

  27. Kuznetsov, N.V.: Stability and Oscillations of Dynamical Systems: Theory and Applications. Jyvaskyla University Printing House, Jyvaskyla (2008)

    Google Scholar 

  28. Kuznetsov, N.V., Leonov, G.A.: Counterexample of Perron in the discrete case. Izv. RAEN, Diff. Uravn. 5, 71 (2001)

    Google Scholar 

  29. Kuznetsov, N.V., Leonov, G.A.: On stability by the first approximation for discrete systems. In: 2005 International Conference on Physics and Control, PhysCon 2005, vol. Proceedings Volume 2005, pp. 596–599. IEEE (2005)

  30. Kuznetsov, N.V., Mokaev, T.N., Vasilyev, P.A.: Numerical justification of Leonov conjecture on Lyapunov dimension of Rossler attractor. Commun. Nonlinear Sci. Numer. Simul. 19, 1027–1034 (2014)

    Article  MathSciNet  Google Scholar 

  31. Ledrappier, F.: Some relations between dimension and Lyapounov exponents. Commun. Math. Phys. 81(2), 229–238 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  32. Leonov, G.: Lyapunov dimension formulas for Henon and Lorenz attractors. St. Petersb. Math. J. 13(3), 453–464 (2002)

    MATH  Google Scholar 

  33. Leonov, G., Alexeeva, T., Kuznetsov, N.: Analytic exact upper bound for the Lyapunov dimension of the Shimizu-Morioka system. Entropy 17(7), 5101 (2015)

    Article  Google Scholar 

  34. Leonov, G., Kuznetsov, N., Korzhemanova, N., Kusakin, D.: The Lyapunov dimension formula for the global attractor of the Lorenz system. arXiv:1508.07498v1 (2015)

  35. Leonov, G., Kuznetsov, N., Mokaev, T.: Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion. Eur. Phys. J. Spec. Top. 224(8), 1421–1458 (2015)

    Article  Google Scholar 

  36. Leonov, G.A.: On estimations of Hausdorff dimension of attractors. Vestn. St. Petersb. Univ. Math. 24(3), 38–41 (1991)

    MATH  Google Scholar 

  37. Leonov, G.A.: Strange Attractors and Classical Stability Theory. St. Petersburg University Press, St. Petersburg (2008)

    MATH  Google Scholar 

  38. Leonov, G.A.: Lyapunov functions in the attractors dimension theory. J. Appl. Math. Mech. 76(2), 129–141 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Leonov, G.A., Kuznetsov, N.V.: Time-varying linearization and the Perron effects. Int. J. Bifurc. Chaos 17(4), 1079–1107 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Leonov, G.A., Kuznetsov, N.V.: On differences and similarities in the analysis of Lorenz, Chen, and Lu systems. Appl. Math. Comput. 256, 334–343 (2015)

    MathSciNet  Google Scholar 

  41. Lipnitskii, A.V.: Lower bounds for the upper Lyapunov exponent in one-parameter families of Millionshchikov systems. J. Math. Sci. 210(2), 217–221 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lyapunov, A.M.: The General Problem of the Stability of Motion. Kharkov (1892) (English transl. Academic Press, NY 1966)

  43. Mane, R.: Oseledec’s theorem from the generic viewpoint. In: Proceedings of Internat Congress of Mathematicians, vol. 1,2. PWN, Warsaw (1984)

  44. Mierczynski, J., Shen, W.: Principal Lyapunov exponents and principal Floquet spaces of positive random dynamical systems. II. finite-dimensional systems. J. Math. Anal. Appl. 404(2), 438–458 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Millionschikov, V.M.: A formula for the entropy of smooth dynamical systems. Differencial’nye Uravenija 12(12), 2188–2192, 2300 (1976). (in Russian)

    MathSciNet  Google Scholar 

  46. Oseledec, V.: Multiplicative ergodic theorem: characteristic Lyapunov exponents of dynamical systems. Trans. Mosc. Math. Soc. 19, 179–210 (1968)

    MathSciNet  Google Scholar 

  47. Ott, E., Withers, W., Yorke, J.: Is the dimension of chaotic attractors invariant under coordinate changes? J. Stat. Phys. 36(5–6), 687–697 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  48. Ott, W., Yorke, J.: When Lyapunov exponents fail to exist. Phys. Rev. E 78, 056203 (2008)

    Article  MathSciNet  Google Scholar 

  49. Pesin, Y.: Characteristic Lyapunov exponents and smooth ergodic theory. Russ. Math. Surv. 32(4), 55–114 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  50. Pesin, Y.B.: Dimension type characteristics for invariant sets of dynamical systems. Russ. Math. Surv. 43(4), 111–151 (1988)

  51. Pilyugin, S.: Theory of pseudo-orbit shadowing in dynamical systems. Differ. Equ. 47(13), 1929–1938 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  52. Rosenstein, M., Collins, J., De Luca, C.: A practical method for calculating largest Lyapunov exponents from small data sets. Phys. D Nonlinear Phenom. 65(1–2), 117–134 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  53. Sambarino, M.: A (short) survey on dominated splitting. arXiv:1403.6050 (2014)

  54. Sander, E., Yorke, J.A.: The many facets of chaos. Int. J. Bifurc. Chaos 25(04), 1530,011 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  55. Shevchenko, I.: Lyapunov exponents in resonance multiplets. Phys. Lett. A 378(1–2), 34–42 (2014)

    Article  MathSciNet  Google Scholar 

  56. Sinai, Y.: On the notion of entropy of dynamical systems. Dokl. Akad. Nauk SSSR 124(4), 768–771 (1959). (In Russian)

    MathSciNet  MATH  Google Scholar 

  57. Sprott, J., Hoover, W., Hoover, C.: Heat conduction, and the lack thereof, in time-reversible dynamical systems: Generalized Nosé-Hoover oscillators with a temperature gradient. Phys. Rev. E 89 (2014). art. num. 042914

  58. Temam, R.: Infinite-dimensional Dynamical Systems in Mechanics and Physics, 2nd edn. Springer, New York (1997)

    Book  MATH  Google Scholar 

  59. Tempkin, J., Yorke, J.: Spurious Lyapunov exponents computed from data. SIAM J. Appl. Dyn. Syst. 6(2), 457–474 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  60. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 16(D), 285–317 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  61. Young, L.S.: Mathematical theory of Lyapunov exponents. J. Phys. A Math. Theor. 46(25), 254001 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by Russian Scientific Foundation project 14-21-00041 and Saint-Petersburg State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Kuznetsov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, N.V., Alexeeva, T.A. & Leonov, G.A. Invariance of Lyapunov exponents and Lyapunov dimension for regular and irregular linearizations. Nonlinear Dyn 85, 195–201 (2016). https://doi.org/10.1007/s11071-016-2678-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-2678-4

Keywords

Navigation